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DISCONNECTED NEIGHBOURHOOD GRAPHS 

BOHDAN ZELINKA 

Let G be an undirected graph without loops and multiple edges. Let v be 
a vertex of G. The subgraph of G induced by the set of all vertices adjacent to v in 
G is called the neighbourhood graph of v in G and denoted by NG(v). 

At the Symposium on Graph Theory in Smolenice [1] in 1963 B. A. Trahtenbrot 
and A. A. Zykov suggested the problem: Which graphs H have the property that 
there exists a graph G such that NG(v)^H for each vertex v of G. 

The class of the above mentioned graphs H will be denoted by JS\ We shall study 
the case when a graph from Jf is disconnected. 

The direct product G2 x G2 of two graphs Gu G2 with vertex sets V(Gi), V(G2) 
is defined in the usual way; its vertex set is the Cartesian product V(Gi) x V(G2) 
and two vertices (uu u2), (vu v2) are adjacent in it if and only if either ux = vx and 
u2, v2 are adjacent in G2, or u2 = v2 and uu ux are adjacent in Gx. This definition 
can be easily extended for an arbitrary finite number of factors. 

Theorem. If H is a disconnected graph with the connected components 
Hu ..., Hk, where k is an arbitrary integer greater than one, and if Hu e N for i = 1, 
..., k, then HeX, but not vice versa. 

Proof. The proof of the implication is easy. For i= 1, ..., k let G, be a graph 
with the property that NG|(^) = H, for each vertex v of G,. Let G ^ Gx x ... x Gk. 
Then it is easy to verify that NG(v)^H for an arbitrary vertex v of G. 

Now we shall show an example of a disconnected graph H which belongs to JV, 
while none of its connected components does. Let m, n, p be three positive 
integers such that m<n<p. The graph H has three connected components which 
are the complete bipartite graphs Km,„, Km,p, K„>p. Now we shall describe a graph 
G. The vertex set V of the graph G is the set of all ordered sextuples (au a2, a3, bu 

b2, b3), where ax e {1, 2, 3}, a2e {1, 2, 3}, a3e {1, 2, 3}, bx e {1, ..., m), b2e {1, ..., 
n), b3e {1, ..., p). If ai + a 2 + a3 = 0 (mod 3), then each vertex (au a2, a3, bx, b2, 
b3) is adjacent to all vertices (ai + 1, a2, a3, bx,xx, b3), (ax + 2, a2, a3, bu b2,yx), (a,, 
a 2 + l , a3, x2, b2, b3), (au a2 + 2, a3, bu b2, y2), (a,, a2, a 3 + l , x3, o2, b3), (a,, a2, 
a3 + 2, bu y3, b3), where xx e {1, ..., n}, yxe{\ /?}, x2e{\ m}, 
y2e{l, ..., p}, jc3e{l, ..., m), y3e{\, ..., n} and the sums are taken modulo 3. If 
ai + a2 + a 3 = l (mod 3), then each vertex (a,, a2, a3, bu b2, b3) is adjacent to all 
vertices (a, + 1, a2, a3, xx, b2, b3), (a, + 2, a2, a3, £,, 62, v.), (a,, a2 + 1, a3, *2, b2, b3), 
(au a2 + 2, a3, bu y2, b3),(ax, a2, a3+ 1, bux3, b3), (a,, a2, a3 + 2, bu b2, y3), where 
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xxe{l, ..., m}, yxe{\, ...,p}, x2e {1, ..., m}, y2e {1, ..., n}, x3e {1, ..., At}, 
y3e {I, ..., p} and the sums are again taken modulo 3. If ax + a2 + a3 = 2 (mod 3), 
then each vertex (au a2, a3, bu b2, b3) is adjacent to all vertices (ax + 1, a2, a3, xx, b2, 
b3), (ax + 2,a2, a3, buyu b2),(au a2+l, a3, bux2, b3),(au a2 + 2,a3, bu b2, y2), (a., 
a2, a 3 + l , x3, b2, b3), (au a2, a3 + 2, bu b2, y3), where xxe {\, ..., m}, 
y i e { l , ..., n},x2e{\, ..., rc},y2e{l, ..., p}, x3e {1, ..., m},y3e{, ...,p) and the 
sums are again taken modulo 3. For each vertex v of G we have NG(v) = H and 
hence HeS. 

Now suppose that Km,neS, i.e. that there exists a graph G0 such that 
NGo(u) = Km,n for each vertex v of G0. Let ux be a vertex of G0, let (vi, ..., vm}, 
(wi, ..., wn} be the bipartition classes of NGo(wi). Now consider NGo(i;i). This is 
also a graph isomorphic to K m n and contains an independent set {wu ..., wn}. In 
K m n with m<n there is exactly one independent set with n vertices and this is 
a bipartition class of Km,n. Hence {wi, ..., wn} is the bipartition class of NGo(vx) 
with n vertices. The other bipartition class of NGo(i;i) contains ux and no vertex 
from {vu ..., vm}. Therefore there exist vertices u2,...,um such that 
{uu u2, ..., um} is a bipartition class of NGo(t>i). Now consider NGo(wi). This graph 
contains a subgraph isomorphic to Km,„ with the bipartition classes {ux, • ••, um}, 
{vu ..., vm}. As NGo(wi) is isomorphic to Km,n, one of these sets, say {ux, ..., um}, 
is one of its bipartition classes and there exist vertices vm+1, ..., vn such that 
{vx,...,vn} is the other bipartition class of NGo(wi). Each of the vertices 
um+i, ..., vn is adjacent to all vertices uu ..., um and is different from the vertices 
vu ..., vm, wx, ..., wn. But then these vertices belong to NGo(ux) and this is 
a contradiction with the assumption that the vertex set of NGo(ux) is {vx, ..., vm, 
wx, ..., wn}. Hence G0 does not exist and Km,n£N. Analogously Km,p£N and 

Kn,„éЛ. 
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НЕСВЯЗНЫЕ ГРАФЫ ОКРЕСТНОСТЕЙ 

Вопо'ап ХеПпка 
Резюме 

Статья занимается классом Я графов Н, обладающих тем свойством, что существует граф О, 
в котором окрестность каждой вершины порождает граф, изоморфный графу Н. Доказано, что 
если все компоненты графа Н принадлежат классу Я, то граф Н принадлежит классу Л, но не 
обратно. 
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