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DISCONNECTED NEIGHBOURHOOD GRAPHS

BOHDAN ZELINKA

Let G be an undirected graph without loops and multiple edges. Let v be
a vertex of G. The subgraph of G induced by the set of all vertices adjacent to v in
G is called the neighbourhood graph of v in G and denoted by Ng(v).

At the Symposium on Graph Theory in Smolenice [1] in 1963 B. A. Trahtenbrot
and A. A. Zykov suggested the problem: Which graphs H have the property that
there exists a graph G such that Ng(v)& H for each vertex v of G.

The class of the above mentioned graphs H will be denoted by .¥'. We shall study
the case when a graph from A is disconnected.

The direct product G, X G, of two graphs G,, G, with vertex sets V(G,), V(G,)
is defined in the usual way; its vertex set is the Cartesian product V(G,) X V(G,)
and two vertices (u;, uz), (v, v,) are adjacent in it if and only if either u, = v, and
uz, v, are adjacent in G,, or u, =v, and u,, u, are adjacent in G,. This definition
can be easily extended for an arbitrary finite number of factors.

Theorem. If H is a disconnected graph with the connected components
H,, ..., Hy, where k is an arbitrary integer greater than one, and if H,e N fori=1,
..., k, then He N, but not vice versa.

Proof. The proof of the implication is easy. For i=1, ..., k let G; be a graph
with the property that Ng,(v) 2 H; for each vertex v of G;. Let GR G, X ... X Gi.
Then it is easy to verify that Ng(v) £ H for an arbitrary vertex v of G.

Now we shall show an example of a disconnected graph H which belongs to ¥,
while none of its connected components does. Let m, n, p be three positive
integers such that m <n <p. The graph H has three connected components which
are the complete bipartite graphs K, ., Km, p, K., ,. Now we shall describe a graph
G. The vertex set V of the graph G is the set of all ordered sextuples (ai, a, as, by,
bi, bs), where a, €{1,2,3},a,e€{1,2,3},a:e{1,2,3},b,e{1, ...,m}, b,e{1, ..,
n}, bse{l, ..., p}. If a;+ a,+ a;=0 (mod 3), then each vertex (a,, az, as, by, b,
bs) is adjacent to all vertices (a, + 1, aa, as, by, x1, b3), (a1 +2, ay, as, by, b2, y1). (ar,
a;+ 1, as, x,, by, by), (a1, az+2, as, by, by, ¥2), (ay, az, as+ 1, x3, bz, b3), (a1, az,
as+2, by, ys, bs), where x;e{l,...n}, yie{l,...p}, x:e{l,...,m},
y2€{1,...,p}, xs€{1, ..., m}, y;€ {1, ..., n} and the sums are taken modulo 3. If
a;+a,+a;=1 (mod 3), then each vertex (ai, az, as, by, by, bs) is adjacent to all
vertices (a, + 1, a,, as, x1, by, bs), (a;+ 2, a2, @3, by, by, vi). (a1, a; + 1, ay, x3, by, b)),
(a1, a3+ 2, as, by, ys, by), (a1, az, as+ 1, by, X3, b3). (ar, @z, ax+ 2, by, by, ys), where
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xie{l,....,m), yie{l,...,p}, x;e{l,....,m}, y.€{l,..,n}, xe{l,...,n},
ys€{1, ..., p} and the sums are again taken modulo 3. If a, + a, + a;=2 (mod 3),
then each vertex (a,, a,, as, by, b,, bs) is adjacent to all vertices (a, + 1, a,, as, x1, b,
bs), (a;+2, az, as, by, y1, ba), (a1, a2+ 1, as, by, x,, bs), (a1, az+ 2, as, by, bz, y2), (ay,
a, as+1, x;, by, b3), (ai, az, as+2, by, by, y;), where x,€{l,...,m},
yvief{l,....,n}, x,e{1,...,n}, y,e{l,...,p}, xse{l, ..., m}, y;€{, ..., p) and the
sums are again taken modulo 3. For each vertex v of G we have Ng(v) 2 H and
hence He.Y.

Now suppose that K,, ,e.V, i.e. that there exists a graph G, such that
Ng,(v)= K., . for each vertex v of Go. Let u, be a vertex of G, let {vi, ..., Un},
{wi, ..., w,} be the bipartition classes of Ng,(u;). Now consider Ng,(v,). This is
also a graph isomorphic to K,, , and contains an independent set {w, ..., w, }. In
K.... with m <n there is exactly one independent set with n vertices and this is
a bipartition class of K,, .. Hence {wy, ..., w,} is the bipartition class of Ng,(v;)
with n vertices. The other bipartition class of Ng(v,) contains u; and no vertex
from {vi, ..., vn}. Therefore there exist vertices us, ..., u, such that
{ui, uy, ..., un} is a bipartition class of Ng,(vi). Now consider Ng,(w,). This graph
contains a subgraph isomorphic to K,, , with the bipartition classes {u,, ..., Un},
{vi, ..., Um}. As Ng,(w,) is isomorphic to K,, ., one of these sets, say {uy, ..., Un},
is one of its bipartition classes and there exist vertices v, ..., U, such that
{vi, ..., v.} is the other bipartition class of Ng(w;). Each of the vertices
Um+1s ---» Us 1 adjacent to all vertices uj, ..., U, and is different from the vertices
Uty -y Um, Wi, ..., W,. But then these vertices belong to Ng,(u;) and this is
a contradiction with the assumption that the vertex set of Ng,(u;) is {v1, ..., Um,
wy, ..., w,}. Hence G, does not exist and K,, ,¢é V. Analogously K,, ,¢./ and
K, ,éN.

REFERENCE

[1] Theory of Graphs and Its Applications. Proc. Symp. Smolenice 1963 (ed. by M. Fiedler),
Academia, Prague 1964.

Received February 1, 1984 Katedra tvdfeni a plasti
Vysoké skoly strojni a textilni

Studentskd 1292

460 01 Liberec 1

HECBSI3HBIE I'PA®bl OKPECTHOCTEM

Bohdan Zelinka
Pe3ome
CraTtbs 3aHMMaeTcs kinaccom N rpagos H, o6napatolux TeM cCBOMCTBOM, 4TO cyulecTByeT rpad G,
B KOTOPOM OKPECTHOCTb KaXX10# BepUIMHBI nopoxaaeT rpad, nsomopdHusiit rpacdy H. [lokazaHo, yto
€ec/I Bce KOMMOHeHTh! rpada H npuHapnexat knaccy N, To rpacd H npuHagnexuT knaccy N, HO He
o6paTHO.
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