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MULTI-POINT BOUNDARY VALUE PROBLEM
FOR A CLASS OF FUNCTIONAL
DIFFERENTIAL EQUATIONS WITH PARAMETER

SVATOSLAV STANEK

ABSTRACT. The existence and uniqueness of solutions of the problem
m

¥'(1) = a@y(t) = f(t,y(®),y(ho(1),¥' (), ¥ (h1 (D)), n), Zl aiy(ti) = 0,
1=

y(c) =0, i Bjy(zj) = 0 are studied.
i=1

1. Introduction

Consider the one-parameter functional differential equation
y"(t) — ¢ty (t) = F(t,¥(1), y(ho(t)), ¥'(2), ¥' (R1(1)), 1) (1)

in which f € C°(J x R* x I;R), ho,h1 € C°(J;J), g € C°(J;R), ¢(t) >0 for

t e J, where J = (a,b), I = (ky,k2), —00<a<b<oo, —00o<k;<ky<oo.

Suppose m,n are positive integers, ¢ € (a,b), a=1t; <t <:-- <tm <c<

Tph<-+<zy<zy=band ;,3; 1=1,2,...,m; j=1,2,...,n) are positive
m

m n n
constants, Y a; = Y. B; =1, a1 2 Y, a; (provided m 2 2), B 2 Y B;
1=1 =2 j=2

i=1

(provided n 2 2).

Our aim is to give sufficient conditions on the functions ¢ and f for the
existence and uniqueness of solutions of (1) satisfying the boundary conditions

Z aiy(ti) =0, y(c)=0, Zﬂj(%‘) =0. (2)

AMS Subject Classification (1991): Primary 34K10.

Key words: One-parameter functional differential equation, Multi-point boundary value
problem, Schauder fixed point theorem.
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The results presented in the paper may be formulated without difficulty for the
equation

y"'(t) — q(t)y(2)
= g(t,y(t),y(hoo(t)),- -, y(hor(t)),¥'(£), ¥ (R10(£)), - - ., ¥ (h1s(2)), 1)

with g € CO(J x Rrtst4 x I;R), hij € CO(J; J).
The boundary value problem y"— ¢(t)y =h(t,y,y, 1), y(a)=y(c)=y(b)=0
was studied by the author in [1].

' 2. Notation, lemmas
Let u,v be the solutions of the equation
y" =q(t)y, ¢ € C°(J;R), ¢(t) >0  for te€ (a)
u(c) =0, u'(c) =1, v(c) =1, v'(c) =0. Setting
r(t, s) = u(t)v(s) — u(s)v(t) (=—r(s,1)),
H(9) = w(Bp(s) —u(eW @) (= r(t,9)),
for (t,s) € J? then r(t,s) >0 foraSs<t<b r(t,s) <0 foralt<s<b

and 7i(t,s) > 1 for (t,s) € J?, t #s (see [1]).
Let K,L,Q, T denote the positive constants defined by

m -1 n
K= (Z a;r(c,ti)) L L=YBir(aie), Q=max{at) te T},
=1 J=1
7 = max{c—a,b— c}.

LEMMA 1. Let h € C°(J;R). The function

t m i

y(t) = /r(t,s)h(s) ds + Kr(t,c) Z a; / r(ti,s)h(s) ds, teJd, (3)

c =1 c

is the unique solution of the equation
y" —q(t)y = h(t) (4)
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satisfying the boundary conditions
Y aiyt) =0,  y(c)=0. (5)
=1

Proof. One can easily check that the function y defined by (3) is a solu-
tion of (4) satisfying (5). Let z be a solution of (q), z(c) = 0. Since (q) is a
disconjugate equation on J without loss of generality we may assume z(t) 2 0

for t € (a,c). Then Y a;z(t;) =0 if and only if 2(¢) =0 on J. Consequently
=1

the boundary value problem (q), (5) has only the trivial solution and therefore
the boundary value problem (4), (5) has the unique solution.

LEMMA 2. Assume that h € C°(J x I;R), h(t,-) is an increasing function on
I for every fized t € J and

h(t,k1)h(t,k2) S0 for teJ. (6)
Then there ezists the unique po € I such that the equation
v" = qa(t)y = h(t,n) (7)

with g = po has a (and then the unique) solution y satisfying (2).

Proof. Let y(t, 1) be the solution of (7), i a;y(ti,pn) =0, y(e,p) =0.
i=1
Then by Lemma 1

ot ) = / rlt,s)h(s, 1) ds + Kr(t,0) Yo / r(ti, 5)h(s, 1) ds,

(t,p) €J x1I,
and thus

zj

Z Biy(zj,p) = Z B; /r(z,-, s)h(s,p)ds + KL Z a; /r(t,-,s)h(s, p)ds.
j=1 1=1 e i=1 ¢

Since r(zj,s) > 0 for ¢ £ s < zj, j = 1,2,...,n and r(ti,s) < 0 for
n
ti<s<¢ i=1,2,...,m, we see that ) fy(z;,-) is a continuous increasing

J=1
function on I and

Y Biu(zi k) S0, Y Biy(zj ka) 20,
j=1

j=l
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by assumption (6). Consequently Y B;y(zj,p0) = 0 for the unique po € I.
=1

This proves that the problem (7), (2) has a solution y if and only if p == po and
by Lemma 1 this solution y is unique.

Next we shall assume that the functions ¢, f satisfy for positive constants
ro,71 the following assumptions:
8) |ft,y,z,w,s,un)| £ q(t)re for (t,y,2z,w,s,u) € D x I, where
D =J x (—rg,r0) X {(—ro,7m0) X {(—T1,71) X (—T1,71);
(9) f(t,y,z,w,s,-) is an increasing function on I for every fixed
(t,y,2,w,s) € D;
(10) f(t,y,z,w,s,k1)f(t,y,z,w,8,k2) £0 for (¢,y,2,w,s) € D;

(11) min {(A +roQ)7,2\/TovVA+ TOQ} < r1, where
'A = Sup {!f(t7y7z,w’s’/t)l; (t,y7z7w75’u) E D x I} .

LEMMA 3. Suppose that assumptions (8)-(11) are satisfied for positive con-
stants ro,r1. Then to every ¢ € CYJ;R), D) S r, for t € J, i = 0,1,
there exists the unique po € I such that the equation

y" —q(t)y = f(t, (), o(ho(t)), ' (t), ' (ha(2)), ) (12)

with g = po has a (and then the unique) solution y satisfying (2).
For this y the inequalities

Iy ()] < i, teld, i=0,1, (13)
hold.

Proof. Setting h(t,u)= f(t, o(t), w(ho(t)), ¢'(t), @' (Ra(t)), ,u) for
(t,p) € J x I, then |h(t,u)] £ A on J x I, h(t,-) is an increasing function
on I for every fixed t € J (by (9)) and h(¢, ky)h(t,k2) £ 0 on J (by (10)).
Therefore by Lemma 2 there exi ts the unique g € I such that equation (12)
with g = po has a (and then the unique) solution y satisfying (2).

Now we prove inequalities (13). From (8) follows y''(t) > 0 (y"(¢t) < 0) for
every t € J where y(t) > ro (y(t) < —ro ). Consequently y does not achieve its
local maximum (minimum) at any point ¢t — £ where y(£) > ro (y(€) < —7o).
Next if y(a) > ro (y(a) < —rp), then y is a decreasing (increasing) function
in every right neighbourhood of the point a where y(t) > ro (y(t) < —ro
and if y(b) > ro (y(b) < —r¢), then y is an increasing (de reasing) function
in every left neighbourhood of the point b, where y(t) > ro (y(t) < —ro).
From this follows [1(¢)] < ro on J if and only if |y(a)] < ro, |y(b)] < ro.
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Suppose |y(a)] > ro. Then m > 1 and let for example y(a) < —rqg. Since
—y(a) > y(t;) for i =2,3,...,m, we have Y a;y(ti) < ary(a) — Y a;y(a) =
=1 =2

(al -3 a,-)y(a) < 0 contradicting ) a;y(t;) = 0. Suppose |y(b)| > ro. Then
i=2 i=1
n > 1 and let for example y(b) > ro. Since y(b) > —y(z;) for j =2,3,...,n,

we have i Biy(zj) > Bry(b)— Zn: Biy(b) = (ﬂl— i ﬂj)y(b) 2 0 contradicting
J=1 =2 =2

é)l Biy(z;) = 0.

Next there exists &1 € (a,c) (€2 € (¢,b)) such that y'(&1) =0 (y'(&) =0).
In the opposite case we have fj a;y(ti) #0 ( fj Biy(z;) # 0). Integrating the
cquality 4" (t) = q(y(t) + h(tpuo) for ¢ € 7 from £ to ¢ (€ J), we obtain

t

y'(t) = /(q(s)y(s) + h(s,pg)) ds, 1=21,2,

&i

and thus
ly' (1) = (A + Qro)r, te. (14)

Let |y'(t)] > 0 for t € (s1,s2) C J and let y'(s;) =0 for some ¢ € {1,2}. Then
integrating the equality 2y"(t)y'(t) = 2¢(t)y(t)y'(¢) + 2h(t, po)y'(t) from s; to
t (€ (s1,82)) we get

t t

W) =2 / AW (s ds +2 [ hs, )y (5)ds,

i S

consequently

[Y'12(t) £ 2Qroly(t) — y(si)] + 2AJy(t) — y(s:)| £ 4ro(A + Qro).

This proves
ly'(t)] S 2vroV/A+Qro,  te (15)

From (14) and (15) we conclude |y'(t)] S ry for t € J.

Assume that the function f(t,y,z,w,s,u) = ¢(¢,y,2,1) in equation (1) is
independent on w,s. Consider the equation

y"(t) — q()y(t) = g(t,y(t), y(ho(2)), 1) (16)
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with g € C°%J x R? x I;R), which is a special case of (1). Suppose that ¢, ¢
satisfy for a positive constant ry the following assumptions:
(17) lg(t,y,2,m)l < q(t)ro for (t,y,2,u) € H x I, where
H = J x (—7"0,1"0) X (—T(),TO);
(18) g¢(t,y,z,.) is an increasing function on I for every fixed (¢,y,z) € H ;
(19) g(t,y,2,k1)g(t,y,2,k2) S0 for (¢t,y,z) € H.

LEMMA 4. Suppose that assumptions (17)-(19) are satisfied for a positive
constant ro. Then to every ¢ € C°(J;R), |p(t)] S 1o for t € J there exists the
unique o € I such that the equation

y" —a(t)y = g(t, ¢(t), @ (ho(t)), 1) (20)
with 11 = o has a (and then the unique) solution y. For this y
ly®] S ro, ' (OIS (B+Qro)r  for teJ, (21)
where B = max{|g(t,y,z,p)|; (t,y,2,1) € H x I}, hold.

Proof. Setting h(t,u) = g(t,0(t),¢(ho(t)),n) for (t,n) € J x I, then
by Lemma 2 there exists the unique p = g such that equation (20) with
# = po has a (and then the unique) solution y and |y(t)] £ ry for ¢t € J.
Since |h(t,p)| £ B for (t,p) € J x I and y'(&1) = y'(&2) = 0, where a < & <
c < € < b (see the proof of Lemma 3), it follows from |y"'(t) < B + Qro and

t
y'(t) = [y"(s)ds for t € J, i = 1,2, that |y'(t)] £ (B + Qro)r for t € J.
€

3. Existence theorems

THEOREM 1. Assume that assumptions (8) (11) are satisfied for positiv
constants ro,ry. Then there exists o € I such that equation (1) with p = po
has a solution y satisfying (2) a1d (13).

Proof. Let X = {y; y € CI(J;R)} be the Banach space with the norm
lyll = max{|y(®)] + [¢'(t)]; t € T} andlet £ — {y; y € X, [y(t)] < r, for
teJ,1=0,1}. K is a boundcd convex closed sub et of A By Lemma 3 to
cvery ¢ € K there exi ts the unique po € I such that equation (12) with o — g
has a (and then the unique) solution y € K sati fying (2). Setting T(¢) ¥
we obtain an operator T: K — K. We prove T is a complctely continuous
operator. Let {y,}, y» € K be a convergent sequence, hng0 yn — y and let
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zn = T(yn), z = T(y). Then there exists a sequence {un}, pn € I and po € I
such that

za(t) = /r(t,s)hn(s,pn)ds+Kr(t,c)Za;/r(t;,s)hn(s,yn)ds,

=1

teld, neN,
and

t

2(t) = /

m ti
r(t,s)h(s, po)ds + Kr(t,c) Z a; / r(ti, s)h(s, po)ds, teJ,
c =1 c

where

ha(ts 1) = f(t,yn(t), ya (ho(t)), ¥ n(®), ¥ o (h1(2)), 1),
h(t, p) = f(t,y®),y(ho()),y' ®), ¥ (h1(t)), k)

for (t,p)eJxI, n=1,2,....

To prove that {un} is a convergent sequence, suppose that there exist subse-
quences {pk,}, {#r.}, Hm pr, = A1, lim g, = A2 and A\ < Ay. Then
n—oo n—oQ

(i) =) lim =2, (2)

t

m ti
=/r(t,s)h(s,/\l)ds+Kr(t,c)Za,/r(ti,s)h(s,/\l)ds,
c =1 c

(ws(t)=) lim 2, (1)

= /r(t,s)h(s,/\g)ds +Kr(t,c)Za;/r(ti,s)h(s,/\z)ds
J i=1

uniformly on J. Since h(t,A1) < h(t,A2) (by (9)), we have Zn: Bjwi(zj) <
J=1

Y. Bjwa(zj) contradicting Y Bjza(z;) = 0 for n € N, consequently {un} is
i=1 j=1
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convergent and let -lim g, = p*. Then
n—00

(w(t) =) lim 2a(t)
= /r(t,s)h(s,u*)vds+Kr(t,c)Za,-/r(ti,s)h(s’u*)ds

uniformly on J and therefore the function w is a solution of the equation

W' — g(tye = h(t, )
satisfying (2). Hence by Lemma 3 w = z and po = p*. Next

t

Jim (1) = [ r(6 (s, o) ds + Kri(,0) Y [ r(ti (s, o) ds
(=2(1)

uniformly on J, consequently lim T(y.) = T(y). This proves T is a continuous
n—oo

operator.
Let y € K and let z = T(y). From the equality

2"(t) = q(t)=(t) + f(t,y(t),y(ho(t)),y'(t),y'(hl(t)),uo), ted,
where po € I is an appropriate number, we conclude
|2"()] £ Qro + A (=.5) for teJ

Since T(K) C £ = {y; y € C*(J;R), yO(®)| S riy ()] £ S for t € J,
1 =0, 1} and L is a compact subset of X, T(K) is a compact subset of X,
too. Using the Schauder fixed point theorem there exists a fixed point y of T.
This y has the required properties in the assertion of Theorem 1.

Example 1. Assume that v is a positive integer, J = (1,10),
I = (—(1+57),1+ 5x), ho,hy € C°(J;J), ¢ € C°(J;R), ¢(t) = 3(1 + 57)
for t € J. Let ¢ € (1,10). Consider the equation

"(t) — q(t t=M t - arctg(sinhy'(¢ In(e ho())1)-
V) = a(t(t) = s - snctglinhy/ (8) + e e 4y (o)
(22)
The assumptions of Theorem 1 hold with ro = 3, r; = 6/1+ 57 + @, where
Q = max{q(t); t € J}, and therefore there exists po € I such that equation
(22) with g = po has a solution y satisfying (2) and |y(¢)] < 3, |y'(t)] <

6/1+57+Q for t e J.
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THEOREM 2. Let assumptions (17)-(19) be satisfied for a positive constant
ro . Then there ezists po € I such that equation (16) with p = po has a solution
y satisfying (2) and (21), where B is defined as in Lemma 4.

Proof. Let Y = C°J;R) be the Banach space with the norm |y|| =
max{|y(t)l;t € J}. Setting K = {y; [lyll £ ro} and £ = {y; y € C'(J;R),
llyll £ ro, I¥'|l £ (Qro + B)r}, then K is a bounded convex closed subset of
Y and £ is a precompact set of Y. By Lemma 4 to every ¢ € K there exists
the unique pg € I such that equation (20) with g = go has the unique solution
y € K satisfying (2). Setting T(¢) = y we obtain an operator T: K — L.
Analogous to the proof of Theorem 1 we can prove T is a completely continuous
operator and using the Schauder fixed point theorem a fixed point y of T is a
solution of (16) with some p = po € I satisfying (2) and (21).

Example 2. Let £ v,p0 be positive integers. Consider the equation
y"(t) = a()y(t) = tEexp{y” () [y (ho(t))]°} + (23)

where Q 2 ¢(t) 2 2e-max{|a|¢, |b|]¢} for t € J. For equation (23) are satisfied
assumptions of Theorem 2 with ro = 1, I = (ki1,k2), where k2 = —ky =
e-max{|al¢,[b|¢} . Consequently there exists po € I such that equation (23)
with g = po has a solution y satisfying (2) and [|y(¢)] £ 1, |y'(¢)] £ (Q +
2e. max{|al¢, |b|¢})r for t € J.

4. Uniqueness theorem

THEOREM 3. Assume that assumptions (8)-(11) are satisfied for positive

of 9f of Of _
3y’ 02 du” Ds € C°(D x I; R) and let

constants ro, ry. Let
0 0
Ftvzwew+a0z0  Fewsvsmzo
0z
(24)
(t—c) (t Y, z,w,8, 1) =0 for (t,y,z,w,s,p) € D x I.

If t £ hi(t) £ ¢ for t € (a,c) and ¢ £ hi(t) £t for t € (c,b) (: = 0,1),
then there ezists the unique po € I such that equation (1) with u = po has a
solution y satisfying (2) and (13). Furthermore this solution y is unique.

Proof. By Theorem 1 there exists pgo € I such that equation (1) with
i = po has a solution y satisfying (2) and (13). Suppose there exists p1 € I,
po < p1 such that equation (1) with g = p; has a solution y; satisfying (2)
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and (13), where in place of y we put y; and let y # y; . Setting w =y —y; we
have

Z a;jw(t;) =0, w(c) =0, Zﬂjw(zj) =0
i=1 j=1

and
w"(t) = (q(t) + p1(t)) w(t) + p2(t)w(ho(t)) + ps(t)w' ()

+ pa(t)w'(ha(t)) + p(t)  for teJ, (25)

where p1,p2,ps,ps,p € C°(J;R), p1(t) + ¢(t) 2 0, pa(t) 2 0, (¢ —c)pa(t) 2 0
for t € J (by (24)) and if po < p1 (po = p1), then p(t) < 0 (p(t) = 0) for
teJ. .

Let po < py. If w'(t) < 0 for t € (c,c2) C (¢,b) and w'(c2) = 0 (such
cz always exists), then w(t) < 0, w(ho(t)) < 0, w'(h1(t)) < 0 for t € (c,c2)
and from (25) it follows w"(c2) < p(c2) < 0 contradicting w'(c2) = 0. If
w'(t) > 0 for t € (c1,¢) C (a,c) and w'(c1) = 0 (such ¢; always exists), then
w(t) < 0, w(ho(t)) <0, w'(hi(t)) >0 for ¢ € (c1,¢) and from (25) it follows
w"(e1) £ p(e1) < 0 contradicting w'(er) = 0. If w'(c) = 0, then using (25) we
have w"(c) = p(c) < 0 and proceeding as in the case w'(t) < 0 for t € {(c,c2)
we obtain once again a contradiction. Consequently g = g1 and then from (25)
we get

(t)—eXp< )[ "(¢) + exp( /sps(T)dr).
(69 + P ©)ule) + alohu(ha(s) + puCs)a (s(s))) ds|, €7

If w'(c) >0 (w'(c) < 0), then necessarily w'(t) > 0, w(t) < 0 for t € (a,c)

(w'(t) <0, w(t) <0 for t € (c,b)) contradicting Y a,w(ti) =0 (Y Bw(z,)
1=1 =1

=0). If w'(c) =0, then

w/(t) = / e / pa(r)dr )| (a(s) + i) / w!(r)dr

c L] [+
ho(s)

+ p2(s) / w'(7)dr + ps(s)w’ (hl(s))] ds, teJ. (26)

c

94



MULTI-POINT BOUNDARY VALUE PROBLEM FOR A CLASS...

Let X (t) = max{|w'(s)]; t < s < ¢} for t € (a,c) and let Y (t) = max{|w'(s)];
c< s <t} for t € (c,b). To prove X(a) =Y (b) =0 let X(a) >0 (Y () >0).
Then X(t) > 0 for t € (a,a;) and X(t) = 0 for t € (a;,c) (Y (t) > 0 for
t € (b1,b) and Y(t) =0 for t € (c,b1)) and from (26) we get

() <X0) | e ([ Il ar ) [(a6) + pu(s))ar )
+ p2(s)(ar — ho(s)) —p4(s)] ds, t € (a,a;)
(') <) [ exo( [ Il ar ) [(a(s) + mr(s) s - )
by s

+pa(s)(hols) = br) +pas)] ds, € (Br,B)),

consequently

1< / exp ([ (01 ) [(066) 4 21(6)) @1 = )+ pa(o) e = ho()
—pa(s)] ds, t€ (a,a1)

(15 [on( [ Ipar)1ar) [(a6) + pi(9) s = 1) + pa(s)Bal) ~ 1)

by

+p4(s)] ds, t € (b1, b)),

which is a contradiction. Thus w(t) is a constant function on J and since
w(c) =0 we get w =0 contradicting w =y —y; #0.

COROLLARY 1. Assume that assumptions (17)-(19) are satisfied for a posi-
tive constant ro. Let 3_g’ @ € C°(H x I; R) and let
dy’ 0z

%)
Gybwm K HaO 20 for (bymp) e Hx I
If t £ ho(t) S ¢ for t € (a,c) and ¢ £ ho(t) £t for t € (c,b), then there

ezists the unique o € I such that equation (16) with p = po has a solution y
satisfying (2) and (21) Furthermore this solution y i3 unigue.
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Example 3. Let v be a positive integer. Consider the equation
y'(t) - Q(t)y(t)

y?(t) cosh (y' (1)) (y(sint)) ™" + 1. (27)

t
t e
12e ’ +12ecosh(1)

Assumptions (8)—(11) are satisfied for J = (-1,1), ¢ = 0, I = <-—é,%>,
1
- 24q(t) 2 - for t € J and rp = r; = 1. Setting f(t,y,2z,w,s,p) =

t
smt s e

12e 12 e cosh(1)
(—1,1) x (-1,1) x (=1,1) x I (= S), then

y*(coshw)2®**! + pu for (t,y,z,w,s,u) € J x (—1,1) x

6_f+ (t) = M L2ty q(t) = l, ('?f (2u+1)e cosh(w)y2 2w >0,
Jdy 6 e cosh(1) 6 9z 12 ecosh(1)
af te®sint t

= -2 t i £-< Ssint £
85 150 2= 0 for (t,y,z,w,s,u) € S and since t < g = 0, t<sint <0

t
for t € (—1,0) and 0 £ 3 £t 0=<sint <t for t € (0,1), there follows from

Theorem 3 the existence of the unique po € I such that equation (27) with
i = po has a solution y satisfying (2) and |y(¢)] < 1, |y'(¢)| £ 1 for t € J.
Moreover this solution y is unique.
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