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(£ ,£ ' ) -PRODUCTS OF ALGEBRAS 

ANDRZEJ WALENDZIAK 

(Communicated by Tibor Katriňák ) 

A B S T R A C T . An ( £ , £ ' ) - p r o d u c t of algebras Ai (i G I) is a subdirect product 
of Ai satisfying certain conditions involving £ and £ , where £ and £ are 
ideals of the power set of I. Direct, full subdirect and weak direct representations 
of algebras are special cases of (£ ,£ ' ) - representa t ions . Theorem 1 of this paper 
characterizes such representations in terms of congruence relations. 

1. Introduction 

Let / be a nonvoid set. V(I) and J7(I) denote the set of all subsets of I and 
the set of all finite subsets of I, respectively. We denote by P(I) the Boolean 
algebra 

(p(/),n,u,',0,/). 
If {Ai : i G I) is a system of similar algebras, then Yl(Ai : i e I), or Y\A{, 
denotes the direct product of algebras A{, i G / . If A = Ai for all i G I, we 
write A1 for the direct product and call it a direct power of A. 

For two elements x, y G n ( ^ : i E J) we define 

I(x,y) = {iel: x(i) ^ y(i)} . 

A full subdirect product of the Ai, i G / , is a subalgebra A of \[ A{ satisfying 
the following condition: 

(AI) If x G A, y eY[At and if I(x,y) is finite, then y G A. 
It is easy to verify that a subalgebra A of [ ] ^ i s a full subdirect product if 
condition (iii) on p. 45 of [7] holds. 

Let A C n(A{ : i G / ) be a subdirect product and let C be an ideal of 
P(I). A is called an C-restricted subdirect product (see [4; p. 92]) if it satisfies 
the following condition: 

(A2) For every x,y £ A, I(x,y) G C. 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 08A30; Secondary 06B10. 
K e y w o r d s : direct product , subdirect product, weak direct product , full subdirect product , 
(£ , £ / ) -product , congruence relation. 
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Let a subdirect product A C ]\Ai satisfy (A2). If A has the property that 
for every x e A and for every y e Y\Ai, I(x,y) e C implies y e A, then we 
say that A is an L-restricted direct product (see [3; p . 140] or [6; p. 219]). A 
subalgebra A of YlAi 1S a n L-restricted full subdirect product of algebras Az, 
i e J , (see [7; p. 45]) if conditions (Al) and (A2) are satisfied. 

Now we generalize these notions in the following way: 

DEFINITION 1. Let A be a subdirect product of algebras At, i e I, and let 
C, C be ideals of P(I). We say that A is an (C,C)-product of A{, and we 
write 

C C 
A = l[(Ai. ieJ), or A = ]\Ai 

c c 

if A satisfies (A2) and the following condition: 

(A3) x e A, y e \[Ai a n d !(x,y) € £ imply that y e A. 

C 
If C = Ai for all % e J , we call A = \[(Ai : i e J) an (C,C)-power of C 

c 
with exponent I. 

c 
If C = C, we write A = ]\(Ai : i e I) for the (C, £)-product. 

c 
Obviously, yl = fjyl^ if A is an £-restricted direct product of algebras Ai, 

Hi) 
i e I. In particular, A = fj (Ai : i e I) if and only if A is a weak direct 
product (see [3; p. 139]). If C = C = V(I) we obtain the direct product. 

If C = {0} in Definition 1, we get the concept of an /.-restricted subdirect 
product. We note that if C = V(I), then an £-restricted subdirect product is a 
subdirect product. 

Hi) 
It is easily seen that \[ A{ is an £-restricted full subdirect product of the 

c 
A{, i e I. Finally, a full subdirect product is a (P(J ) ,^ (J ) ) -produc t . 

E X A M P L E . Let J be an index set and let G = Zl
2 where Z2 is the two element 

group. For x e G, we define the support of x, denoted supp(x), as 

supp(x) = {i e I : x(i) ^ 0} . 

Let V be a subset of J , and set 

C = {X U Y : X is a finite subset of / ' a n d F C / - I'} . 
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Define 

Hx = {x E G : x(i) = x(j) for all i j e l - I'} , 

H2 = {x G G : V n supp(.r) is finite} , 

H3 = {x G G : supp(x) is finite} , 

H4 = {x e G : supp(x) is finite or J - supp(.r) is finite} . 

It is easy to see that H1 is a (V(I), V(I'))-power of Z2 with exponent J , and H2 

is an £-restricted direct power (and also an £-restricted full subdirect power). 
Hx n H2 is an (£,.77(J /))-power of Z 2 , and Hz is a weak direct power. Finally, 
HA is a full subdirect power of Z2, but it is not a weak direct power. 

In the present paper we characterize (£, £ ') -products in terms of congruence 
relations. 

2. Preliminaries on congruence relations 

Let A be an arbitrary algebra. We denote by Con( A) the set of all congruence 
relations on A. Con(A) forms a complete lattice with 0A and 1 A , the smallest 
and the greatest congruence relations, respectively. 

Let J be a nonvoid set and let £ , C be ideals of the Boolean algebra P(I). 
Let 0 = (8{ : i G J) be a system of congruences on A. For an arbitrary set 
M C J , we define a congruence relation 9(M) of A by 

6(M) = /\{6j : jel-M}. 

We shall use the notion di for 9({i}), i G / . We write 

c 

if the following conditions hold: 

(i) OA = M0i- i e / ) ' 
(ii) 1A = \J{6(M): MeC), 

(iii) if M G £ ' and if x , ^ (i G 7) are elements of A such that (x,2/j) e ^ 
for a l i i G I - M, then there exists z e A satisfying (z, y.) G 9i for each 

t € / . 
c c 

We write ]l(#i : t € J) for n(6,
i : t € / ) . 

£ 
We begin with the following three lemmas. 
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LEMMA 1. (see [6; Lemma 4]) If C = V(I), then 

1A = \J{9(M): MeC}. 

LEMMA 2. Let C be an ideal of P(I) containing all finite subsets of I. Then 
(iii) implies the following condition: 

(iv) For every i G I , lA = 0{ o0i. where o denotes the relational product of 
two binary relations on A. 

P r o o f . Let iQ be an arbitrary element of / and let x,y G A. We define 

x if i = i0 , í x if i 

l 2/ if i " +i.. 
Obviously, (y,yj G 0i for each i e I — M, where M = { i 0 } . Since M G £ ' , by 
(iii) we conclude that there is an element z G A such that (z,yx) G ^ for all 
i e l . Then (x, z) G 0io and (z,y) G 9io. Hence (iv) holds. • 

LEMMA 3. If C = F(I), then (iii) is equivalent to (iv). 

P r o o f . Let 0 satisfy (iv). To prove (iii), we apply induction on the cardi­
nality of M. Let M = {i0}, x and yi (i G I) be elements of A with (x, y{) G 9t 

for i T£ i0. 
By (iv), there is an element z G A satisfying (y{ ,z) G 9io and (z,x) G #-o. 

Then (z,y{) G 0- for each i e I. 
Now suppose that the assertion is true for all M C 7 with \M\ < n. Let 

M = { i 1 ? . . . , i n } and let xyy{ e A (i G J ) such that ( x , ^ ) G #• for i E I — M. 
Again by (iv), there exists an element y € A satisfying (yin,y) € 9in and 
(x, y) G 0f . Then (y, ^ ) G 0- for each i G / - { i l r . . , V - i ) • By the induction 
hypothesis, there is a z G A with (z,yt) G 0i for all i G / . This ends the proof 
of (iii). The implication (iii) ---=> (iv) follows from Lemma 2. • 

From Lemmas 1 and 3 we have 

P R O P O S I T I O N 1. 

{0} 
(a) 0A = n Wi '• i^1) if and onlV if °A = Mdi : i € / } . 

W ) 
{0} 

(b) 0A = J7 (6i : i G 7) i/ ana7 on(?/ i/ 0 satisfies (i) and (ii). 

c 

(c) 0A = n (9i : i £ I) if and only if 0 has properties (i), (ii) and (iv). 

Hi) 
(d) 0A = n (0^ : i E I) if and only if conditions (i) and (iv) are satisfied. 

V(I) 

Now we prove the following proposition. 
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C 

PROPOSITION 2. 0^ = \[(6i : i e I) if and only if O satisfies (i). (ii) and 
the following condition (given in [6; p. 222]): 

(v) For every 0 / M G C and for every (xi: i e M) e AM, if (xi,xj) e 

0(M) for all i,jeM, then there is a z G A such that (z,x{) G 0 (M — 

{i}) for all ie M. 

c 
P r o o f . Assume that 0A = n ( # i : i € M>. Clearly, 0 satisfies (i) and (ii). 

To prove (v), let 0 ^ M G C, x{ (i G M ) be elements of A, and suppose that 
(x- ,x> G 0(M) for all i,j e M. Let i0 be an arbitrary element of M . 

We set x — x- and define 
*o 

{ x{ if i Є M , 

^І = U if i £M. 

Obviously, ( x , ^ ) G 0i for all i G J — M . By (iii), there exists an element z G A 
such that (z, yi> G 0; for each i e I. 

Let i e M. Then (z ,^> G 0^, and since yi = x{ we also have (z,x%) G 0^. 
Observe that 

(z,xx)ee(M). 

Indeed, if j £ M , then (z,.x) = (z,y%) G 0^. Hence (^,x.o> = (z,x) G 0(M), and 
by the assumption, (xiQ,xt) G 0(M) . Therefore, (z,x%) G 0(M) . Consequently, 
(z,x{) e 0 (M - {i}) for each i G M . Thus (v) is true. 

Suppose now that conditions (i), (ii) and (v) are satisfied. 

We conclude that (iv) holds by using the proof of Lemma 1 in [6]. To prove 
(iii), let 0 ^ M G C (if M = 0, then it is obvious), and let x,y{ G A (i G / ) 
such that (x,yt) G 9i for i G I - M . From (iv) we deduce that for every i e I, 
there exists an x • G .4 satisfying 

(x^y^eO, and (x - ,x>G0 f . (1) 

Hence (x{,Xj) G 0; V 0̂ . for any i , j G J. Therefore, (x^Xj) G 0(M) for all 
i,j e M. By (v), there is an element z e A such that ( z , ^ ) G 0(M - {i}) for 
each i G M . If i G M , then (z,xt) e Q{ and, since (x{,y%) G 0- (by (1)), we 
obtain that (z,y%) G 9i. Let i G J-M. Then (z ,^ . ) G 0̂  for some j G M . From 
(1) it follows that (re-, a) G 0̂  < 0^, and by assumption we have (x,y{) G 0-. 
Consequently, (^,^> G 9{ for each i G / , and therefore, (iii) holds for C = C. 

Thus 0A = U(ei- i^1)- D 
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PROPOSITION 3 . The following three statements are equivalent. 

•P(i) 
(a) 0^ = J[{0.: * € / > . 
(b) 0 satisfies (i), (iv) and (vi) for all elements x{ (i G I) of A satisfying 

(xvx-) G 0{ V Q. for all i,j G / , there is an element y G A such that 
(y^xj G 9i for every i G I (that is, 0 is consistent, see [1; p. 92]). 

(c) 0 satisfies (i) and (vii) for every (xi : i G I) G A 7 , i/iere zs an element 
y E A such that (y,x{) G 9{ for every i G I. 

P r o o f . Let 0^ = (6i : i G I). It is obvious that 0 is consistent. By 
Lemma 2, condition (iv) is fulfilled. Thus statement (b) holds. Therefore, 
(a) => (b) . 

Now assume that conditions (i), (iv) and (vi) are satisfied. To prove that 0 
also satisfies (vii), let x{ (i G I) be elements of A. We put x = xi , where i0 is 
an element of I. By (iv), for every i G 7, there exists an element y{ e A such 
that 

(xvyi)e9i and (yvx)e9i. (2) 

Hence (yv y.) G 0^9 • for arbitrary i,j G J. From (vi) we conclude that there is 
an element y G A satisfying (y,y{) G 9i for each i e I. Now, from (2) it follows 
that (y,x{) G 9i for all i G 7, and therefore (vii) is satisfied. This finishes the 
proof that (b) =-=> (c) . 

Finally, suppose that 0 satisfies (i) and (vii). Clearly, (iii) holds for C = 
V(I). By Lemma 1, 1A = \/(9(M) : M G V(I)). Thus (c) = > (a). D 

3. (C,£)-representations of algebras 

Let I be a nonvoid set and let £ , C be ideals of P (7 ) . Let 4̂ be ar­
bitrary algebra. We say that a system (9i : i G I) G (Con(A)) is an 
(C,C) -representation of A if the mapping / : A —> Yl(A/9{ : i G J) de­
fined by the rule f(x)(i) = x/9{ (x/9{ is the congruence class containing x) is 

C 
one-to-one and f(A) = H(A/9i : i G I). 

c 
For every i G J, we set A^ = - 4 / ^ and denote by p{ the ith projection 

function from Y[ (Ai : i G / ) onto A^. 
The mapping fi = p{ o / , which is a homomorphism of A onto A^ will be 

referred to as the i t h f -projection. 
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If (0i : i G / ) is an (C,C)-representation of A, then this representation is 
called: 

(a) subdirect, if C = V(I) and C = {0}, 
(b) C-restricted subdirect, if C = {0}, 
(c) full subdirect, if C = V(I) and C = T(I), 
(d) direct, \i C = C = V(I), 
(e) £ -restricted direct, \i C = C, 
(f) £ -restricted full subdirect, if £ ' = T(I), 
(g) weaA; direct, \i C = C = T(I). 

The next result characterizes (C,C) -representations internally. 

THEOREM 1. Let A be an algebra and let I be a nonvoid set. Let C and C 
be ideals of the Boolean algebra P(I). 

Then a system (6i : i G I) G (Con(A)) is an (C, C) -representation of A 
C 

if and only if 0A = \[(6i : i G I). 
c 

P r o o f . We put Ai = A/8i for i G J and define the mapping / : 
A -» I K ^ i : * € J) by setting / (x ) = (x/0. : i G J ) . Let £ = / ( A ) , 
and denote by fi the zth /-projection. 

C 
Suppose that / is one-to-one and that B = \[(A{ : i G I). Obviously, 

c 
0A = /\{0i : i G J } , that is, the condition (i) holds. To prove (ii), let x,y G A 
and let M = {i G J : / ^ x ) 7- £(2/)} . By the property (A2), M e C, and clearly 
(x,y) G 0(M) . Then (x,y) G \J{0(M) : M G £ ) , and hence (ii) is satisfied. 

Now we shall prove that (iii) holds. Let M be a set of C and let x, y{ 

(i G I) be elements of A such that (x,y{) G 0̂  for every i G J — M . Then 
{?' G / : x/0^ 7-- yi/Oi} C M . By the definition of ideal we conclude that 
{i : x/0. ^ y . / 0 j G £ ' , and hence I(f(x),y) G £ ' , where y = (j/./0. : i G / ) . 
From (A3) it follows that y G B. 

Let z G .4 such that f(z) = y. It is obvious that /^(z) = / ^ y j for 
i G / . Hence (z,y{) G 0̂  for every i, and consequently, (iii) holds. Thus 

0A = Yl(9i: iei). 
c 

Conversely, assume that (6{ : i G I) satisfies conditions (i), (ii) and (iii). 
The fact that / is an embedding is easy to check. Of course, 5 is a subdirect 
product of algebras A{, i G J . Let x,y G A. Now we prove that 

I(f(x),f(y))eC. (3) 

By (ii), (x,y) 6 \J{6(M) : M G C). Then there exists a sequence of ele­
ments of A, x = xx,x2,...,xn=y and sets MX,M2,..., Mn_1 e C such that 
( x i , x i + 1 ) € ^ ( M . ) , f o r i = l , 2 , . . . , n - l . 
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Consequently, (x,y) E 0(M), where M = M1 U M2 U • • • u M n _ 1 G £ . 
Therefore, f{(x) = /-(H) for every i£M, and hence {z : /-(x) ^ /.(?/)} C A/. 
From this we obtain (3). It follows that B satisfies (A2). 

Now let x E B and y E U(A/Si : i € I) - Suppose that M = I(x,y) G £ ' . 
From the fact that B is a subdirect product of the algebras A/6i, i G / wre 
conclude that there is a system (y{ : i E I) E B1 with ^ ( i ) = H(i) for i G / . 

Take x , ^ G A, i G / , such that f(x) = x and / ( y j = yi for i G / . Let 
i G / — M . Then x(z) = y(i), and therefore, x / ^ = yi/9i. Hence (x,y{) G #• 
for i G / — M . By (iii), there is an element z € A satisfying (z,yt) G 0i for 
every i G / . Let z = f(z) e B. We have z(i) = /.(*) = z/6>- = y./0. = /.(H.) = 
^(z) = y(i) for i G / . Then z = y, and since z € B we also have that y E B. 
Consequently, /? satisfies (A3). Thus (0i : i E I) is an (C,C)-representation 
of A. D 

Now we give some applications of Theorem 1. 
Let 0 = (6i : i E I) be a system of congruences of an algebra A. From 

Theorem 1 and Proposition 1(a) we obtain the following well-knowm fact: 

COROLLARY 1. 0 is a subdirect representation of A if and only if 0A = 
A R : • € / } . 

An immediate consequence of Theorem 1 and Propositions 1(b) and 2 is: 

COROLLARY 2. (cf. [6; Corollaries 3 and 4]) Let C be an ideal of P(I). Then: 

(a) 0 is an C -restricted subdirect representation of A if and only if condi­
tions (i) and (ii) are fulfilled. 

(b) 0 is an C -restricted direct representation of A if and only if conditions 
(i), (ii). and (v) are satisfied. 

By Theorem 1 and Proposition 3 we obtain: 

COROLLARY 3. (see [1; Theorem 11.7] and [5; Theorem 4.31]) 0 is a direct 
representation of A if and only if 0 satisfies (i). (iv) and (vi) (or: (i) and (vii)). 

From Theorem 1 and Proposition 1(c) we get: 

COROLLARY 4. (cf. [7; Theorem 1]) / / C is an ideal of P(I), then 0 is an 
C-restricted full subdirect representation of A if and only if conditions (i), (ii) 
and (iv) hold. 

Hence we have: 

COROLLARY 5. 0 is a weak direct representation of A if and only if 0 sat­
isfies (i), (iv) and (ii) with C = J7(I). 
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Finally, we obtain: 

COROLLARY 6. (see [2; Lemma 1.1]) 0 is a full subdirect representation of A 
if and only if conditions (i) and (iv) are satisfied. 

P r o o f . Follows from Theorem 1 and from Proposition 1 (d). • 
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