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ON ONE-POINT 7-COMPACTIFICATION
AND LOCAL ZT-COMPACTNESSY

DAVID A. ROSE — T. R. HAMLETT

ABSTRACT. An ideal 7 on a set X is a nonempty subset of the power set
P(X) which has heredity and is finitely additive. (Local) Z-compactness is the
natural generalization of (local) compactness, where an 7 -cover of A C X covers
all but an ideal member of A. If 7 is a topology on X, Z is 7-codense if each
member of T is codense in (X, 7) and Z is 7 -local if each subset A C X locally
in T belongsto Z.If 7 is r-local, then 3 ={U—-I| U€r, 1€} isa
topology. In any case, 8 is a basis for a topology 7*(Z) finer than 7 on X .Itis
seen that a Hausdorff space (X, ) has a one-point Hausdorff 7 -compactification
if and only if each point of X has a 7-closed Z-compact n'eighbourhood. This
condition which is equivalent to (X,7*(Z)) being locally Z-compact, properly
implies that (X, ) is locally Z-compact. However, the converse is implied by the
T -codenseness of Z . Further, when T is 7-codense, (X, 7) having a one-point
Hausdorff Z -compactification implies that (X, ) is locally H -closed, i.e. locally
N (1) -compact, where N'(7) is the ideal of nowhere dense subsets of (X, 7).

§1. Introduction

Given a nonempty set X, an ideal T is defined to be a nonempty collection
of subsets of X such that

(1) B€Z and AC B — A €T (heredity), and

(2) A€ and B€TI — AUB € T (finitely additive).
If, in addition, Z satisfies the following condition:

(3) {An: n=1,2,3,...} CT — UA, € T (countably additive),
then 7 is said to be a o-ideal. If X ¢ I, then I is called a proper ideal and
{X —1I:1I€ 7T} is afilter. For any family S of subsets of X, there is a smallest

ideal (o -ideal) containing S, denoted (S) ((S)s ), since intersections of ideals
(o -ideals) are ideals (o -ideals). The smallest ideal containing Z U J for ideals
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Z and J is the join of T and J, denoted by TV J = {IUJ: I € T and
JeT}.

By a space we mean a topological space with no separation properties as-
sumed unless explicitly stated. We denote by (X, 7,7) a topological space (X, 1)
together with an ideal Z on X . Of particular importance are the ideals of
nowhere dense subsets, denoted N(7), and of meager or first category subsets,
denoted M(71), of a space. Clearly, M(7) is the smallest o-ideal containing
N(7).

If A, BC X, wesay A= B[ModZ] if the symmetric difference of A and
B isin I;ie., if AAB=(A—-B)U(B - A) € I. For a space (X,7,Z) an
Z-cover of A C X is a family U of subsets of X such that ¢/ covers B C A
with B = A[ModZ]. A subset A C X is said to be I-compact ([1], [2], [3]) iff
(if and only if) each 7-open cover of A has a finite Z -subcover. It is shown in
[3] that A C X is T -compact iff the subspace (A4,7|A, I|A) is T|A-compact,
where T|A = {ANI: I € I}. T-compact spaces have been studiea in [1], [2],
and [3]. It was shown in [1] that a Hausdorff space (X,7) is N(7)-compact iff
(X,7) is H -closed.

Given a space (X,7), ¢ € X, we denote by 7(z) = {U € 7: 2 € U}. A
subset A C X is called a neighbourhood, abbreviated nbd, of z if there exists
U € 7(z) such that z € U C A. We will say that a space (X, 7,7) is (strongly)
locally T-compact if each point in X has an T -compact ( 7 -closed) nbd. A direct
proof is given in [4] of the surprising result that a Hausdorff space (X, 7) is lo-
cally N(7)-compact iff (X,7) islocally H-closed (in the senseof Porter [5]).
In this paper we obtain this result indirectly, as well as several other new results,
via the concept of a one-point 7 -compactification. In addition, we find a suffi-
cient condition on Z for a Hausdorff locally 7 -compact space to have a Hausdorff
one-point 7 -compactification and show by example that not every Hausdorff lo-
cally T-compact space has a Hausdorff one-point 7 -compactification.

Recall that a space (X, 7) is said to be quas: H-closed, abbreviated QHC,
iff every open cover of X has a finite subcollection which covers a dense subset
of X . A space is said to be H-closed iff it is Hausdorffand QHC. Porter [5]
defines a Hausdorff space (X, 7) to be locally H-closed if each point in X has a
nbd which is H -closed as a subspace of (X, 7). It was shown in [3] that a space
(X,7) is QHC iff (X,7) is N(r)-compact.

In the following, for A C (X,7), we denote by Cl;(A) and Int,(A) the
closure and interior of A, respectively, with respect to 7. We will simply write
Cl(A) and Int(A) when no ambiguity is present.

Given a space (X,7,T), we denote by 7*(Z) the topology generated by the
basis A(Z,7) ={U —1: U € r, I € I} [6]. We will simply write 7* for 7*(7)
and B for B(Z,7) when no ambiguity is present. It is shown in [2] ([4]) that
(X,7,7) is T-compact (locally Z-compact) iff (X,7*,7) is Z-compact (locally

360



ON ONE-POINT Z-COMPACTIFICATION AND LOCAL I-COMPACTNESS

T -compact). It is also shown in [3] that 7*-closed subsets of T -compact spaces
are I -compact and 7 -compact subsets of Hausdorff spaces are 7* -closed.

Two important properties that an ideal may have in relation to the topology
on a space are defined as follows. Given a space (X,7,7) we say that 7T is
codense with respect to 7, o0r 7-codense, iff TNt = {B}. This property is called
“7-boundary” elsewhere in the literature [2]. We say that a subset A of X is
locally in T with respect to 7 [7], or 7-locally in T, iff for each point = € A
there exists U € 7(z) such that UN A € Z. The ideal T is called local with
respect to 7, or 7-local, if I contains all subsets of X which are locally in T;
i.e., if A being locally in Z implies A € Z. Elsewhere in the literature, local
ideals are called “compatible” ([8], [3], [10]), “adherent” [6], “supercompact” [11],
and having “strong Banach’s localization property” [12]. For all spaces (X,7),
it is known that A(r) [11] and M(7) ([13], Banach Category Theorem) are
7-local ideals, and N(7) is 7-codense. Also it is well known that M(7) is
7-codense iff (X,7) is a Baire space. It is noted in [9] that in a hereditarily
Lindelof space, every o -ideal is local. We conclude this section by noting that
in a space (X,7,7), 7 is 7-local iff 7 is 7*-local 8], and T is 7-codense iff T
is 7*-codense. If (X,7) is Hausdorff, then certainly (X,7*) is Hausdorff since

7* is finer than 7; the converse is true provided 7 is 7-codense [14].

§2. One-point I-compactification
We begin with the following definition.

DEFINITION. A space (Y,0,J) is said to be a J -compactification of (X,7,T)
iff

1) XCv,

(2) =0l X={VNnX:Veo},

3) JX={InX:JeTJ}=1T, and

4) (Y,0,TJ) is J -compact.
If, in addition, we have

(6) ClL(X)=Y,
then (Y,0,J) is said to be a J -compact extension of (X,7,Z). Furthermore,
if Y — X = {r}, then (Y,0,7) 1is said to be a one-point J -compactification
(or J -compact extension) of (X,7,7).

Note that if (Y, 0,J) is a J-compact extension of (X, 7,T), then JNo = {0}
if INn7 = {0}. Also, since J|X =7, J =(J|(Y —X)UZ) and since ZC J,
(Y,0) is J -compact if (Y,0) is T-compact. Furthermore, the converse is true
if the remainder Y — X is finite. Thus in the following discussion of one-point
compactifications and extensions, we consider only T -compactness.
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THEOREM 2.1. If (Y,0) is a Hausdorff one-point I -compactification of
(X,7,7), then we have the following:

(1) rCo,

(2) (X,7,7) s Hausdorff and strongly locally T -compact, and

3) fY—-X={r} €o, then (X,7,T) is T -compact.

Furthermore, the converse of (3) holds if T ts T -codense.

Proof.

(1) Since points are closed in (Y,0), X € 0 and hence o|X =7 Co.

(2) Clearly (X,7) is Hausdorff. If 2z € X and ¥ — X = {r}, then z # r
and there are disjoint o-open sets U and V with z € U, r € V. Then
UCCL{U)=ClL{U) CY -V CX, sothat (X,7,T) is strongly locally
T -compact since closed subsets of T -compact spaces are 7 -compact.

B)IY - X ={r} €0, then X is T-compact since it is a closed subset of
an 7T -compact space (Y,0). Thus, (X,0|X) =(X,7) is T-compact.

For the converse, suppose that (X, 7,7) is T-compact. Then, since (Y, 0) is
Hausdorff, X is o*-closed. Thus {r} = Y — X implies that for some U € &
and I€eZ,reU~Tand U-ICY~-X,but U=U-I)Uu(UNI) and
UNI=UNX since ICX and U—-ICY—-X.Since UNX € TNZT,
IN7={0} impliesthat UNI=0 and U=U —I.Thus, Y - X € 0. O

From Theorem 2.1, we see that only Hausdorff strongly locally T -compact
spaces (X, 7,7) need be considered for one-point Hausdorff T -compactifications.
Also, if (Y,0) is a one-point Hausdorff 7 -compactification of (X,7,Z) and if
(X,7,7) is not T-compact, then (Y, o) is a one-point T-compact extension of

(X,7,7).

THEOREM 2.2. If (Y,0) i3 a one-point Hausdorff T -compactification of
(X,7,7) and T 1s 7 -codense, then (X, 7) i3 locally H-closed. If, in addition,
X s dense in Y, then (X,7) i3 not H-closed and hence not T -compact.

Proof. Since INo =IN7 = {0}, and since (Y, 0) is T-compact, (Y, o) is
H-closed. It follows from Theorem 2.1, (a), of [5], that (X, 7) islocally H-closed.
If X is not closed in the Hausdorff space (Y,0), then (X,7) = (X,0|X) is not
H-closed and hence not 7 -compact. a

A natural question is whether every Hausdorff (strongly) locally 7 -compact
space (X, 7,7) has a one-point Hausdorff T -compactification. We answer this
question in the affirmative by considering the following one-point 7 -compactific-
ation for a space (X,7,Z). In what follows, if (X,7,Z) is a space, let X" =
XU({r}, where r ¢ X, andlet 7* = 77U {{r}UV:V € 7 and X - V
is I—compact} .
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THEOREM 2.3. For any space (X,7,T), 7 is a topology on X" and (XA,
18 a one-point I -compactification of (X,7,7).

Proof. Clearly {WNX | W € 78} = 7 so that if 7" is a topology,
7| X = 7. Since finite unions of T -compact sets are I -compact and 7 is closed
under finite intersection, 7" is closed under finite intersection. Now, if § # {V, |

a € A} C 7 with each X -V, T-compact, then U({r}UVa) = {r}u (U Va) €
™ since |JVa € 7 and X — (UV ) ﬂ (X —Vq) is T-compact being a closed
a

subset of an 7 -compact set. Similarly, U u ({r} U V) e if U,V €7 and
X —V is I-compact. Therefore, 7 is closed under arbitrary union and is a
topology. To see that (X*,74) is Z-compact, let W be a 7% -open cover of
XM M reWoeW, Wo ={r}UV for some V with V € r and X -V
T -compact. Since A X =7, {WNX | W e W and W # Wy} is a 7-open
cover of X —V . Hence there is a finite subset {W1,Wa,...,W,} C W such that
{(WinX,...,W,NX} is a finite Z-cover of X — V. Thus, {Wy, Wy,...,W,}
is a finite T -subcover of W for X4 . O

We note that (X%,74) is an T-compact extension of (X,7,Z) if and only
if (X,7,Z) is not T-compact. In any case, (XA,7%) is T} (i.e. points are
closed) iff (X, 7) is Ty since finite and hence singleton subsets of X are always
T -compact for any ideal Z. The smallest T} topology possible for any one-point
compactification of a T} space (X, 7) is locally cofinite at the remainder point
7. The next example illustrates that this can and does happen with Z = {0} for
(XA, 7A) precisely when (X,7) is Ty and anticompact [15] in the sense that
the only compact subsets of (X, 7) are finite.

Example. Let (X,7) be a Hausdorff dense-in-itself space which is anti-
compact. For example, (X,7) could be (R,u*(./\f(u)) ), where u is the usual
topology on the set R of real numbers [9]. Then for T = {#} or T = {F C X |
Fis finite}, (X, 7,7) is not locally T-compact and hence (X*,7%) is not Haus-
dorff. In fact, 7% is locally cofinite at  and is thus as far from being Hausdorff
at r as possible. (i.e. UNV # @ for every open U containing r and every open
nonempty V'.)

COROLLARY 2.3. The space (X,7,T) has a Hausdorff one-point I -compacti-
fication if and only if (X, 7,7) is a strongly locally T -compact Hausdorff space.

Proof. The necessity is part (2) of Theorem 2.1. For the sufficiency it is
enough to show that (X*,7%) is Hausdorff. Since (X, 7) is Hausdorff, it remains
only to see that each 2 € X can be separated from r € X» — X by disjoint
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78 -open sets. Let K be a 7-closed I -compact neighbourhood of z € X . Then
z€lnt, K € 7® since 7C 14, and re XA - K e M. O

Since I -compact subsets of a Hausdorff space are 7*-closed, it follows that
(X,7*) is Hausdorff and locally T-compact if and only if it is Hausdorff and
strongly locally Z-compact. Hence, if Z is 7-codense, (X,7) is Hausdorff
and locally T-compact if and only if (X,7*) is Hausdorff and strongly locally
T -compact. Thus, we have the following corollaries also.

COROLLARY 2.4. The space (X, T*(I),I) 18 Hausdorff and locally T -compact
iff (XA, 7%(2)M) is Hausdorff.

COROLLARY 2.5. If (X,7,7) is Hausdorff and locally I -compact, then
(XA, 7*A) is Hausdorff. The converse holds if T is T -codense.

THEOREM 2.6. If T is 7-codense, then (XA ,74) is Hausdorff iff (X,7,T)
18 Hausdorff and locally I -compact.

Proof. It is enough to show that when 7 is 7-codense and (X,7) is
Hausdorff and locally T-compact, then (X,7) is strongly locally 7 -compact.
To this end, let = € U € 7 with U C K and K an I-compact subset of
X . Since (X,7) is Hausdorff, K is 7*-closed so that Cl,« U C K. But 7T is
7 -codense, implies Cl.» U = Cl, U for U € 7 so that (X,7) is strongly locally
T -compact. a

The following example shows Z being 7 -codense cannot be dropped for The-
~ orem 2.6. In particular, locally 7-compact spaces exist which are not strongly
locally 7 -compact.

Example. Let X =R, the set of real numbers, let N be the set of positive

integers, and let S = |J (n,n+1). Let T = P(S) be the ideal of all subsets
, neN
of S. Let 7 be the topology on X having for its neighbourhood base at each

z # 0, the usual one but for which the open neighbourhoods of z = 0 are of
the form {0} U | (n,n + 1), where k € N. Then (X,7,7) is Hausdorff and
n>k

each z # 0 has a compact and hence 7-compact neighbourhood. Also, each
neighbourhood of z = 0 is the union of the singleton set {0} with a member
of Z and is therefore T-compact. So (X,7,7) is locally T-compact. We claim
that (XA,7%) is not Hausdorff and that in particular r and z = 0 cannot be
separated with disjoint 7% -open sets. Forif r € U € 7 and 0 € V € 74 with
UNV =0, then U= {r}UW with W € 7 and X — W I-compact and
V € 7 so that Cl(V) C X — W and Cl.(V) is T-compact. We may assume
that V is a basic open neighbourhood and that V = {0} U L>Jk(n, n + 1) for
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some k € N. Then Cl,(V) = {0} U [n,+00) which is not Z-compact. For if
U={V}U{(n—-.25,n+.25)| n>kand n € N}, U is a T-open cover
of Cl;(V) having no finite Z-subcover of Cl.(V). Apparently (X,7) is not
strongly locally 7 -compact.

One can let 7 = P(X) for any Hausdorff space (X,7) and note that
(XA,77) is Hausdorff so that the condition Z N7 = {0} is not necessary for
Theorem 2.6. Also for any locally compact Hausdorff space (X,7) and for any
ideal Z of subsets of X, the topology 7% on X* is finer than the topology for
the standard Alexandroff one-point compactification of (X,7) [16] and hence
(XA, 74) is Hausdorff.

Since many important ideals are codense, we summarize the results of this
section in this case.

THEOREM 2.7. The following are equivalent for any space (X,7,Z) when T
18 T -codense.

(1) (X,7) is Hausdorff and locally T -compact.

(2) (X,7) s Hausdorff and strongly locally T -compact.

(3) (X,7*) is Hausdorff and (strongly) locally T -compact.

(4) (X,7) has a Hausdorff one-point T -compactification.

(5) (X,7*) has a Hausdorff one-point T -compactification.

(6) (XA,71) is Hausdorff.

(7) (XA, 7*7) is Hausdorff.

We conclude this section with a question.

A=TA*

Question 1. For anyspace (X,7,7), does 7* if T is 7-codense?

We know the answer is yes if 7* = 3 and this condition is satisfied by 7 -local
ideals such as N(7), M(r), and principal ideals (P(A) for any subset A), as
well as some non-local ideals. An affirmative answer in general would give an
alternate proof for the converse of Corollary 2.5.

§3. Applications and locally H-closed spaces
From Theorem 2.7 we have the following observation.

COROLLARY 3.2. Whenever (X,7,7) 1s a Hausdorff space with T codense

with respect to 7, local T -compactness of (X,7) implies that (X, 7) is locally
H -closed.

It is known [3] that (X, 7) is QHC if and only if (X, 7) is N(7)-compact and
hence for a Hausdorff space (X,7), N(7)-compactness is equivalent to (X, 7)
being H -closed. The following parallel result was obtained in [4] in another way.
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THEOREM 3.3. A Hausdorff space (X, 1) 1is locally H -closed if and only if it
is locally N(1)-compact.

Proof. As noted earlier, N(7) is a codense ideal, so that the sufficiency
follows from Theorem 3.1. For the necessity, note that an H -closed subspace I
is always N (r|K)-compact, and hence N (7)-compact, since N(7|K) C N (7).

0O

It is clear from the proof above that the necessity part of Theorem 3.3 holds
even without the Hausdorff assumption. Note that non-Hausdorff spaces exist
which are (locally Hausdorff and even) locally H -closed. Thus, the class of
locally N(7)-compact spaces properly contains the class of Hausdorff locally
H-closed spaces. (In fact, the partition topology 7 on a set X shows that even
a space which is not locally Hausdorff can be locally N(7)-compact.)

Question 2. For aspace (X,7), is local AV()-compactness equivalent
to (X,7) being locally QHC?

THEOREM 3.4. If (X,7) 1s a Hausdorff Baire space, then the following are
equivalent.

(1) (X,7) s locally M(7)-compact.

(2) (X,7) is locally N(1)-compact.

(3) (X,7) 13 locally H-closed.
If also (X, 7) is regular, each of the above is equivalent to the following.

(4) (X,7) 18 locally compact.

Proof. It was noted earlier that (X,7) is a Baire space if and only if
M(r)Nn 1 = {0}. Thus, by Corollary 3.2, (1) implies (3). By Theorem 3.3, (2)
and (3) are equivalent, and since N (1) C M(7), (2) implies (1). Now if also
(X, ) is regular, each H-closed subspace is compact so that (3) and (4) are
equivalent. O

Question 3. In Theorem 3.4 above, does the equivalence of (1) and (2)
hold true without the Hausdorff assumption? It is known that for any Baire
space (X,7), M(7)-compactness is equivalent to AN (7)-compactness.

§4. Ideal expansions

In [10], for any space (X,7,Z), an expansion of Z by an ideal J is defined
by TxJ = {AC X | A*(Z) € J} where A*(I) ={z € X | z €U €
T —>UNA ¢ I} is the set of all points in X where A is not locally in 7. In
particular, A*(Z) =0 € J if A€ 7T sothat T CI*J forany J . Further, it is
not difficult to show that 7+ J is an ideal. When J = N(7), Z*J is denoted
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7, and it may be noted that for any T, N (1) C 7 sothat ZVAN(r) C 7. Most
importantly, for any Z, Z is 7-local. It is also observed in [10] that when T is
7-local, then 7 = I V N(r). We observe the following.

THEOREM 4.1. For any space (X,7,T), I=-7.

Proof. Since jNT,%:fVN(T):fsinceN(‘r)gf. a

Observe that for any space (X,7), {J | J is anideal with N(7) C J
and J ~ 7} = {Z| T is an ideal of subsets of X}. For if J is an ideal with
N(r)C J and J ~ 7, then JT=J.

THEOREM 4.2. For any spaces (X,7,T) and (X,7,J), I xJ 1is codense
if both T and J are codense. If either N (1) C J or (X,7) 1is regular, the

converse 18 true.

Proof. For the converse assume that Z * J is codense and note that since
ICIx*J, T iscodense. Also,if U € JNr,then U*(T) = ClU) = (CI(V)
~U)uU e J f N(r)C J andso U € (TxJ)N7 = {0}. Hence, U =0
and J is codense. If (X,7) is regular, and U # 0, there exists V € 7 and
0 #CIV)CU.So C(V) =V*ZT) € J and hence V € (Z* J)N r. This
contradiction shows that J is codense. '

Now if 7 and J are codense and U € (Z*J)N7,then U*(Z) =Cl(U) € J
implies that U € J N7 so that U =0. O

Part of Theorem 3.5 of [10] follows as a corollary. That is for any space
(X,7,7), T is codense if and only if 7 is codense.
In any resolvable space X with D and F = X — D disjoint dense subsets,

the ideals Z = P(D) and J = P(E) of all subsets of D and E respectively
are codense and yet TV J = P(X) is not codense.

THEOREM 4.3. For any space (X,7,Z), I 1is codense if and only if TVN (1)
18 codense.

Proof. For the nece531ty let 7 be codense. Then IVN(T) CZand Tis
codense implies that ZV N(7) is codense.

The sufficiency is clear since Z C IV N(7). a
THEOREM 4.4. If (X,7,7) is Hausdorff and T is codense, the following are

cquwalent

(1) (X, ‘r) i3 locally H - closed.

(2) (X,7) is locally N(7)-compact.

(3) (X,7) is locally T -compact.

(4) (X,7) 18 locally (ZV N())-compact.
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Proof. Since N(r) C IV N(r) C I, the equivalence of (2) and (3) by
Theorems 3.2 and 3.3 implies the equivalence of (2) and (4). O

Note that in Theorem 4.4, 7 may be non-local, in which case Z V N (7) is
non-local. Also, the codenseness of ZV N (7) is not needed in the proof.

COROLLARY 4.5. For any Hausdorff space (X,7,I) with I codense and
N(7) C I, the following are equivalent.

(1) (X,7) s locally T -compact.

(2) (X,71) s locally N(7)-compact.

(3) (X,7) 1s locally H-closed.

Question 4. Are (1) and (2) equivalent in Corollary 4.5 above without
the Hausdorff assumption?
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