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ON ONE-POINT J-COMPACTIFICATION 
AND LOCAL J-COMPACTNESS1) 

DAVID A. ROSE — T. R. HAMLETT 

ABSTRACT. An ideal T on a set X is a nonempty subset of the power set 
V(X) which has heredity and is finitely additive. (Local) T-compactness is the 
natural generalization of (local) compactness, where an T -cover of A C X covers 
all but an ideal member of A . If r is a topology on X , T is r -codense if each 
member of T is codense in (X, T) and T is r-local if each subset A C X locally 
in T belongs to T . If T is r-local , then !3 = {{/ — I | {/ E r , I € T} is a 
topology. In any case, /3 is a basis for a topology r*(T) finer than r on X . It is 
seen that a HausdorfFspace (X, r ) has a one-point HausdorfT T-compactification 
if and only if each point of X has a r-closed T-compact neighbourhood . This 
condition which is equivalent to (K , r* (T) ) being locally T-compact, properly 
implies that (X, r ) is locally T-compact. However, the converse is implied by the 
r-codenseness of T . Further, when T is r-codense, (K, r ) having a one-point 
HausdorfT T-compactification implies that (A", r ) is locally H -closed, i.e. locally 
N(r)-compact, where A/*(r) is the ideal of nowhere dense subsets of (X, r ) . 

§1. Introduction 

Given a nonempty set X , an ideal X is defined to be a nonempty collection 
of subsets of X such that 

(1) Bel and A C B -+ A e X (heredity), and 

(2) A e X and B e X -> A U B e X (finitely additive). 

If, in addition, X satisfies the following condition: 

(3) {An : n = 1,2,3,...} C I - > \jAn G X (countably additive), 
then X is said to be a a-ideal If X £ X, then X is called a proper ideal and 
{X — I: I e X} is a filter. For any family S of subsets of X , there is a smallest 
ideal (a-ideal) containing «S, denoted (S) ((<S)Q-), since intersections of ideals 
(cr-ideals) are ideals (a-ideals) . The smallest ideal containing X U J for ideals 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Primary 54D35, 54D30, 54D45. 
K e y w o r d s : Ideal, one-point T-compactification, local T-compactness, locally H-closed 

space, codense ideal, local ideal, ideal expansion. 
1 ) This research was partially supported by a grant from East Central University. 
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J and J is the join of J and J, denoted by J V J = {J U J: J G J and 

JeJ}. 
By a space we mean a topological space with no separat ion proper t ies as­

sumed unless explicitly s tated. We denote by (X, r , X) a topological space (X , r ) 
together with an ideal I on I . Of part icular impor tance are the ideals of 
nowhere dense subsets , denoted N(T), and of meager or first category subsets , 
denoted yVf(r), of a space. Clearly, JVf(r) is the smallest <r-ideal containing 
N(r). 

If A, B C X , we say A = B [Mod X] if the symmetric difference of A and 
5 is in J ; i.e., if AAB = (A - B) U (B - A) G I . For a space (X, r , J ) an 
X-cover oi A C X is a family £/ of subsets of X such tha t U covers 5 C . 4 
with B = A [ M o d J ] . A subset A C X is said to be X-compact ([1], [2], [3]) iff 
(if and only if) each r - o p e n cover of A has a finite J - subcover . It is shown in 
[3] t ha t A C X is J - c o m p a c t iff the subspace (A,r|.A, X\A) is J | A - c o m p a c t , 
where X\A = {A n J : I G J } • J - c o m p a c t spaces have been s tudied in [1], [2], 
and [3]. It was shown in [1] that a Hausdorff space (X, r ) is JV(r) -compact iff 
(X , r ) is H -closed. 

Given a space (X, r ) , x G X , we denote by r ( x ) = {U € T: x € U} . A 
subset A C X is called a neighbourhood, abbreviated n b d , of x if there exists 
U G r ( x ) such tha t x G U C A. We will say tha t a space (X, r ,X) is (strongly) 
locally X-compact if each point in X has an X -compact ( r -closed) nbd . A direct 
proof is given in [4] of the surprising result tha t a Hausdorff space (X , r ) is lo­
cally JV(r)-compact iff (X, r ) is locally H -closed (in the sense of P o r t e r [5]). 
In this paper we obta in this result indirectly, as well as several o ther new results, 
via the concept of a one-point J-compactif icat ion. In addit ion, we find a suffi­
cient condition on X for a Hausdorff locally X -compact space to have a Hausdorff 
one-point J -compact i f icat ion and show by example tha t not every Hausdorff lo­
cally J - c o m p a c t space has a Hausdorff one-point J -compact i f ica t ion . 

Recall t ha t a space (X, r ) is said to be quasi K-closed, abbrevia ted Q H C , 
iff every open cover of X has a finite sub collection which covers a dense subset 
of X . A space is said to be H -closed iff it is Hausdorff and QHC . P o r t e r [5] 
defines a Hausdorff space (X, r ) to be locally H -closed if each point in X has a 
nbd which is H -closed as a subspace of (X, r ) . It was shown in [3] t ha t a space 
( X , r ) is Q H C iff ( X , r ) is JV(r) -compact. 

In the following, for A C (X, r ) , we denote by C\T(A) and \u.tT(A) the 
closure and interior of A, respectively, with respect to r . We will simply wri te 
C1(.A) and Int(A) when no ambiguity is present. 

Given a space ( X , r , J ) , we denote by r * ( I ) the topology genera ted by the 
basis / ? ( J , r ) = {U - I: U G r , I G X} [6]. We will simply wri te r* for r * ( j ) 
and /? for /?(J, r ) when no ambiguity is present. It is shown in [2] ([4]) t ha t 
(X , r ,X) is J - c o m p a c t (locally J - c o m p a c t ) iff (X, r*,X) is J - c o m p a c t (locally 
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T-compact). It is also shown in [3] that r*-closed subsets of I-compact spaces 
are I-compact and I-compact subsets of Hausdorff spaces are r*-closed. 

Two important properties that an ideal may have in relation to the topology 
on a space are defined as follows. Given a space (X, T,X) we say that X is 
codense with respect to r , or r-codense, iff Xfl r = {0} . This property is called 
"r-boundary" elsewhere in the literature [2]. We say that a subset A of X is 
locally in X with respect to r [7], or r -locally in X, iff for each point x G A 
there exists U G T(X) such that U D A G X. The ideal X is called local with 
respect to r , or r -local, if X contains all subsets of X which are locally in X; 
i.e., if A being locally in X implies A G X. Elsewhere in the literature, local 
ideals are called "compatible" ([8], [3], [10]), "adherent" [6], "supercompact" [11], 
and having "strong Banach's localization property" [12]. For all spaces (X, r ) , 
it is known that M(T) [11] and M(T) ([13], Banach Category Theorem) are 
r-local ideals, and JV(r) is r-codense. Also it is well known that M(T) is 
r-codense iff (X, r ) is a Baire space. It is noted in [9] that in a hereditarily 
Lindelof space, every a -ideal is local. We conclude this section by noting that 
in a space (X, r, X) , X is r-local iff X is r*-local [8], and X is r-codense iff X 
is r*-codense. If (X, r ) is Hausdorff, then certainly (X, r*) is Hausdorff since 
r* is finer than r ; the converse is true provided X is r-codense [14]. 

§2. One-point J-compact if ication 

We begin with the following definition. 

DEFINITION. A space (Y,a,J) is said to be a J -compactification of (X,T,X) 

iff 

(1) XCY, 
(2) T = a\X = {VnX: V € a) , 
(3) J\X = {JCiX: J €J}=1, and 
(4) (Y, a, J) is J -compact. 

If, in addition, we-have 

(5) Cl„{X) = Y, 

then (Y,a,J) is said to be a J -compact extension of (X,T,X). Furthermore, 
if Y — X = {r}, then (Y,a,J) is said to be a one-point J -compactification 
(or J -compact extension) of (X,r,X). 

Note that if (Y, a, J) is a ^-compact extension of (X, T,X), then jDa = {0} 
iff J n r = {0}. Also, since J\X = X, J = (J\(Y-X)UX) and since X C J, 
(Y, a) is J -compact if (Y, a) is J-compact. Furthermore, the converse is true 
if the remainder Y — X is finite. Thus in the following discussion of one-point 
compactifications and extensions, we consider only X-compactness. 

361 



DAVID A. ROSE — T. R. HAMLETT 

THEOREM 2 .1 . If (Y, a) is a Hausdorff one-point X -compactification of 
(X,T,X), then we have the following: 

(1) TCO, 

(2) (X,T,X) is Hausdorff and strongly locally X-compact, and 
(3) ifY — X = {r} G cr, then (X,T,X) is X-compact. 

Furthermore, the converse of (3) holds if X is r -codense. 

P r o o f . 
(1) Since points are closed in (Y, cr), X G cr and hence cr|X = r C <j . 
(2) Clearly ( X , r ) is Hausdorff. If x G X and Y - X = {r} , then x / r 

emd there are disjoint a-open sets U and V with x £ U, r £ V. Then 
U C Cl<r(U) = Clr(U) C y - V C X , so that ( X , r , I ) is strongly locally 
I-compact since closed subsets of I-compact spaces are I-compact. 

(3) I f y — X = {r}Gcr, then X is I-compact since it is a closed subset of 
an I-compact space (Y, cr). Thus, (X, cr|X) = (X, r ) is I-compact. 

For the converse, suppose that (X,T,X) is I-compact. Then, since (Y, a) is 
Hausdorff, X is cr* -closed. Thus {r} = Y — X implies that for some U G cr 
and I eX, re U - I and U - / C Y - X , but U = (U - / ) U (U n / ) and 
U n / = U n X since / C X and U - I CY - X. Since U n X G r n I , 
I f l r = {0} implies that U n / = 0 and U = U - / . Thus, Y - X G cr. D 

From Theorem 2.1, we see that only Hausdorff strongly locally I-compact 
spaces (X, T,X) need be considered for one-point Hausdorff I-compactifications. 
Also, if (y, cr) is a one-point Hausdorff I-compactification of (X^T,X) and if 
(X,T^X) is not I-compact, then (Y, a) is a one-point I-compact extension of 
(X,T,1). 

THEOREM 2.2. If (y, a) is a one-point Hausdorff X -compactification of 
(X,T,X) and X is r -codense, then (X, r ) is locally H -closed. If, in addition, 
X is dense in Y, then (X, r ) is not H -closed and hence not X -compact. 

P r o o f . Since Incr = XC\T = {0} , and since (Y, cr) is I-compact, (y, cr) is 
H -closed. It follows from Theorem 2.1, (a), of [5], that (X, r ) is locally H -closed. 
If X is not closed in the Hausdorff space (y, a), then (X, r ) = (X, cr|X) is not 
H-closed and hence not I-compact. • 

A natural question is whether every Hausdorff (strongly) locally I-compact 
space (X, r, I ) has a one-point Hausdorff I -compactification. We answer this 
question in the affirmative by considering the following one-point I-compactific­
ation for a space (X,T,X). In what follows, if (X,T,X) is a space, let X A = 
X U { r} , where r g X , and let rA = r U {{r} U V: V G r and X - V 
is I-compact} . 
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THEOREM 2.3 . For any space (X, r, J ) . rA is a topology on XA and ( X A , r A ) 
is a one-point J -compactification of (X, r , J ) . 

P r o o f . Clearly {W n X | IV G r A } = r so that if rA is a topology, 
r A | X = r . Since finite unions of J-compact sets are J-compact and r is closed 
under finite intersection, rA is closed under finite intersection. Now, if 0 7-- {Va | 

a e A} C r with each X - Va J-compact, then l j ( { r ) u v<*) = i r ) u (ij "̂) G 

a ^ a ' 

TA since (J Va e r and X — (IJ Va J = f](X — Va) is J-compact being a closed 
a ^ a ' a 

subset of an J-compact set. Similarly, U U ({r} U V) e r A if U, V G r and 
X — V is J-compact. Therefore, rA is closed under arbitrary union and is a 
topology. To see that ( X A , r A ) is J-compact, let W be a r A -open cover of 
X A . If r G IVo G W , Wo = {r} U V for some V with V G r and X - V 
J-compact . Since r A | X = r , {W n X | VV G W and ^V ^ IV0} is a r-open 
cover of X — V. Hence there is a finite subset {IVi, IV2, . . . , Wn} C W such that 
{ W i n I , . . . , W n n l } is a finite J-cover of X - V . Thus, {IV0, IV i , . . . , IVn} 
is a finite J-subcover of W for X A . • 

We note that ( X A , r A ) is an J-compact extension of (X, r, J ) if and only 
if ( X , r , J ) is not J-compact. In any case, ( X A , r A ) is T\ (i.e. points are 
closed) iff (X, r ) is T\ since finite and hence singleton subsets of X are always 
J-compact for any ideal J . The smallest T\ topology possible for any one-point 
compactification of a T\ space (X, r ) is locally cofinite at the remainder point 
r . The next example illustrates that this can and does happen with I = {0} for 
( X A , r A ) precisely when (X, r ) is T\ and anticompact [15] in the sense that 
the only compact subsets of (X, r ) are finite. 

E x a m p l e . Let (X, r ) be a HausdorfF dense-in-it self space which is anti-
compact. For example, (X, r ) could be (R, u*(Af(u)) ) , where u is the usual 
topology on the set R of real numbers [9]. Then for J = {0} or J = {F C X | 
F is finite} , (X, r, J ) is not locally J-compact and hence (X A , r A ) is not Haus­
dorfF. In fact, rA is locally cofinite at r and is thus as far from being HausdorfF 
at r as possible, (i.e. U C\ V ^ 0 for every open U containing r and every open 
nonempty V.) 

COROLLARY 2.3 . The space (X, r, J ) has a Hausdorff one-point J -compacti-
fication if and only if (X, r, J ) is a strongly locally J -compact H aus dor ff space. 

P r o o f . The necessity is part (2) of Theorem 2.1. For the sufficiency it is 
enough to show that (X A , r A ) is HausdorfF. Since (X, r ) is HausdorfF, it remains 
only to see that each x G X can be separated from r e XA — X by disjoint 
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r A -open sets. Let K be a r -c losed X-compact neighbourhood of x G X. T h e n 
x G I n t r K G TA since r C r A , and r G XA - K G r A . D 

Since X-compact subsets of a Hausdorff space are r*-closed, it follows tha t 
(X, T*) is Hausdorff and locally J - c o m p a c t if and only if it is Hausdorff and 
strongly locally X-compact. Hence, if X is r -codense , (X, r ) is Hausdorff 
and locally T-compact if and only if (X, r* ) is Hausdorff and strongly locally 
X-compact. Thus , we have the following corollaries also. 

COROLLARY 2 .4 . The space (X,T*(X),X) is Hausdorff and locally X-compact 

iff (XA,T*(X)A) is Hausdorff. 

COROLLARY 2 .5 . If (X,T,X) is Hausdorff and locally X-compact, then 

(XA,T*A) is Hausdorff. The converse holds if X is r -codense. 

THEOREM 2 .6 . If X is r -codense, then (XA,TA) is Hausdorff iff (X,T,X) 
is Hausdorff and locally X-compact. 

P r o o f . It is enough to show tha t when X is r - codense and (X, r ) is 
Hausdorff and locally X-compact , then (X, r ) is strongly locally X-compact . 
To this end, let x G U G r with U C K and K an X-compact subset of 
X. Since (X, r ) is Hausdorff, K is r* -closed so tha t Cl r* U C K. But X is 
r - codense , implies Cl r* U = C l r U for U G r so tha t (X,r) is s trongly locally 
X-compac t . • 

T h e following example shows X being r -codense cannot be dropped for The­
orem 2 .6 . In part icular , locally X-compact spaces exist which are not strongly 
locally X-compact . 

E x a m p l e . Let X = R , the set of real numbers , let N be the set of positive 
integers, and let S = (J (n,n + 1 ) . Let X = V(S) be the ideal of all subsets 

n£N 

of S. Let r be the topology on X having for its neighbourhood base at each 
x y - 0 , the usual one but for which the open neighbourhoods of x = 0 are of 
the form {0} U IJ (n,n + 1 ) , where k G N . Then (X, r , X ) is Hausdorff and 

n>k 

each x =fi 0 has a compact and hence X-compact neighbourhood. Also, each 
neighbourhood of x = 0 is the union of the singleton set {0} wi th a member 
of X and is therefore X-compact . So (X,T,X) is locally X-compact . We claim 
tha t (XA,TA) is not Hausdorff and tha t in part icular r and x = 0 cannot be 
separa ted wi th disjoint r A -open sets. For if r G U G r A and 0 G V G r A wi th 
U H V = 0 , then U = {r} U JV with W G r and X - W X-compact and 
V G r so t ha t C l r ( V ) -X-W and C l r ( V ) is X-compact . We may assume 
tha t V is a basic open neighbourhood and tha t V = {0} U IJ (n,n + 1) for 

n>k 
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some k 6 N . Then C l r ( V ) = {0} U [n,-f-oo) which is not I - c o m p a c t . For if 

U = {V} U {(n — .25, n + .25) \ n > k and n G N} , W is a T-open cover 

of C l r ( V ) having no finite J - subcover of C\T(V). Apparent ly (X , r ) is not 

strongly locally X-compact. 

One can let X = V(X) for any Hausdorff space (X, r ) and note t ha t 

( X \ T A ) is Hausdorff so tha t the condition X f l T = {0} is not necessary for 

Theorem 2.6. Also for any locally compact Hausdorff space (X , r ) and for any 

ideal X of subsets of X , the topology T A on X A is finer t han the topology for 

the s t anda rd Alexandroff one-point compactification of (X, r ) [16] and hence 

( X \ T A ) is Hausdorff. 

Since many impor tan t ideals are codense, we summarize the results of this 
section in this case. 

THEOREM 2 .7 . The following are equivalent for any space (X, T , X ) when X 
is T -codense. 

(1) (X , T ) is Hausdorff and locally X -compact. 
(2) (X, T ) is Hausdorff and strongly locally X -compact. 
(3) (X, T*) is Hausdorff and (strongly) locally X -compact. 
(4) (X, T ) has a Hausdorff one-point X -compactification. 
(5) (X, T*) has a Hausdorff one-point X-compactification. 

(6) ( X V A ) is Hausdorff. 

(7) ( X \ T * A ) is Hausdorff. 

We conclude this section with a question. 

Q u e s t i o n 1. For any space (X, T, X), does T* A = T A * if I is T -codense? 

We know the answer is yes if T* = /? and this condition is satisfied by r -local 
ideals such as N(T), M(T), and principal ideals (V(A) for any subset _4), as 
well as some non-local ideals . An affirmative answer in general would give an 
a l te rna te proof for the converse of Corollary 2 .5. 

§3 . A p p l i c a t i o n s a n d loca l ly H-closed s p a c e s 

From Theorem 2.7 we have the following observation. 

COROLLARY 3 . 2 . Whenever (X, T , X ) is a Hausdorff space with X codense 
with respect to r , local X -compactness of (X, r ) implies that (X, T ) is locally 
H -closed. 

It is known [3] tha t (X , r ) is QHC if and only if (X , r ) is M(T) -compact and 
hence for a Hausdorff space (X, T ) , M(T) -compactness is equivalent to (X, r ) 
being i f -closed. T h e following parallel result was obtained in [4] in another way. 
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T H E O R E M 3 . 3 . A Hausdorff space (X,T) is locally H -closed if and only if it 

is locally JV(r) -compact. 

P r o o f . As noted earlier, M(T) is a codense ideal, so tha t the sufficiency 
follows from Theorem 3.1. For the necessity, note tha t an H-closed subspace K 

is always J\T(r|A")-compact, and hence N(T)-compact, since M(T\K) C M(T) . 

D 

It is clear from the proof above tha t the necessity par t of Theorem 3.3 holds 

even wi thout the Hausdorff assumption. Note that non-Hausdorff spaces exist 

which are (locally Hausdorff and even) locally H -closed. Thus , the class of 

locally JV(r)-compact spaces properly contains the class of Hausdorff locally 

H-closed spaces. (In fact, the part i t ion topology r on a set X shows tha t even 

a space which is not locally Hausdorff can be locally JV(r)-compact.) 

Q u e s t i o n 2. For a space (X, r ) , is local JV(r)-compactness equivalent 
to (XXT) being locally Q H C ? 

T H E O R E M 3 . 4 . If (X,T) is a Hausdorff Baire space, then the following are 
equivalent. 

(1) (X, T) is locally JVf(r) -compact. 

(2) (X, T) is locally ^[(T)-compact. 

(3) (X, T) is locally H -closed. 

If also (X, T) is regular, each of the above is equivalent to the following. 

(4) (X, T) is locally compact. 

P r o o f . It was noted earlier tha t (X, r ) is a Baire space if and only if 

M(T) f| T = {0} . Thus , by Corollary 3.2, (1) implies (3). By Theorem 3.3, (2) 

and (3) are equivalent, and since M(T) C M(T) , (2) implies (1). Now if also 

(X, T) is regular, each H-closed subspace is compact so tha t (3) and (4) are 

equivalent. D 

Q u e s t i o n 3. In Theorem 3.4 above, does the equivalence of (1) and (2) 
hold t rue without the Hausdorff assumption? It is known tha t for any Baire 
space (X, T) , yVf(r)-compactness is equivalent to JV(r)-compactness. 

§4 . Idea l e x p a n s i o n s 

In [10], for any space (X,r, J ) , an expansion of J by an ideal J is defined 
by J * J = {A C X | A*(l) G J} where A*(l) = {x e X \ x G U G 
r —• U fl A $L 1} is the set of all points in X where A is not locally in J . In 
par t icular , A*(J) = 0 G J if A G J so that J C J * J for any J . Fur ther , it is 
not difficult to show tha t 1*J is an ideal. When J = - V ( r ) , J * J is denoted 

366 



ON ONE-POINT 2-COMPACTIFICATION AND LOCAL J-COMPACTNESS 

J , and it may be noted that for any J , M(T) C J SO that JVJV(r) C J . Most 

importantly, for any J , J is r-local. It is also observed in [10] that when J is 

r-local, then J = J V AF(T) . We observe the following. 

THEOREM 4 .1. For any space (X,T,1), 1 = 1. 

P r o o f . Since J ~ r , l = l\l M(T) = 1 since M(T) C I . • 

Observe that for any space (X, r ) , {J \ J is an ideal with J\f(r) C J 

and J ~ T} = {1 | J is an ideal of subsets of X}. For if J is an ideal with 

M(T) CJ and J ~ r , then J = J. 

THEOREM 4.2. For any spaces (X,T,1) and (X,T,J), 1*J is codense 
if both 1 and J are codense. If either M(T) C J or (X,T) is regular, the 
converse is true. 

P r o o f . For the converse assume that J * J is codense and note that since 
1 CI* J, 1 is codense. Also, if U G J n r , then U*(I) = C1(U) = (C1(U) 
- U) U U G J if M(T) C J and so U G ( J * J) n r = {0} . Hence, [7 = 0 
and J7 is codense. If (X, r ) is regular, and U ^ 0, there exists V G r and 
0 7- C1(F) C U. So C1(F) = y*(J ) G J and hence F G ( J * J ) n r . This 
contradiction shows that J is codense. 

Now if J and J are codense and U G ( J * J ) n r , then U*(I) = C1(U) G J 
implies that U e J (~) T SO that [7 = 0. • 

Part of Theorem 3.5 of [10] follows as a corollary. That is for any space 
(X, T,1) , 1 is codense if and only if J is codense. 

In any,resolvable space X with D and E = X — D disjoint dense subsets, 
the ideals J = V(D) and J = V(E) of all subsets of D and E respectively 
are codense and yet J V J = V(X) is not codense. 

THEOREM 4.3. For any space (X,T,1), 1 is codense if and only if JVJV(r) 
is codense. 

P r o o f . For the necessity let J be codense. Then J V M(T) C 1 and J is 
codense implies that J V M(T) is codense. 

The sufficiency is clear since J C J V M(T) . • 

THEOREM 4.4. If (X,T,1) is Hausdorff and 1 is codense, the following are 
equivalent. 

(1) (X, T) is locally H -closed. 
(2) (X, T) is locally M(T)-compact. 
(3) (X, T) is locally 1 -compact. 
(4) (X, T) is locally (l V JV(r)) -compact. 
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P r o o f . Since JV(r) C X V -lV(r) C J , the equivalence of (2) and (3) by 

Theorems 3.2 and 3.3 implies the equivalence of (2) and (4). • 

Note tha t in Theorem 4.4, X may be non-local, in which case X V M(T) is 

non-local. Also, the codenseness of JVJV(T) is not needed in the proof. 

COROLLARY 4 . 5 . For any Hausdorff space (X,T,X) with X codense and 

•^f(T) .= 1 , the following are equivalent. 

(1) (X,T) is locally X-compact. 

(2) (X, T) is locally M(T) -compact. 

(3) (X, T) is locally H -closed. 

Q u e s t i o n 4. Are (1) and (2) equivalent in Corollary 4.5 above wi thout 

the Hausdorff assumption? 
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