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GRAPHIC MATRICES
ZOFIA MAJCHER

Introduction. The results of this paper have been announced in [12].

We shall consider finite simple graphs.

A sequence d = (d,, d,, ..., d,) of non-negative integers is called graphic if there
exists a graph G = (V, E) such that V = {v,, v, ..., v,} and deg(v;) = d, for i =
=1, 2, ..., n. Then the graph G is called a realization of d.

Two characterizations of graphic sequences are known in literature: Erdés
— Gallai’s criterion (see [6]) of a combinatorial character, and Havel — Hakimi’s
criterion (see [9], [11]) of the recursive form. Since we use these criteria in the
sequel, we quote them.

Erdés — Gallai’s criterion.

Let d = (d,, d,, ..., d,) be a monotonic sequence of non-negative integers with
the maximum term d,. Then d is graphic iff:

n

Y. d, = 0(mod?2),

r=1

m

Yd<mm-1)+ ) min{md}, form=12,..,n
r=1 r=m+1
Havel — Hakimi’s criterion.
Letd = (d,, d,, ..., d,) be a monotonic sequence of non-negative integers with
the maximum term d,. Then d is graphic iff the modified sequence

d=(—-1,d—1,..,dy = 1,d;,3 ....d)
is graphic.

In the investigations of the realizations of d which are graphs of some special
kind, it is necessary to know not only the degrees of all vertices but also the
degrees of the neighbours of any vertex, for example if we study I-regular
graphs, I"~-regular graphs (see [15, 16, 12, 17]) and semi-regular graphs, which
have applications in chemistry (see [1, 7]). Considering such a problem we
observe first that to every graph G we can assign a matrix M of non-negative
integers which informs as about the degrees of the neighbours of each vertex. In

Section 1 we define more exactly this matrix and we call it the distribution
matrix of G.
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A matréx M is graphic if M = Mg for some simple graph G. In this paper we
characterize graphic matrices int two ways — combinatorially and recursively
(Sections 3 and 4, respectively). Solving this problem we use Erdos— Gallai’s
and Havel—Hakimi’s criteria with some modifications for bipartite graphs.

In Section S we consider the set R, (M*) of all graphs with the same vertex
set, having the same distribution matrix M*. We define an operation (x)-switch-
ing which is a restriction of the switching used by Eggleton in [3] and [4]. We
prove thatthe set R, (M*) can be generated by a single graph G € R,,(M*) using
(*)-switching operations finitely many times (Theorem 3, Corollary 1).

1. The distribution matrix of a graph

Let G = (V, F) be a finite simple g\r.aph. For ve V we denote;
) = {ue‘ V:{u, v}e E},
degg (v) = [I(v)l,
D(G) = {deg;(v): ve V}.

Assume that for the graph G we have D(G) = {d,, d,, ..., d,}, where d, >
>d, > ... >d,. Then for i, je{l, 2, ..., k} we define:

V= {veV: degg(v) = dj,
E;={{u,v}eE: ueV, veV},
t'(v)y=|V,n I(v)] forvel.
For a graph G we define a function #;: ¥V — N* as follows:
te(v) = (t'(v), £*(v), ..., t*(v)) forveV.

(Here N denotes the set of non-negative integers.)
The faenction ¢; will be called the distribution function of the vertices of G.
Let V(G) = {v,, vy, ..., v,}. We define a (k x n)-matrix M as follows:

Mg = [t5(v), 152, ..., ts(v,)].

.

" The <oluvamn z(v,) for se {1, 2, ..., n} will be called the distribution of v,, the
matrix M, will be called the distribution matrix of G.
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2. Graphic matrices \

Let M be a matrix of non-negative integers. M will be called graphic if there
exists a simple graph G such that M is the distribution matrix of G. Then we
shall say that the graph G is a realization of M.

Observe that the problem of characterizing graphic matrices is essentially
more complicated than that of characterizing graphic sequences. In fact, two
graphs can have the same degree-sequence and different distribution matrices.
For example compare the graphs G, and G, in Fig. 1.
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Fig. 1

The aim of this chapter is to introduce some notions and to prove some
lemmas used in the sequel.

Leta = (a,, a,, ..., a,), b = (b, b,, ..., b,) be two sequences of non-negative
integers. A pair (a, b) will be called graphic if there exists a bipartite graph
G = (W, V3, E)suchthat V| = {v,, v,, ..., v}, V; = {u;, uy, ..., u,,} and degg(v,) =
=a;, degs(w) = bifori=1,2,..,nandj=1,2, ..., m.

The bipartite graph G is called a realization of the pair (a, b).

Let M = [qa,, a,, ..., @,] be'a (k x n)-matrix of non-negative integers, where

By M* we denote a matrix with the same columns as in M, but ordered as follows:

k k k k ‘
a; precedes ¢; if (Z a>y a;) or <Z al= ) a and i<j>.
s=1 s=1 s=1

\s =1
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Let for some matrix M of non-negative integers the matrix M* be of the
form:

1 | 1 1 1 1
By bl o th o B B

1 M* =

L : oo )

YT RO S F 1

where foreveryi= 1,2, .., k,g=1, 2, ..., s; we have:
i+ .. +th=d  (d>d>..>d).

Lemma 1. Let G = (V, E) be arealization of a matrix M* of the form (1). Then
the graph G can be decomposed into graphs G; = (V,, E;) and bipartite graphs
G, =V, V, E) fori<}j, i je{l,2, ..., k}, where:
1° any of the graphs G, is a realization of the sequence

= (th thy <o 1),

2° any of the graphs G; is a realization of the pair (t}, t)) of the sequences
th=(th, thy ..., t}),
tj’ = (tjll’ tj'29 ceey tjvl.)'

Proof. Obviously the graphs G; and G; are edge-disjoint. Denote by M;
(i = 1,2, ..., k) the submatrix of M* consisting of all columns for which the sum
of elements is equal to d.. Then M, is of the form:

the by
Q) M, =| bt
th otk

So the columns from M, are distributions of the vertices from V.. Note that the
ith row in M, is the degree-sequence of the graph G,;. Analogously for i # j the
Jjth row in M, and the ith row in M; is the pair of degree-sequences of the
bipartite graph G;.
Lemma 2. Let M be a matrix of non-negative integers such that the matrix M*
is of the form (1). Let
U= {011, -+es Oty =evs Vits Digs wees Ukt o5 Ui}

and U; = {vy, ..., v} for i = 1,2, ..., k. Further, let a simple graph H;; = (U, F)
" be a realization of the sequence t{ = (t,, ..., t;) and a bipartite graph H; =
= (U,, U,, F) be a realization of the pair of sequences
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tj = (tnl’ [ERE) trjv,)a j ( AR ] ;v)

where i #j, i,je{l, 2, ..., k}.
Then the graph

is a realization of the matrix M.
Proof. Let us fix a vertex v from the set U. Let ve U, for some jje{l, 2,

. k}.Sov =y, forsomege{l,2, ..., s} Observe that v belongs to all graphs
H, ;, and to all graphs H;, forj=1,2, ..., k, and to no other. Since F; = F, for
Jg .
every i, je{l, 2, ..., k}, so

degH (Uloq) = degh’ (Uloq) loq
All the graphs H, ; are edge-dlsjomt, thus
tH(UIOq) ( igq? tll:]q)

The sequence (¢, ¥ ) is the gth column in the matrix M, of the form:

igg> 0> Ligg
1 1
tiol iy,
k k
A

As the vertex v has been chosen arbitrarily, so the graph H is a realization of
the matrix M* and consequently of M.

3. A combinatorial characterization of graphic matrices

Let a matrix M* be of the form (1). Put
(— i1 _1.27 sees —t_;?j)’
where (), ..., _t,f,j) is a permutation of the sequence #/ such that

=>4

.9
Js;

i jell, 2, ..., k).

Theorem 1. Let M be a matrix of non-negative integers such that the matrix
M* is of the form (1). Then M is graphic iff for every i,je{l,2, ..., k} the following
conditions (1 —(iv) are satisfied :

0} Y 1 = 0(mod2),

r=1
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S,

(i) Yt<mm—1)+ ) min{m, 1)} form=1,2,..,s,

r=1 r=m+1

.T’-

(i) Yi=Y1,
r=1 r=1

m . s’. .
(iv) Y U< Y min{m )} form=1, .. s,i<j
r=1 r=1
Proof. From Erdos— Gallai’s criterion we infer that (i) and (ii) are neces-
sary and sufficient conditions for the sequence ¢/ to be graphic. The conditions
(iii) and (iv) are necessary and sufficient conditions for the representability of

the pair (¢#/, t;) of sequences by a bipartite graph ([6], also [1, Chapter 6 Theo-
rems 1, 7]).

Finally, by Lemmas 1 and 2, we conclude that conditions (i)—(iv) can be put
all together, i.e. that they form a necessary and sufficient condition for the

matrix M* to be graphic.

4. A recursive characterization of graphic matrices

First we introduce some notions.
Let a = (a,, a,, ..., a,) be a non-increasing sequence of non-negative integers
such that a, <n — 1.
Denote:
red(@) =(a,— 1, ..., a, 41— L, a 42 -0y @)

Let (a, b) be a pair of non-increasing sequences of non-negative integers such
that a = (a,, a,, ..., a,), b= (b,, b,, ..., b,) and a, < m.
Denote:

red (a, b) = (0, ay, -y @), (by — 1, cey by — 1, by 4 1y oy D).

Theorem 2. A matrix M* of the form (1) is graphic iff for every i, je{l, 2,
..., k} we have:
1° the sequence red (t)) is graphic,
2° the pair red (£, t}) is graphic for i < j.

Proof. By Lemmas 1 and 2 the statement ‘“‘the matrix M* is graphic” is
equivalent to the statement “Every sequence ¢/ is graphic and for i < j, each pair
(t/, 1)) of sequences is graphic”. Now for the sequences f; we use Havel —
Hakimi’s theorem. For the pair (¢, /), where i < j, the idea of the proof is the
same as in the proof of Havel —Hakimi’s theorem given by F. Harary in [10],

hence we do not present the details here.
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Remark 1. Using the last theorem one can formulate an algorithm for
testing whether a matrix M* is graphic, moreover using Havel —Hakimi’s
method (see [10, p. 58]) with some modifications for bipartite graphs, we can
construct a graph realizing a matrix IM* if this matrix is graphic.

5. A set of all realizations of a matrix M*.

Let M* be a matrix of the form (1). Denote by R, (M*) the set of all (labelled)
graphs with the same vertex set V' = {v,, v,, ..., v,} which are realizations of M*.
Our aim is to characterize the set R, (M*),

We introduce come auxiliary definitions.

Let G = (V, E) be a simple graph. Let D(G) = {d,, d,, ..., d,} be defined as
above, and (u,, w,, u,, w,) be a sequence of different vertices such that:
1°u, e Vi, wy, wel,

20 {ula wl}’ {“2’ W2}€ E»
3% {uy, wa}, {uy, wi} ¢ E.

We define a new graph G, ,, 4, v, = (V, E’), where

E, = (E\{{ul’ wl}’ {"z, w2}})u{{ul9 Wz}, {uZa wl}}'

The graph G, . 4, v, Will be called a (+)-switching of G, and the operation
which leads from G to G, .. 4, v, Will be called a (x)-switching operation.

The (x)-switching operation is a restriction of the elementary d-invariant
transformation introduced by S. L. Hakimi in [9] and called the switching
operation by R. B. Eggleton in [4], namely in the definition of switching one does

not require the condition 1°, and there are two possibilities of exchanging the
edges, as shown in Fig. 2.

Fig. 2

For two graphs G = (V, E), H=(V, F)put G — H= (V, E - F), where —
is the symmetrical difference.
Let uyw,u,w, ... u,w,u, ,,, where u, ., = u,, be a cycle in the graph G ~ H.
This cycle will be called alternating (or briefly a-cycle) if {u,, w}e E and
{w,, u,, yeF for every se{l, 2, ..., m}.
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Lemma 3. Let G, HeR,,(M*), G=(V, E), H=(V, F), and for i, je{l, 2,

. k}yGy = Hy=(V, V,, E; = F)), where i # j, G; ~ H; = (V,, E; =~ F) fori = j.

Then every non 1-element component of the graph G, — H is an alternating cycle
of the form

(3) Uy, Wy, Upy Way ooy Upyy Wy Up v 15

where u, ., =u,, u, eV, weV, {u, wlec E\F;
e{l, 2, ..., m}.
Proof. Let i, je{l, 2, ..., k}. For ve V, we denote:

, and {w,, u, 1 y€ F\E; for se

I}U(v) = {ueV: {u, vie E}, I},‘_j(u) ={ueV;: {u, vie F}}.

f I"Gij(v) = Iy (v), then v is an isolated vertex in G; — Hj;. Let I 6, (V) # I; H, (v).
Then the degree of the vertex v in the graph G; — H;;is an even number dlfferent
from zero. In fact, there exists an edge e’ € E,\F; incident to v iff there existst an
edge e” € F\E; incident to v (since #;(v) = tH(v)). So v belongs to a cycle. This
is an a-cycle, since the number of edges of G; ~ Hj, incident to v and belonging
to E; is equal to the number of edges mc1dent to v and belonging to Fj.

LetG HeR,(M*),G=(V,E), H=(V, F). Fori, je{l, 2,. k}denoteby
g, a set of all alternating cycles formed from the edges of the graph G, ~ H;in
such a way that every edge of G; —~ H; belongs exactly to one cycle.

The set ¢; will be called an a-cyclic partition of the graph G; ~ Hj;. Obviously
such a set need not be unique.

The number

6(Gq’ ijs {1]) =3 IE(G(] Hy)' - M;ul

will be called the distance of the graphs G;, H; with respect to the set .
Lemma 4. Let G, HeR,(M*), G = (V, E), H= (V, F) and for i, je{l, 2,

., k} let {; be an a-cyclic partition of the graph G; — H,. Further, let 6(G;, H;,

{) =p and p > 0. Then there exists a sequence G; = G,j’, Gj, ..., GI'=H; of

graphs and a sequence Gy Gy oons T of a-cyclic partztzons of the graphs G, - Hy,

G2 ~ Hy, ..., G' =~ Hy, respectively — such that m < p and for every re{l, 2
., m} the followmg two conditions are satisfied:

G} is a (x)-switching of G/~ ',
ijs g’a 4;) < 6(6" ! Hu’ é:j-l)‘

Proof. We use induction on the number p.
1° For p = 1 we have only one possibility:

5(G;

|E(G;—~ H)l=4 and |{]|=1.
200



Let Ce{;and C = u;w,u,w,u,. We apply the following (*)-switching opera-
tion:
Gl_; = Gij(u|, Wy, Uy, wz) .

Then we have: E(Gj - H) =0, i =0 since {u,, w}, {u,, wy} ¢ E} U F, and
{wi, wa}, {uy, Wz}EEij]' NF;. So

6(6.;’ H,’j, ,:) = %O - 0 =0.

2° Assume that the statement is true for all graphs G;, H; and all a-cyclic
partitions {; such that

i
6(Gij3 I{i," 4:]) <p, p> 1l
3° Assume that for G, H,, {; we have
5(Gij’ Hij’ ;’j) =Pp-
Denote |E(G; - H))l = e, |§;| = c. Then p = J-e —c.
Let Ceg;, C = uywyu,w,...w,u;, n = 2. Then we have the following two
cases:
Low #w, and {u, wy}¢E,,

2. uy=w, or {u, wyiek;.
Case 1. We apply the following (*)-switching operation:

T
Gij - Gi/('ll- Wi, Uy, W)

We denote e, = |E} = F)|, ¢, =|{,|, p =1 e, — ¢,. Since the (x)-switching
operation preserves the degrees of all vertices of the graph G, so for the graph
G, ~ H, there exists an a-cyclic partition ¢;. The number of edges of the graph
G; =~ H,;depends on whether the edge {u;, w,} belongs to the set Fj or it does not.
1.1. Let {u,, w,}¢ F,. Then
E} - E, = ((E,;/ = Ej)\{{“h wit, {ty, wop, {wy, wo}h) U Huy, wyth

if
i = (GMCHYU{C}, where C" = uywyuy... w,u,.
Thuse,=e—2,¢,=candp,=(e—2)—c=p— 1.
1.2. Let {u,, w,}€ F; and let {u,, w,} be an edge of some cycle C,e¢;. Then
Eljl - 1:11 = (Ey = Frrj)\{{u]a ‘VI}’ {uz’ Wz}, {wla uZ}’ {ula w2}}'

If C, # C, then, after removing the edges {u,, w,}, {u,, w,} and {w,, u,} from
the cycle C, we get a chain L,, and after removing the edge {u,, w,} from the cycle
C,, we get a chain L,. The chains L, and L, form an alternating cycle.

If C, = C and |E(C)| > 4, then we obtain two chains L, and L,. Then L,
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forms an a-cycle, and L, forms an a-cycle, or both together form an a-cycle.
If C, = C and |E(C)| = 4, then the cycle C disappears.
Concluding, we get in the case 1.2.:

e|=e_4s C|>C‘_la p|=%(€_4)-clgp—l

Case 2. Let {u;, wl€ Ej; or u; = w,.
Let s = min{ke{3, 4, ..., n}: u; # w, and {u,, w;} ¢ E;}. The number s always
exists, since n satisfies the above condition. So

(u; # w, and {u,, w}¢ E;) and ({u,, w,_J€E; or uy = w,_,).

2.1. Assume that {u,, w,_}e E;. We prove that the following (*)-switching
operation can be used:
Gl =

i

G

luyp, we g, ug wo e

In fact, u, # w,_, since {u;, w,_,} is an edge of the graph G;, u, # u, since
({uy, w,_\ye E;and {w, _,, u}€ F), u; # w, by the definition of the number s. In
the remaining cases the vertices are different, being three consecutive vertices of
the alternating cycle. Further, {u,, w,_,}€ E; by assumption, {u,, w}e E; and
{w,_,, u} ¢ E; by the definition of the a-cycle, {u,, w,} ¢ E;; by the definition of the
number s.

The numbers e, and ¢, depend on whether {u,, w, _}, {,, w} are edges of the
graph Hj; or are not.

Table 1 ilustrates the influence of the particular edges on the number |E; =~ F|
and on the number |{;|. The symbol + denotes that a given edge belongs to the
suitable set, the symbol — denotes the opposite case.

Tab. 1
{uy, wy 1} {w,_ 1, ug {u,, wy {ui, wy)
E; + - + -
F; + - + - + -
|Ej ~ F| +1 -1 —1 -1 —1 +1
121 +1 >0 0 0 >0 +1

For example we discuss the case when {u,, w,_,} ¢ F; and {u,, w}e F,.
Let {u,, w,_}eC, {u,, w}eC, for some C,, C,e(; and C,, C,, C are
different. Since Gj = G v, u.w)» SO

E!]' - FZ[ = (E:] - F;j)\{{uh ws— l}s {Ws, us}’ {ws— 1 MX}, {ula w.\'}}‘
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Removing the edges {w, _,, u;}, {u,, w} from the cycle C we obtain two chains
Ly=wuw ...w,_\,Ly=wu,,...w,u,. After removing the edge {u,, w,_,} from
the cycle C, we obtain a chain which together with L, forms an a-cycle C’.
Similarly, after removing the edge {u,, w} from the cycle C,, we obtain a chain
which together with L, forms an alternating cycle C”. So, if we remove the edges
{u,, w,_,} or {u,, w}, we do not obtain fewer cycles.

Thus ¢} = ({M\C, C,, C,}) v{C’, C"}and ¢, = ¢ — 1. Observe that e, = e —
—1l—-1—-1—-1=e—4,s0p,=p—1.

Arguing similarly we conclude that in the case 2.1. we get always p, < p.
2.2. Assume that u; = w,_,. Let us note that u, # w,_,, hence {u;, w,_,}€ E.
Since {u,, w, _,}e E; and {u,, u} ¢ E;, s0 u, # w, _,.

2.2.1. Let {u, w, _,}e E;. Then put

Gi=G

Glwg oty s W as uj)

If {u, w, ;JeE;nF, then ¢ =e—1—-1+1—-1=e—2, ¢,=c and

p=p-—1L

If {u, w, ,JeE)\F,, then e,=e—1—-1—-1—-1=¢—-4, ¢,>2c—1 and
n<p-—1L
2.2.2. Let {u, w, _,}¢ E;,. Then put

1
Gy = Gi,.

g 9 Ul wj) .

Table 2 ilustrates the changes of the numbers of edges and cycles.

Tab. 2
{uy, w, o} {w, g, u} {u, w {ur, ws
E; + — + _
F; + - + — - + -
|E} ~ F| +1 —1 —1 +1 -1 -1 +1
1 ' +1 =0 0 +1 0 =0 +1

In every case from Table 2 we get p, <p — 1.

Finally, in each of the cases 1 and 2 we get the graph G; -~ H; and the set {}
such that 6(G;, H;, {;) < p, so we can use the induction hypothesis.

Remark 2. From the proof of Lemma 4 we can obtain an algorithm for
finding the sequence of (x)-switching operations such that we get the graph H;
from the graph G,. Details of this algorithm will be presented in [14].

Theorem 3. Let G, He R,(M*) and G # H. Then there exists a sequence
G =G G', ..., G" = H of graphs belonging to R,(M*) such that G**' is a
(*)-switching of G* for s€{0, 1, ..., m — 1}.
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Proof. We give a method of constructing the sequence G°, G/, ..., G™.

1) We form the graph G ~ H.

2) We decompose the graph G - H into the subgraphs G; ~ H; for i, je{l, 2,
ws kY 1<

3) By Lemma 4 for every graph G; - H; there exists a sequence oy, ..., o; of
(*)-switchings such that from G; we obtain the graph G; = H;;.

4) We order all (x)-switchings in a sequence oy, ..., 0, in the lexicographic way,
i.e. we put g; < oy <= (i, j, u) < (k, [, w), where < denotes the lexicographic
order.

5) We form the sequence of the graphs G°, G', ..., G™ where G** ! is constructed
from G° by the (x)-switching o, , , for s€{0, 1, ..., m — 1}.

From the above theorem we have the following

Corollary 1. The set R,(M*) can be generated by single graph G e R,(M*)
using (x)-switching operations finitely many times.

Remark 3. Theorem 3 is analogous to Eggleton’s result for the set R, (d)
of all realizations of a given degree-sequence d (see [3]). However, Theorem 3
cannot be obtained from Eggleton’s result, because switching does not preserve
the distributions of vertices and the property to be a bipartite graph (see Fig. 3).
The method used in the proofs of Lemmas 3 and 4 gives a constructive proof
of Eggleton’s theorem for the set R,(d). This proof is different from that
presented by R. B. Eggleton and D. A. Holton in [5] and by R. Taylor in [18].

W switch @

Fig. 3
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MATPULBI TPA®OB
Zofia Majcher
Pesrome

B pa60're JlaHa XapaKTE€PUCTHKA 3THX MATPHUIl H MHOXECTBA BCEX rpad)on, KOTOPBIC UMEIOT
OJHO U TOXE CaMO€ MHOXECTBO BEPIUUH U OOMHAKOBYIO MATpHULy PacIpeac/ICHUA.
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