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GRAPHIC MATRICES 

ZOFIA MAJCHER 

Introduction. The results of this paper have been announced in [12]. 
We shall consider finite simple graphs. 
A sequence d = (dud2,..., dn) of non-negative integers is called graphic if there 

exists a graph G = (V, E) such that V = {vu vl9 ..., v„} and deg(u,) = dtfor i = 
= 1, 2, ..., n. Then the graph G is called a realization of d. 

Two characterizations of graphic sequences are known in literature: Erdos 
— Gallai's criterion (see [6]) of a combinatorial character, and Havel — HakimFs 
criterion (see [9], [11]) of the recursive form. Since we use these criteria in the 
sequel, we quote them. 

E r d o s — G a l l a i ' s c r i t e r ion . 
Let d = (du dl9 ..., dn) be a monotonic sequence of non-negative integers with 

the maximum term dx. Then d is graphic iff: 

X 4 = 0(mod2), 
r = I 

m n 

YJ dr^
 m(w ~ 1) + £ min{m, dr}, for m — 1, 2, ..., n. 

r— 1 r = m+\ 

Havel — Hakimi's criterion. 
Let d = (du dl9 ..., dn) be a monotonic sequence of non-negative integers with 

the maximum term d{. Then d is graphic iff the modified sequence 

d' = ( d 2 - 1, d3- 1, ..., dd{JtX- 1, dd{ + 29 ..., dn) 
is graphic. 

In the investigations of the realizations of d which are graphs of some special 
kind, it is necessary to know not only the degrees of all vertices but also the 
degrees of the neighbours of any vertex, for example if we study F-regular 
graphs, /"""-regular graphs (see [15, 16, 12, 17]) and semi-regular graphs, which 
have applications in chemistry (see [1, 7]). Considering such a problem we 
observe first that to every graph G we can assign a matrix M c of non-negative 
integers which informs as about the degrees of the neighbours of each vertex. In 
Section 1 we define more exactly this matrix and we call it the distribution 
matrix of G. 
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A matrix M is graphic i/M = MGfor some simple graph G. In this paper we 
characterise graphic matrices int two ways — combinatorial^ and recursively 
(Sections 3 and 4, respectively). Solving this problem we use Erdos — Gallai's 
and Havel-Hakinri's criteria with some modifications for bipartite graphs. 

In Section 5 we consider the set 7?r(M*) of all graphs with the same vertex 
set, having the same distribution matrix M *. We define an operation (^-switch­
ing which is a restriction of the switching used by Eggleton in [3] and [4]. We 
prove that the set Ry(M*) can be generated by a single graph Ge RV(M*) using 
(*)-sw^itching operations finitely many times (Theorem 3, Corollary 1). 

1. The distribution matrix of a graph 

Let G ̂ = (K, E) be a finite simple graph. For ve V we denotg; 

r(v) = {ueV:{u9v}eE}9 

degG(v) = \r(v)l 

D(G)={degG(v):veV}. 

Afcsinae that for the graph G we have D(G) = {d,, d2, ..., dA.}, where d, > 
> d2 > .... > dk. Then for / , je{l, 2, ..., k} we define: 

Vi={veV:degG(v) = dl 

Eii= {{", v}eE: ueVh veVj}9 

ti(v)= \V(nr(v)\ fori;e V. 

For a .graph G we define a function tG: V^ Nk as follows: 

tG(v) = (t](v), t\v)9 ..., tk(v)) forveV. 

(Here N denotes the set of non-negative integers.) 
The function tc will be called the distribution function of the vertices of G. 
Let VQG)*= {V}9 u2, ..., vn}. We define a (kxn)-matrix MG as follows: 

M c = [^(i;,), tG(v2\ ...,tc(vn)]. 

The column tc(vs) for se {1, 2, ..., n} will be called the distribution of vs9 the 
matrix l^1G will be called the distribution matrix of G. 
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2. Graphic matrices 

Let M be a matrix of non-negative integers. M will be called graphic if there 
exists a simple graph G such that M is the distribution matrix of G. Then we 
shall say that the graph G is a realization of M. 

Observe that the problem of characterizing graphic matrices is essentially 
more complicated than that of characterizing graphic sequences. In fact, two 
graphs can have the same degree-sequence and different distribution matrices. 
For example compare the graphs Gx and G2 in Fig. 1. 

G,: 
V џ G2: 

D(GíhD(G2)^ {3,2,1} , k.3, c^- dG^(3,2,2,2,1) 

MG1-
111 
110 
001 

MGЃ 
0\ 101\ 1 
2\121\0 
1 \ooo\o 

Fig. 1 

The aim of this chapter is to introduce some notions and to prove some 
lemmas used in the sequel. 

Let a = (a,, a2, ..., a„), b = (bl9 b2, ..., bm) be two sequences of non-negative 
integers. A pair (a, b) will be called graphic if there exists a bipartite graph 
G = (Vu V2, E) such that Vx = {t;,, v2, ..., vH}9 V2 = {ul9 u2, ..., um} and deg^t;,.) = 
= ai9 degG(w;) = bj for i = 1, 2, ..., n, and j = 1, 2, ..., m. 

The bipartite graph G is called a realization of the pair (a9 b). 
Let M = [a,, a2, ..., an] be a (kxn)-matrix of non-negative integers, where 

-El 
By M * we denote a matrix with the same columns as in M, but ordered as follows: 

a, precedes a, if ( £ a/ > £ a/) or ( £ ** = £ fl; and i <j). 
\S = 1 5 = 1 / \J = 1 5 = 1 / 195 



Let for some matrix M of non-negative integers the matrix M* be of the 
form: 

(i) M [t,, ... t,vl ... t,,... tisj... tkx ... t^ 

t,, . . . t,vl . . . t,-, . . . t/J.... tkx... t£v 

where for every i = 1, 2, ..., k9 q = 1, 2, ..., 8, we have: 

*}q + t\ + ... + t* = d, (d, >d2> ... > dk). 

Lemma 1. Let G = (V9 E) be a realization of a matrix M* of the form (1). Then 
the graph G can be decomposed into graphs Gh = (IV, £,,) and bipartite graphs 
Gij = (Vi9 Vj9 Eif)for / <j , / , je{l, 2, ..., k}9 where: 
1° any of the graphs G„ /8 a realization of the sequence 

h — (h\> hi-> • • •» î.v,-)> 

2° any of the graphs Gif is a realization of the pair (t/, tj) of the sequences 

h ~ (h\i h'2* • • • ' h'Sj/9 

h = v̂ 'D f/2' •••' ^)" 

P r o o f Obviously the graphs G„ and G^ are edge-disjoint. Denote by M, 
(/ = 1, 2, . . . , k) the submatrix of M * consisting of all columns for which the sum 
of elements is equal to dr Then M, is of the form: 

(2) M, 

Г-Л • •<1 
'/.. ../; 

/* •d 
So the columns from M, are distributions of the vertices from Vt. Note that the 
/th row in M, is the degree-sequence of the graph G„. Analogously for / # j the 
jth row in M, and the /th row in M7 is the pair of degree-sequences of the 
bipartite graph (7,y. 

Lemma 2. Let M be a matrix of non-negative integers such that the matrix M* 
is of the form (1). Let 

U = {vll9 ..., vlS{9 ..., vn9 viSj9 ..., vkl9 ..., vkSk} 

and Uf = {i;,,, ..., vis)for i = 1, 2, ..., k. Further, let a simple graph Hu = (Uj9 Fh) 
be a realization of the sequence t\ = (t/,, ..., t\s) and a bipartite graph //,, = 
= (Ui9 Uj9 Fy) be a realization of the pair of sequences 
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t\ — (t/,, . . . , t/y.), ťj — (ty,, . . . , t^) 

where i ̂ j, ije{\, 2, .... k}. 
Then the graph 

\ie{l, ...,*} i,je{1 A} / 

is a realization of the matrix M. 
Proof. Let us fix a vertex v from the set U. Let ve U{ for some /0e{1, 2, 

..., Ac}. So v = Vg q for some qe{l, 2, ..., s,}. Observe that v belongs to all graphs 
I/y, and to all graphs ////Q forj = 1,2, ..., k, and to no other. Since Ftj = Ffi for 
every /,je{l, 2, ..., k}, so 

d e g ^ X ^ ^ 

All the graphs //, are edge-disjoint, thus 
v 

lH(Vinq) — (tuqi •••> tuq)' i0q/ \ - i 0 ^ 9 •••-» * i f t < ? / 

The sequence (// , ..., t* ) is the qth column in the matrix M, of the form: 
'loЯ-> 

t] t] 

v ••• v,0 
Ł - V • • • % % -

As the vertex v has been chosen arbitrarily, so the graph H is a realization of 
the matrix M * and consequently of M. 

3. A combinatorial characterization of graphic matrices 

Let a matrix M* be of the form (1). Put 

lj = (lj\ >lj2i • * * 5 IjSj)' 

where (tju ...,ljs) is a permutation of the sequence tj such that 

4 / , > . . . > 4 y , i,je{l,2, . . . ,*} . 

Theorem 1. Let M be a matrix of non-negative integers such that the matrix 
M* is ofthe form (1). Then M is graphic iff for every i J e{\, 2, ...,k} the following 
conditions (i)—(iv) are satisfied: 

(i) £ 4 = 0 (mod 2), 
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(ii) ]>_ ll ^ m(m - 1) + X m i n í m ' ji) f o r >n= 1,2, ..., s^ 
r = 1 r = /w + 1 

(ÍÍ1) Ži/r=Ž4» 
r = 1 r = 1 

m vj 

(iv) Z -* ^ Z min{m, j/>} for m = 1, ..., í„ / <j. 
r = 1 Г = 1 

Proof. From Erdos —Gallai's criterion we infer that (i) and (ii) are neces­
sary and sufficient conditions for the sequence t\ to be graphic. The conditions 
(iii) and (iv) are necessary and sufficient conditions for the representability of 
the pair (t/, tj) of sequences by a bipartite graph ([6], also [1, Chapter 6 Theo­
rems 1, 7]). 

Finally, by Lemmas 1 and 2, we conclude that conditions (i)—(iv) can be put 
all together, i.e. that they form a necessary and sufficient condition for the 
matrix M* to be graphic. 

4. A recursive characterization of graphic matrices 

First we introduce some notions. 
Let a = (ax, a2, ..., an) be a non-increasing sequence of non-negative integers 

such that ax ^ n — 1. 
Denote: 

ved(a) = (a2- 1, ..., aai + l - 1, a„i + 2, ..., an). 

Let (a, b) be a pair of non-increasing sequences of non-negative integers such 
that a = (ax, a2, ..., a„), b = (b,, b2, ..., bj and ax ^ m. 

Denote: 

red (a, b) = ((0, a29 ..., a„), (b, - 1, ..., bG{ - 1, b.i + 1, ..., bj). 

Theorem 2. A matrix M* of the form (1) is graphic iff for every /, je{l, 2, 
..., k} vve have: 
1° t/ze sequence red(t/) /s graphic, 
2° the pair red (//, _ty) /s graphic for i < j . 

Proof. By Lemmas 1 and 2 the statement "the matrix M* is graphic" is 
equivalent to the statement "Every sequence t\ is graphic and for / < j, each pair 
(t/, tj) of sequences is graphic". Now for the sequences t\ we use Havel — 
Hakimi's theorem. For the pair (t/,i/), where / < j, the idea of the proof is the 
same as in the proof of Havel —Hakimi's theorem given by F. Harary in [10], 
hence we do not present the details here. 
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R e m a r k 1. Using the last theorem one can formulate an algorithm for 
testing whether a matrix M* is graphic, moreover using Havel —Hakimi's 
method (see [10, p. 58]) with some modifications for bipartite graphs, we can 
construct a graph realizing a matrix M* if this matrix is graphic. 

5. A set of all realizations of a matrix M*. 

Let M* be a matrix of the form (1). Denote by Ry(M*) the set of all (labelled) 
graphs with the same vertex set V = {v}, v2, ..., v„} which are realizations of M*. 
Our aim is to characterize the set RV(M*). 

We introduce come auxiliary definitions. 
Let G = (V, E) be a simple graph. Let D(G) = {dx, d2, ..., dk) be defined as 

above, and (w,, vv,, u2, w2) be a sequence of different vertices such that: 
1° ux, u2e Vi9 wl9 w2e Vj9 

2° {"i> w,}, (w2, w2}e£, 
3° {ux, w2), {u2, wx}$E. 
We define a new graph G{u 

E' 

,.U2.»2) = (L, E), where 

(£\{{K„ WX}, {u2, H'2}})u{{«,, w2}, {u2, w,}}. 

The graph G(u „. „. > will be called a (*)-switching of G, and the operation 

which leads from G to G, (м,, vv ) will be called a (*)-switching operation. 

The (*)-switching operation is a restriction of the elementary d-invariant 
transformation introduced by S. L. Hakimi in [9] and called the switching 
operation by R. B. Eggleton in [4], namely in the definition of switching one does 
not require the condition 1°, and there are two possibilities of exchanging the 
edges, as shown in Fig. 2. 

ц 

Vj И ~ ^ ) <щ\ 

Fig. 2 

For two graphs G = (V, E), H = (V, F) put G - H = (V, E - F), where -̂  
is the symmetrical difference. 
Let u}wxu2w2... umwmiim + x, where wm + 1 = uu be a cycle in the graph G — H. 
This cycle will be called alternating (or briefly a-cycle) if {us, ws}eE and 
(w.-> u 5 + 1 }eF for every se{\, 2, ..., m). 
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Lemma 3. Let G, HeRv(M*), G = (V, E), H = (V, F), and for i, je{\, 2, 
..., k) Gy - Hij = (Vh Vj, Eij - F]j), where i * j , G{j - Htj = (Vh Eu - ^)for i =j. 
Then every non \-element component of the graph Gtj — ///} is a« alternating cycle 
of the form 

(3) w„ w„ n2, w2, ..., nm, wm, wm + 1, 

where um + 1 = w„ w,e^, w ,e^ , {us, w^eE^Fy, and {ws, us+x}eF^Efj for se 
e{l, 2, ..., m}. 

Proof. Let *,je{l, 2, ..., k}. For ue ^ we denote: 

FGjj(v) = {WG ^ : {w, v}eEij}, rH[j(v) = {we ^ : {u, v}eF]j}. 

If /̂ ..(t?) = FHXv), then t? is an isolated vertex in Gy — Htj. Let FG (v) ^ FH (v). 
Then the degree of the vertex v in the graph GI; — Hy is an even number, different 
from zero. In fact, there exists an edge e' e E^Flj incident to v iff there existst an 
edge e" eF^Eij incident to v (since tG(v) = tH(v)). So v belongs to a cycle. This 
is an a-cycle, since the number of edges of G(j — Htj incident to v and belonging 
to Ey is equal to the number of edges incident to v and belonging to F]j. 

Let G, HeRv(M*), G = (V, E), H = (V, F). For i,je{l, 2, ..., k} denote by 
Q a set of all alternating cycles formed from the edges of the graph G{j — H{j in 
such a way that every edge of Gtj — Htj belongs exactly to one cycle. 

The set Q will be called an a-cyclic partition of the graph Gtj — H{j. Obviously 
such a set need not be unique. 

The number 

<5(G,,/^,Q = i | £ (G ( / - /^ ) | - | g 

will be called the distance of the graphs Gtj, H{j with respect to the set Q. 
Lemma 4. Let G, HeRv(M*), G = (V, E), H = (V, F) and for i , je{l , 2, 

..., k} let Q be an a-cyclic partition of the graph Gtj — H^. Further, let 6(Gtj, Htj, 
Q = p andp > 0. Then there exists a sequence G^ = G», G}j, ..., G™ = H^ of 
graphs and a sequence £), Qj, ..., £™ of a-cy die partitions of the graphs G\ — Htj, 
Gfj — Hy, ..., G™ — i/^, respectively — swch that m ^ p and for every re {I, 2, 
..., m} the following two conditions are satisfied: 

G\j is a (*)-switching of G\f~x, 

5(G^,Hy,^<d(G-\Hij,Q-1). 

P r o o f We use induction on the number p. 
1° For p == 1 we have only one possibility: 

|E (G , -H , ) | = 4 and \Q = \. 
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Let Ce Qj and C = ux w, w2w2w,. We apply the following (*)-switching opera-
tion: 

^ij ^ ( / ( и , , н',, i#2, и-2) « 

Then we have: E(G]j - I/.) = 0, Q = 0 since {«,, w,}, {w2, vv2} <£ L,} u/-,- and 
{w,, u2}9 {u]9 w2}eEJinFij. So 

^ , / / , , Q = i O - 0 = 0. 

2° Assume that the statement is true for all graphs Gip H{j and all a-cyclic 
partitions £y such that 

5(Giy, Hip Q<p9 p> 1. 

3° Assume that for G/y, //(/, Q we have 

^G, , / / , , g = P. 

Denote |L(G/y - Htj)\ = e, \Q = c. Then p = \-e-c. 
Let Ce£y , C = w,w,W2iV2... www,, n ^ 2. Then we have the following two 

cases: 
1. w, # w2 and {«,, W,}^, 
2. W| = w2 or {u]9 w2}eEiJ. 
Case 1. We apply the following (*)-switching operation: 

^ ' j ~"~ (/'("h U L M2< u'2) ' 

We denote e, = \E\ - F^9 e, = |£y|, P, = £-e, - c,. Since the (*)-switching 
operation preserves the degrees of all vertices of the graph Gip so for the graph 
G]j — H0 there exists an a-cyclic partition Q. The number of edges of the graph 
Gy — H{j depends on whether the edge {ux, w2} belongs to the set F^ or it does not. 
1.1. Let {uX9 w2}$Fy. Then 

E}j ^ Fij = (iFij -=- Fii)\{{u\, w,}, {u29 w2}9 {w,, u2}}) u {{u]9 w2}}9 

Q = (dMQ) u {C'}9 where C = ux w2u3... wnux. 

Thus e, = e — 2, c, = c and P, = ^ (e — 2) — c = p - 1. 
1.2. Let {uX9 w^eFij and let {w,, w2} be an edge of some cycle Cke£iP Then 

El ~ Fo! = (Eij - W{"i> W,}, {w2, vv2}, {w,, w2}, {w,, w2}}. 

If C* ^ C, then, after removing the edges {u{9 vv,}, {w2, vv2} and {w,, w2} from 
the cycle C, we get a chain L,, and after removing the edge {ux, w2} from the cycle 
Ck9 we get a chain L2. The chains L, and L2 form an alternating cycle. 

If Ck = C and |L(C)| > 4, then we obtain two chains L, and L2. Then L, 
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forms an a-cycle, and _____ forms an a-cycle, or both together form an a-cycle. 
If Ck = C and |.E(C)| = 4, then the cycle C disappears. 
Concluding, we get in the case 1.2.: 

ei = e — 4, c, _£ c - 1, F, = | ( e - 4) - cx ^ F - 1. 

Case 2. Let {w,, vv2}e __?,•, or w, = vv2. 
Let s = min{ke{3, 4, ..., n}\ w, # iv̂  and {w,, vvj^i^}. The number 8 always 
exists, since n satisfies the above condition. So 

(w, # vvv and {w,, vv,} <££;,) and ({w„ ws_x}eE(j or w, = ws_x). 

2.1. Assume that {w,, ws_x}eEtj. We prove that the following (*)-switching 
operation can be used: 

In fact, w, 7-= >v5_, since {w,, vvv_,} is an edge of the graph Gij9 w, =£ us since 
({w,, ws _ ,} e Etj and {w_. __,, w_} e _f̂ ), w, -̂  vv9 by the definition of the number s. In 
the remaining cases the vertices are different, being three consecutive vertices of 
the alternating cycle. Further, {w,, ws_x}eEtj by assumption, {us, w^eE^ and 
{ws _x,us}<£ Ey by the definition of the a-cycle, {w,, ws} <fc E(j by the definition of the 
number s. 

The numbers ex and c, depend on whether {w,, ws_ ,}, {w,, ws} are edges of the 
graph Hy or are not. 

Table 1 ilustrates the influence of the particular edges on the number \Ey — F^ 
and on the number |£j|. The symbol + denotes that a given edge belongs to the 
suitable set, the symbol — denotes the opposite case. 

Tab. 1 

{"i» w._,} {w, - i> «,} {",» w,} {"и w,} 

* _ • 

4- - 4- -

*v 4- 4- - 4- -

| Ą - F | + 1 - 1 - 1 - 1 - 1 + 1 

ICJI + 1 ^ O 0 0 ^ O 4-1 

For example we discuss the case when {u„ ws_x}£Fij and {«„ n>,}eEy. 
Let {„,, M__,}eC„, {w„ w_}eCm for some Ck, CmeQj and Cft, C„„ C are 

different. Since Gx

9 = G,(«,, "._,,«,,*,>' s o 

B. -1" E.= (By ~ Ey)\{{"l, W,_ ,}, {w„ «,}, {M__ „ K,}, {«„ W,}}. 
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Removing the edges {ws_l9 us}, {us9 ws} from the cycle C we obtain two chains 
L, = ux wx... ws _ ,, L2 = wsus + , ... wn ux. After removing the edge {ux, ws _ ,} from 
the cycle Ck we obtain a chain which together with Lx forms an a-cycle C. 
Similarly, after removing the edge {ux, ws} from the cycle Cm we obtain a chain 
which together with L2 forms an alternating cycle C". So, if we remove the edges 
[ux, ws_,} or {u]9 ws], we do not obtain fewer cycles. 

Thus Q = (Q\{C, Ck, CJ) u {C, C} and c, = c - 1. Observe that e, = e -
— 1 — 1 — 1 — l = e — 4, sop, =p— 1. 

Arguing similarly we conclude that in the case 2.1. we get always p, < p. 
2.2. Assume that w, = ws_,. Let us note that ux ^ ws_2, hence {«,, Wv_2}G£,

/7. 
Since {w,, W9 _ 2} e _},,- and {w,, us}$E{j, so w5 # wv_2. 
2.2.1. Let {us, ws_2}eEiJ. Then put 

UU ~~ ^ijiH's - i« w.- _ i, w, _ 2^ M5) * 

If {wy, w^^eEij-nFtj, then e,=e— 1 — 1 + 1 — l = e — 2, c, = c and 

Pi = P - 1. 
If {wv, WS_2}EE^F0, then e , = e - l - l - l - l = e - 4 , c, ^ c - 1 and 

Pi ^ P " 1. 
2.2.2. Let {us, w^^^E^. Then put 

/ ~ i /°» 

Table 2 ilustrates the changes of the numbers of edges and cycles. 

Tab. 2 

{"1. . Ws-2Ì K- 2 , «,} k * И'J {«,, vvj 

Щ + - + -

ъ + - + - - + 

I^-Ivl + 1 - 1 - 1 + i -1 - 1 +1 

ICjl + 1 ^o 0 + i 0 ^O +1 

In every case from Table 2 we get p, ^ P — 1. 
Finally, in each of the cases 1 and 2 we get the graph G» — Hfj and the set Q 

such that S(G}j, H{j, Q) < p, so we can use the induction hypothesis. 
R e m a r k 2. From the proof of Lemma 4 we can obtain an algorithm for 

finding the sequence of (*)-switching operations such that we get the graph H(j 

from the graph Gtj. Details of this algorithm will be presented in [14]. 
Theorem 3. Let G, HeRV(M*) and G # H. Then there exists a sequence 

G = G°, G\ ..., Gm = H of graphs belonging to i?F(M*) such that Gs+] is a 
(*)-switching of Gs for se{0, 1, ..., m — 1}. 
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Proof. We give a method of constructing the sequence G°9 G\ ..., Gm. 
1) We form the graph G — H. 
2) We decompose the graph G — H into the subgraphs Gtj — HfJ for i,je{l, 2, 

..., k}, i^J. 
3) By Lemma 4 for every graph GtJ — F/^ there exists a sequence <?lj3 ..., oj• of 

(*)-switchings such that from G/y- we obtain the graph Gy = i/y. 
4) We order all (*)-switchings in a sequence ex,,..., am in the lexicographic way, 

i.e. we put a- -< cr^<->(i,j, w) -< (k, /, w)9 where -< denotes the lexicographic 
order. 

5) We form the sequence of the graphs G°9G\ ...9G
m where Gs +1 is constructed 

from Gs by the (*)-switching as + l for se{0, 1, ..., m — 1}. 
From the above theorem we have the following 
Corollary 1. 771e set RV(M*) can be generated by single graph GeRv(M*) 

using (*)-switching operations finitely many times. 
R e m a r k 3. Theorem 3 is analogous to Eggleton's result for the set Rv(d) 

of all realizations of a given degree-sequence d (see [3]). However, Theorem 3 
cannot be obtained from Eggleton's result, because switching does not preserve 
the distributions of vertices and the property to be a bipartite graph (see Fig. 3). 
The method used in the proofs of Lemmas 3 and 4 gives a constructive proof 
of Eggleton's theorem for the set Rv(d). This proof is different from that 
presented by R. B. Eggleton and D. A. Holton in [5] and by R. Taylor in [18]. 

W sw/tch 

Fig.З 
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МАТРИЦЫ ГРАФОВ 

2опа Ма]сЬег 

Р е з ю м е 

В работе дана характеристика этих матриц и множества всех графов, которые имеют 
одно и тоже самое множество вершин и одинаковую матрицу распределения. 
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