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ABSTRACT. To each generalized Boolean algebra B there corresponds a vector
lattice V'; this correspondence goes back to Gofman. In general, B cannot be
uniquely reconstructed from V. In this paper we investigate pairs of generalized
Boolean algebras B and B’ which generate the same vector lattice V. Further,
we deal with the relations between the internal direct product decompositions of
V and B.

1. Introduction

Gofman [4] investigated the elementary Carathéodory functions corre-
sponding to a Boolean algebra B; the author [5] applied this notion for dealing
with cardinal properties of lattice ordered groups.

The elementary Carathéodory functions corresponding to a Boolean algebra
B are defined in [4] to be forms

apby + - +ayb,,

where a; are reals and b; are elements of B (¢ =1,2,...,n) with appropriately
defined operations and relations.

In the same way we can define the elementary Carathéodory functions corre-
sponding to a generalized Boolean algebra B (for the sake of completeness the
definition is recalled in Section 2 below). These were applied by the author [7] for
studying sequential convergences on generalized Boolean algebras. We denote by
C(B) the vector lattice of all elementary Carathéodory functions corresponding
to B. The relations between higher degrees of distributivity of B and of C(B)
were considered by the author [10].
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Let C be the class of all vector lattices V' such that there exists a gener-
alized Boolean algebra B with V ~ C(B). The elements of C will be called
Carathéodory vector lattices.

In Section 2 we show that a Carathéodory vector lattice V' can be charac-
terized by the following condition:

() There exists a generalized Boolean algebra B such that
(i) B is a sublattice of the underlying lattice £(V) of V;
(ii) the least element of B coincides with the neutral element 0 of V';
(iii) each nonzero element z of V' can be represented as
z=a.b +--+ayb,,
where a; are nonzero reals and b, are nonzero elements of B.

If the above conditions are satisfied, then we say that (V, B) is a correct pair.
There can exist a generalized Boolean algebra B’ # B such that (V,B’) is a
correct pair as well. The description of all such B’ is given in Section 3.

If the condition (iii) is modified in such a way that all a; are assumed to be in-
tegers, then we obtain the notion of the Specker lattice ordered group correspond-
ing to B; let us denote it by S(B). Specker lattice ordered groups were investi-
gated by Conrad and Darnel [2]; cf. also Conrad and Martinez (3],
and the author [8].

In Section 4 we prove that each direct product decomposition of a Carathéo-
dory vector lattice has only a finite number of nonzero direct factors. The same
result holds for Specker lattice ordered groups.

The relations between internal direct product decompositions of B, C(B)
and S(B) are dealt with in Section 5.

2. The class C1

For the notation and the terminology concerning lattices, lattice ordered
groups and vector lattices, cf. Birkhoff [1], and Luxemburg and
Zaanen [11].

We start by recalling the definition of elementary Carathéodory functions
corresponding to a generalized Boolean algebra B (cf. [1], [3], [4]).

We denote by C(B) the system consisting of all forms

f=ab +--+ayb,

(where a; are nonzero reals, b; € B, b, > 0, b;;) A b2y = 0 for any i(1),i(2) €
{1,2,...,n}, i(1) #1i(2), and of the “empty form”. If g is another such form,
g=abi+---+a b

m-m?
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ON CARATHEODORY VECTOR LATTICES

then f and g are considered as equal if V b, = \/ b and if a; = a; whenever
b A b' >0. i=1 j=1

For b,b' € B let b—, V' be the relative complement of b A b’ in the interval
[0,]. If f and g are as above, then we put

m

f+g= ZZ(a+a)(b A ) +Z ( I\Zb;)+za;(b;—1i:\2bi)

i=1j=1 Jj=1
where in the summations only those terms are taken into account in which

n
a; +aj # 0 and the elements b, A, b, \/ b, b — i\=/1 b, are nonzero. The

empty form is considered to be the neutral element of C(B) (with respect to
the operation +) and it is identified with the element 0 of B. If b is the neutral
element of C(B) and a € R, then we put ab =b. If 0 € R and b € B, we
set 0b = 0 € C(B). Each element b € B is identified with 16 € C(B); hence
B C C(B).If f isas above and a € R, then we put af = (aa,)b; +- - -+(aa,)b, .
Under this definition, C(B) is a vector lattice; its elements are called elementary
Carathéodory functions corresponding to B.

Let us remark that we have the same symbol for the zero element of R, the
least element of B and the neutral element of C(B); the meaning of this symbol
will be always clear from the context.

Now let us denote by C; the class of all vector lattices V satisfying the
condition () from Section 1. Further, let C be as in Section 1. The aim of the
present section is to verify that C; =C.

For V € C, we apply the above formulated remark concerning the different
meanings of the symbol 0.

An indexed system {z;},c; of elements of a vector lattice V is called ortho-
gonal (or disjoint) if z; 2 0 for each 7 € I and z;;) A 2, = 0 whenever i(1)
and i(2) are distinct elements of I.

LEMMA 2.1. Assume that V € C; and let 0 # z € V. Then there are n € N,
0#a,€R, 0#b,€ B (i=1,2,...,n) such that

z=ab +---+a,b, (1)
and the system {b;},_, 5 . i orthogonal.

Proof. In view of the assumption, the element x can be expressed in the
form

z=ayb]+ - +al b,

where a;- are nonzero reals and b;- are nonzero elements of B for j =1,2,...,m.
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We proceed by induction on m. For m = 1, our assertion is valid. Suppose
that m > 1 and that the assertion is valid for m — 1. Put
y=ayby+---+a _,b

m—1"m-1"

If y = 0, then the assertion under consideration holds. Suppose that y # 0.
Thus y can be expressed as

My 1"y
Yy, =a;b) +---+a,b,,

where 0 # a) €R, 0# b € B for k=1,2,...,t and the system (b)), <;<, is
orthogonal. Put -

b=b{v---Vvb/,  bAb,=b,

and let b, be the complement of b,,; in the interval [0,b,] of B. This comple-
ment exists, since b, b, and b,,; belong to B. We have

bAb,, =bA(byy Ab,) = (bAb,)Ab,, =b,; Ab,, =0.

Thus b Ab,, =0, ..., b} Ab,, =0 and hence the system {b/,.. .,b;’,bnz} is
orthogonal. Further,

bnl=bn1/\b=bn1/\(blllv"'\/bltl):(bnlAblll)V'“V(bnlAb’t/)'

For k € {1,2,...,t} put by =b,; Ab} and let b}, be the complement of b} in
the interval [0,b}] of B. Hence

Bl = bL Vbl = bh+ by,
t t

y = agbp+ ) aiby,
k=1 k=1

t
a’nbn = an(bnl + bn2) = anbnl + anbn2 = Z anbz + anbn2 ’
k=1

t t
T =y+agb, =Y (o) +a)b;+ Y aybiy +a,by,. (2)
k=1 k=1
The system (b7,...,b},b%,,...,b5;,b,,) is orthogonal. Now it suffices to omit
all members on the right side of (2) with a} +a, =0, b =0, by, = 0 or
b,., = 0. We obtain the desired expression for z. O

For any vector lattice V and any element x of V we denote, as usual, z+ =

zV0, —z~ = zA0. The following assertion can be verified by a simple calculation;
we omit the proof.
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LEMMA 2.2. Let I = {1,2,...,n} and let (z;);c; be an orthogonal system
of elements of a vector lattice V. For each i € I let y, € V such that either
Y, =T, oryi=—xi.PutI1={i€I: yi=xi}, I2={i€I: yiz—mi},
y=y, +--+y,. Then

v =y, =Y, =) e

i€l i€l i€l

In the remaining part of this section we assume that V is a vector lattice
belonging to C, .

Under the notation as above, we say that (1) is a regular representation
of the element z. Let y be another nonzero element of V having a regular
representation

y=apby+---+a b, .
Put I ={1,2,...,n}, J={1,2,...,m}.

LEMMA 2.3. Assume that x =y. Then

i) Vo=V,
i€l j€J
(i) #f b; Ab; >0 for some i €I, j € J, then a; = aj.
Proof. Inview of the assumption we have |z| = |y|. Hence according to 2.2
we get
laghy | + -+ layb,] = layb| + - + oy, b,

Since |a;b;| = |a;|b;, |ajb| = |a}|b}, we obtain
lag|by + -+ a,|b, = |aj|b] + -+ |al,|b], . (3)

(i) Put \/ b; = b'. Let ¢ € I. Denote b’ Ab, = ¢, and let c, be the
=1

complement of ¢, in the interval [0,b,] of B. Then 0 = ¢, Ac, = b' Ac,, whence
bs Acy =0 for each j € J. This yields |a,|c, Aa;|b; = 0 for each j € J. Hence
la;lcy A ly| = 0. On the other hand, 0 £ |a;|c, < rai|bl. and thus |a;|c, £ |z].
Since |y| = |z|, we get ¢, = 0, whence b, £ b'. Thus \ b, £ V b}. Similarly
we obtain the dual relation. =2 jeJ

(ii) We denote

I, ={iel: a;, >0}, IL={iel: a,<0},
Jy={jeJ:a;>0}, Jy={jeJ: aj<0}.

In view of 2.2 we have

x+:Zaibi, —z_=2aibi, y+=Za;b;., —y"=Za}b}.

i€l i€l JjEI JjE€J2
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Since z =y, we get z7 = y*, 2= = y~. It is well known that zt A (z7) = 0.
This yields that whenever i € I, and j € J,, then b, A b’ = 0. Similarly, if
i€l, and j € J, then b, /\b’ —0

Let i(1) € I, and j(1 ) € Jl, assume that b;;y Abi,) > 0. Denote ¢; =
bi(l) A b;.(l). There exists ¢, € B such that c, is the complement of ¢, in the

interval [0,b},,] of B. We get

161 S Giaybiy S 2

=yt
— +
G = ame AV =age A D aﬁ’;‘)
J€N

= ag0)01 A ( \ a;.b;.) = \/ (ayer AGE).

jEJl j€J1
Since ¢, < b’ (1), We obtain ¢; A b, = 0 whenever j € J;, j # j(1); for such j
we have also
a;1)¢; A b =0.
Hence a;;)c; = a;(3y¢; A aly;yb5,). From the definition of c, we get
iy =¢1 Vg, e, Ney =0,

therefore

;1)1 = @i(1)¢1 A (a;'(l)cl v a;(l)c2) = @yq)C A a3(1)01 )
since a;(3)¢; A @jqyc, = 0. Thus a;qy¢; S af;)c; and so ayq) < af;). Analo-
gously we obtain the dual relation, whence a;,) = aj,.

By the same method we can deal with the situation when i(1) € I,, j(1) € J,,
bi(1y A1y > 0. O
LEMMA 2.4. Let z,y € V be expressed as above. Assume that the conditions
(1) and (ii) from 2.3 are satisfied. Then z =vy.

Proof. Let ¢ € I. In view of the condition (i) we have
b, =bi/\<\/ b}) =\ (b, A) = (b;Ab}).
Jj€J JjeJ JjEJ
Analogously, for each j € J
b = b A (\/b) V(¥ Ab) = (b, AD]).
i€l i€l i€l
Hence we obtain

z=Y Y a(bAb), y=)_ > aj(bjAb,).
i€l jeJ jeJ i€l
Thus in view of the condition (ii) we get z =y. m]
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LEMMA 2.5. Let x and y be as above. For i € I let c; be the complement of

the element c,; = b, A ( V b;) in the interval [0,b;] of B. Similarly, for j € J
j€J
let c;. be the complement of the element c}l = b;- A ( V bi) in the interval [0, b;]

i€l
of B. Then

r+y:ZZ(ai+a;)(bi/\bg)+Zaici+2a;c;.. (4)

i€l jeJ il jed

Proof. For each i € I we have b, =c,; V¢; = c;; +c;. Further

co =\ (b Ab) =D (b Ab)),

jeJ jeJ
ab; = a;(c;; +¢;) = Zai (b; AB;) + ayc;,
JjE€EJ
z = ZZai(bi /\b;-) + Zaici.
iel jeJ il

Similarly we obtain

y = ZZa}(b} AD,) + Za;c;. )
j€J i€l i€t
Therefore the formula (4) is valid. a

LEMMA 2.6. Let x be as in (1). Then = > 0 if and only if a, > 0 for i =
1,2,...,n.

Proof. If a; > 0 for i = 1,2,...,n, then clearly z > 0. The converse
assertion is a consequence of 2.2. O

PROPOSITION 2.7. We have C =C,.

Proof. Assume that V; € C. Then from the definition of C we immediately
obtain that the conditions (i), (ii) and (iii) from Section 1 are satisfied.

Conversely, assume that V belongs to C;. From 2.1, 2.3-2.6 and from the
definition of elementary Carathéodory functions corresponding to the generalized
Boolean algebra B we obtain that V' belongs to C. o
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3. Correct pairs

In this section we assume that V' is a vector lattice belonging to the class C,
and that B is a generalized Boolean algebra such that (V| B) is a correct pair.

Our aim is to characterize all generalized Boolean algebras B’ such that
(V, B") is a correct pair as well.

The case B = {0} being trivial, we will suppose that B is not a one-element
set. Hence also V # {0}.

Let T be a nonempty set of indices and for each t € T let X, be an ideal of
B such that the following conditions are satisfied:

(a) Whenever t(1),¢(2) € T, t(1) # t(2), then X,y N X, = {0}.

(b) If 0 < b € B, then there are distinct elements t,...,t, € T and nonzero
elements b},..., b with b; € X, (i =1,2,...,n) such that b =] Vv
RV b;l.

LEMMA 3.1. If 0 < b € B, then the representation of b in the form described
in the condition (b) is uniquely determined.

Proof. Assume that T} and T, are nonempty finite subsets of T' such that

b=\/bt, 0<b,€X, foreachteTy,
teTy

b=\/b’s, 0<b,eX, foreach s€T,.
S€Ty

Let ¢(1) € T}. Then

bypy = by Ab= \/ (byay A DY) -
Ss€ETy
Hence there exists s € T, with b,y A b, > 0. Then we must have s = t(1),
s' #1(1) for s' €T, s' #s. Thus b,;) Ab,, =0 and
bt(l) = bt(l) A b,s )

whence b, ;) < b, Further, we proved that T C T,. By analogous argument we
obtain T, C T and b; < by, . a

For each t € T let c, be a positive real such that ¢, # Cy(y if t(1) and
t(2) are distinct elements of T'. Put

Y, = {cta:t iz, € Xt}.
Hence we have

Y, NY,, ={0}  whenever t,t, €T, t # iy
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We denote by B’ the set of all elements x € V such that either x =0 or z
can be expressed in the form

=y, V---Vy,, (%)
where y; € Yy, ..., y, €Yy(,), and t(1),...,¢(n) are elements of T'.
LEMMA 3.2. Let t € T. Then Y, is a sublattice of £(V') isomorphic to X, .

Proof. Let y,,y, € Y;. There exist z,,z, € X, with y, = c,z; (1 =1,2).
Then y, Vy, = ¢, (:1:1 \% xz) €Y, and y, Ay, =c, (ml A xz) € Y,. The mapping
z + ¢,z is an isomorphism of X, onto Y,. a

In view of 3.2, Y, is a generalized Boolean algebra.
LEMMA 3.3. B' is a sublattice of £(V).

Proof. Let z,2’ € B'. Hence there are t(1),...,t(n),s(1),...,s(m) € T,
and elements y; € Y1y, .-, ¥, € Yy, Yy € Yy - s Y, € Y, () such that

r=y V---Vy,, =y V-Vl

Then zVz' =y, V---Vy,Vy; V---Vyl belongs to B'. Further,

zAz = v (yi/\y;'),
i€l,jeJ
where I = {1,2,...,n}, J = {1,2,...,m}. If ¢(i) # s(j), then y; Ay; = 0. If
t(i) = s(j), then in view of 3.2 we have y; Ay; € Y} ;). Therefore z Az’ belongs
to B'. a

LEMMA 3.4. Let t € T. Then Y, is an ideal of B'.

Proof. The relation Y, C B’ is obvious. Further, in view of 3.2 and 3.3,
Y, is a sublattice of B'. Let y € Y, and z € B', z £ y. Hence there are
t(1),...,t(n) € T and 2y € Yy(y), ..., 2, € Yy,) With z =2, V.-V z,. We
obtain
z=zAy= (5 AyY) V-~V (2, Ay).
If i €{1,2,...,n} and t(i) # t, then 2z, Ay = 0; if t(i) = t, then in view of 3.2
we have 2, Ay € Y,. Therefore z €7Y,. m|

LEMMA 3.5. The lattice B' is a generalized Boolean algebra.

Proof. In view of 3.3 and of the relation 0 € B’ it suffices to verify that
whenever 0 < z € B’ and z; € B, z; £ z, then z, has a complement in the
interval [0,z] of B’.
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Let = and z, satisfy the mentioned assumptions. Let z be as in (*). Hence
o=z Az = (T Ayp) Voo V(2 A Y.

According to 3.4 we have 2, Ay €Yyq), ..o » Ty AYp €Yy

Without loss of generality we can suppose that the elements #(1),...,¢(n) are
mutually distinct. Let i € {1,2,...,n} = I. Since Yy(; is a generalized Boolean
algebra, there exists z, € Y such that z; is the complement of z; A y; in the

interval [0,y;] of the lattice Y;(; . Put
Tp=2z V-V,

An easy calculation shows that z is a complement of z, in the interval [0, z]
of the lattice B’. O

Ifv,...,v, €V, ay,...,a, €R, then we say, as usual, that a,v, +---+a,v,
is a linear combination of elements v,,...,v,.

Let v € V, v # 0. Since the pair (V,B) is correct, the element v can
be expressed as a linear combination of some elements b;,...,b, of B. Let
j € {1,2,...,m}. In view of the above conditions (a) and (b), there are
t(1),...,¢(r) € T and by € Xy, ..., b, € Xy such.that b; = by V
sV b;(n). Since all X, are ideals in B, we can assume without loss of gen-
erality that the elements ¢(1),...,t(n) are mutually distinct. Then the system
{bé(l), . ..,b;(?}} is orthogonal, whence bj = bi(l) + e+ b;(n). In view of the
definition of Y, for ¢t € T we get

—1 —
ct(l)b;(l) €Yy - ct(rlz)b;(n) € Yy

whence ct_(})b;(l), .. .,ct_(’ll)b;(n) are elements of B’.
Summarizing, we conclude that each element of V is a linear combination of
some elements of B’. Hence (by applying 3.3 and 3.5) we have:

PROPOSITION 3.6. (V,B’) is a correct pair.

The fact that the generalized Boolean algebra B’ was obtained by the above
described construction from the indexed system of ideals (X,),cr of B and the
indexed system (c,),cr of reals will be expressed by writing

B' = f((Xﬁct)teT) .

LEMMA 3.7. Let V € C; and let (V,B) be a correct pair. Assume that 0 < b
€ B and that x, y are elements of V such that tAy=0, zVy=0>. Then z
and y belong to B.
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Proof. The cases when 2 = 0 or y = 0 are trivial; suppose that = > 0
andy>0.Thereexist0<ai€R,0<a?€R,O<bi€B,0<bg€B

(i€ {L,2,...,n} =1, j€{L,2,...,m} = J) such that the systems (bl.)ia and
(b?)j < are orthogonal and

T=a,b,+--+ayb y=a(1’b(1’+~--+a?nb9n.

n'n?

We have a;b; < z and adb) < y, whence q;b; A agb} = 0. This yields that

a; Ab} =0 for each i € I and j € J. Thus the system {b;,...,b,,5,...,5%}
is orthogonal. We have
b=zVy=z+y=ab +-- +ab, +alb +---+adt? .

In view of 2.3 we obtain the relations

b=bV---Vb VIV -V

l=a,=-=a,=a)=---=a, .

Thus we get
g=b +-+b =bV---Vb,
y=b+- -+ =bv... vl .

Therefore z and y belong to B. m|

Now let us assume that {0} # V € C; and that B, B’ are generalized
Boolean algebras such that (V,B) and (V, B’') are correct pairs.

Let 0 < b’ € B'. Since VY € V, in view of 2.1 there exist 0 < a, € R and
0<b; €B (for i € {1,2,...,n} = I) such that the system (b;);c, is orthogonal

and
¥=> ab,.
iel
We can also assume that if i(1) and i(2) are distinct elements of I, then
(1) # ai(2)- Namely, if, e.g., a; = a,, then a,;b, + a,b, can be replaced by
a;b, +ab, =a,(b; Vb,) and b, Vb, € B.
Further, for each ¢ € I there exist a finite set J, # 0 and elements
0<c; €R, 0<b}; € B' (j € J;)such that
b, = Z cijb;j.
j€Ji
Moreover, in view of 2.1 we can assume that all the systems (b,);cr, (b3;);ey,
(i € I) are orthogonal. Without loss of generality we can suppose that
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Jiay N Jy2y = 0 whenever i(1) and i(2) are distinct elements of I. Put

1

J = {J J;. Then the system (b});c; is orthogonal as well. We obtain

i€l
b= Z alcljbllj +--+ Z ancmb:lJ (+)
JEJI ]EJn
According to Lemma 2.3 (applied for B') we conclude that a;c;; = 1 for each
j€J, ..., a cJ—lforeachJGJ Hencethereare0<c eER (i el)
such that ¢; = ¢,; for each j € Jisoooy e, = c,; for each j € J,. Thus
b, =¢, Zle’ by =c, Z b;j.
Jj€N J€Jn
We denote
/!
Db =, > by =t
JEJL j=Jn

Since, in view of the orthogonality,

dov=\ by, .., Y=\ b,

j€J1 ]EJI JEJn JeJn
we get that all elements b},...,b belong to B’. We have
by =cby, ..., b, =c,bl. (1)

For 0 < r € R we denote by B, the set of all elements b € B such that rb € B'.
In view of (1), there exist 0 < r € R with B, # 0; let R, be the set of all such

reals r.
LEMMA 3.8. Let T € Ry, b€ B, and b9 € B, 0< b} < b. Then WeB,.

Proof. There exists b! € B such that b Ab] =0, b v b] = b. Then we
have
e Arbl =0, r)vrbi=rbeB.

According to 3.7 (applied for B') we get rb? € B, whence b € B, . |
LEMMA 3.9. Letr€ Ry, be B,, b’ € B.. Then bvt® € B, .

Proof. Since rb € B’ and rb° € B’ we get r(bV¥') =rbVvrt® € B'. Thus
bvi®eB,. ]

Put BY = B, U {0}. In view of 3.8 and 3.9 we get:
LEMMA 3.10. Let r € Ry. Then B? is an ideal of B.

From the definition of B, we immediately obtain:
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LEMMA 3.11. Let ry,7, € Ry, r; #1,. Then B} N BY = {0}.
For each r € R; we denote
Z, = {rbr 0 b, EB‘T)}.

- If ry, r, are distinct elements of Ry, and b, € B, , b,, € B,,, then in view
of 3.10 and 3.11 we have b, Ab, = 0, whence 7,0, Aryb. = 0. Therefore
z,. Nz, ={0}.

Let b € B’ be as above. Since the elements a,,...,a, are distinct, the
elements c,,...,c, are distinct as well and so are the elements r;, = cl'l, cey
r, = ¢;'. In view of (1), {ry,...,m,} C Ry and by € B, , ..., b, € B, .

Hence, under the notation as above we have (cf. the relation (+))
V=y/+-+yl=y/V---Vyo. (2)

This is analogous to the relation ().
We will speak about a positive linear combination meaning a linear combi-
nation with positive coefficients.

LEMMA 3.12. Let 0 < b € B. There erist distinct elements r,...,7,, of R,
nonzero elements b € B, such that b=0bV--- V).

Proof. The element b can be expressed as a positive linear combination
of a system S of nonzero elements of B’ such that the system S is orthogonal.
Further, each element b’ of S can be expressed as a positive linear combination

of an orthogonal system of nonzero elements belongingto |J B, =Y.
r€Rg

In view of the orthogonality and of the fact that all elements of Y belong
to B, by using Lemma 2.3 we infer that all the coefficients in the expression of
b obtained in this way must be equal to 1. Applying again the orthogonality we
get that the sum can be replaced by the operation of join. According to 3.9 we
obtain the desired result. O

PROPOSITION 3.13. Let V € C, and suppose that (V,B) is a correct pair.
If (V,B') is an another correct pair, then under the notation as above, we have

B = f((Br’T)reRo) :
Proof. This is a consequence of 3.10, 3.11 and 3.12. O

In other words, given a correct pair (V, B), each generalized Boolean algebra,
B’ yielding a correct pair (V, B’) can be obtained by the construction f.

PROPOSITION 3.14. Let V € C, . Assume that (V,B) and (V,B’) are correct
pairs. Then B ~ B'.
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Proof. We apply 3.10-3.13 and the notation as above. Let b € B. For
b =0 we put ¢(b) =0. Let 0 < b. Consider the representation of b described
in 3.12. Put R, = {r,,...,7,}. Hence

b=\/ . (3)
T€ER;
We put
o) =\/ 0. (4)
r€R,

Then we have rb2 € B' for each r € R, , whence ¢(b) € B'.

In view of 3.1, the expression of b in the form (3) is unique, thus the mapping
¢ is correctly defined. Further, from the properties of Z. (7 € R,) and from (2)
we obtain (by using 3.1 again) that ¢ is a monomorphism. Next, in view of (2)

we conclude that the mapping ¢ is surjective. It is easy to verify that for ¥’ € B
we have

SV = p(b) S pb).
O

We also remark that if V},V, € C; and (V},B,), (V,, B,) are correct pairs
such that B, ~ B,, then V; ~V,. The proof will be omitted.
4. Direct product decompositions

The direct product of vector lattices is defined in the usual way. We apply
the notation [] V; (or V; xV, x---xV, if the number of direct factors is finite).

i€l
Let V and V, (i € I') be vector lattices. If
Ve[V, (1)
i€l

then we say that the relation (1) is a direct product decomposition of V.
The consideration of this section would be trivial in the case V = {0}. Thus
we suppose that V has more than one element. Also, the one-element direct

factors in (1) can be omitted. The expression “direct factor” below will mean a
non-zero direct factor.

The aim of the present section is to show that each direct product decom-

position of a vector lattice belonging to C has only a finite number of direct
factors.
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PROPOSITION 4.1. Let V and V,,V,,...,V, be vector lattices, V ~ V| x
-+ x V.. Then the following conditions are equivalent:

(i) VecC.

(ii) AUV, (i=1,2,...,n) belong to C.

Proof. There exists an isomorphism ¢ of V onto V; x---xV, .Forz € V
and i € {1,2,...,n} = I we denote by z; the component of ¢(z) in V.

a) Assume that V € C. Without loss of generality we can suppose that
there is a generalized Boolean algebra B such that V = C(B). For ¢ € I put
B, ={b;: be B}. It is easy to verify that B, is a generalized Boolean algebra.
Moreover, the zero element of V; belongs to B,; also, B, is a sublattice of V.
Let 0 # y € V,. There exists 0 # = € V with z; = y. Further, there are
0#a¢;€Rand 0#b,€B (4 =1,2,...,m) such that

T =ab, +-+ayb,,.

Then
y=2z;= al(bl)i +--t am(bm)i'

Therefore V; is equal (up to isomorphism) to C(B;) and hence V, € C.

b) Conversely, assume that V, belong to C for each i € I. Hence we may
suppose that there are generalized Boolean algebras B; with V, = C(B;). We
denote by B the set of all elements z € V' such that z;, € B, for each i € I.
Then B is a generalized Boolean algebra, 0 € B and B is a sublattice of the
lattice V.

For each ¢ € I and y € V; we denote by ¥ the element of V' with 7, =y
and y,;y =0 for i(1) € I, i(1) #1.
Let z € V. Then we have
2=Z ++7Z,.
For each i € I there are at,.. .,a:'n(i) eR, b,. ..,bﬁn(i) € B, such that
Z, = aib; + -+ a:n(l)b:n(z) .

Hence

Z=albl +-+ airm(i)bfvz(i) :

We obtain
L e N UL

m(n)

All elements E, cee, b:‘n( n) belong to B. Hence V is isomorphic to C(B). m]
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LEMMA 4.2. Let 0 < z € C(B). There ezrists m € N such that for each
0 < b€ B we have mng.

Proof. The element z can be expressed in the form

z=a.b+---+a,b

nn

such that 0 < a; €R, 0 < b, € B for each i € {1,2,...,n} = I and that the
systems {b;};c; is orthogonal. Let 0 < b € B. Choose m € N such that m > q,
for each i € I.

Denote (b; Vb,V ---V b,) Ab=1b, and let by, be the complement of b, in
the interval [0,d] of B.

For i € I put b} =b; Ab and let b? be the complement of b} in the interval
[0,b,] of B. Then we have
b=byVby, by=(byV---Vh)Ab=b]V---Vb:, b =b}Vb>=>+b?.
Hence we obtain
T =a,b] +a;b3+ - +a,b} +a,b% +0by, ,
b= 1b; +0b% + - - - + 1b}, + 002 + 1b,, ,
mb = mbj + 00} + - - - + mb}, + 0b2 + mby, .

If mb £ z, then according to 2.6 we would have m < a,, ..., m £ a,, which
is a contradiction. m]

LEMMA 4.3. Let 0 < z € C(B), C(B) = V; xV,, z(V,) = 0. Let = =
a;by +---+apb,, 0<b € B, 0< a; €R and suppose that the system
(0:)i=1,2,...,n 15 orthogonal. Then b(V,) =0 for i=1,2,...,n.

Proof. By way of contradiction, assume that b,(V,) # 0 for some i €
{1,2,...,n} = I. Then b,(V,) > 0. Also, (a;b,)(V;) = a;(b;(V;)) > 0. Since
(a;0;)(V;) 2 0 for each j € I, j # i, we get z(V;) > 0, which is a contradiction.

O

PROPOSITION 4.4. Let V € C. Then V cannot be expressed as a direct prod-
uct of infinitely many direct factors.

Proof. Without loss of generality we can assume that V = C(B), where
B is a generalized Boolean algebra. By way of contradiction, suppose that the
relation (1) is valid and that the set I is infinite. We apply the analogous notation
as in the proof of 4.1. We can write

VeV xV,x---x V.

For each n € N there exists y* € V,, with 0 < y™. Then 0 < y” € V and
the system (y_")n en 1s orthogonal. We recall that if m € N, m # n, then the
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component of y® in V,, is 0; also, the component of y™ in V' is equal to 0.
The component of y™ in V, is y™.

The element y™ can be expressed in the form

Y =arbl + -+ ag b

such that 0 < af € R, vy 0<ag ) € R, 0<b§‘€B,...,O<b;(n) €B
and the system {b;‘, ceey bZ( n)} is orthogonal.

Thus from 4.3 we conclude that b7 (V') =0 and b7(V,,) = 0 for each m € N,
m # n. Therefore we must have b7(V,,) > 0. Further, the system (b7),cy is
orthogonal.

Since n(b})(V,,) = (nb})(V,) we infer that there exists £ € V' such that

z(V,)) =nb}(V,) for n=1,2,..., and z(V')=0.

Let m be as in 4.2; choose n > m and let b = b7. Then

(mb)(V,,) = mb(V,) < nb}(V,) =z(V,),
mb(V') =0=z(V'),
and for k € N, k # n, we have mb(V,) =0, z(V,) > 0. Thus mb £ z, which is
a contradiction. a

By an analogous method (using only integer coefficients) we can prove

PROPOSITION 4.5. Let G be a Specker lattice ordered group. Then G cannot
be expressed as a direct product of infinitely many nonzero direct factors.

5. Internal direct product decompositions

Internal direct product decompositions of lattice ordered groups and lattices
were dealt with, e.g., in [6] and [9].

For vector lattices, the notion of an internal direct product decomposition
can be defined as follows.

Assume that V is a vector lattice and let the relation (1) from the previous
section be valid. Also, let ¢ be as above and let i € I. We denote by Vi the
set of all y € V' such that ¢(y); = 0 for each j € I, j # i. Then, in view of the
induced operations, V' is a vector lattice. For z; € V, let zi* be the element
of V0 such that (p(z%)), = z;. Then the mapping

0, V, = VPO (%)
defined by ¢,(z;) = z® is an isomorphism of V; onto V. For each z € V we

put
()00(-73) = (‘pi(xi))iej .
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Then, in view of (1), the mapping

0o V = [TV (1)
el

is a direct product decomposition of V. We say that ¢, is an internal direct
product decomposition.

Thus to each direct decomposition ¢ of V there corresponds an internal
direct product decomposition ¢, of V' such that, up to isomorphism, ¢ and ¢,
are not essentially different.

All direct factors in an internal direct product decomposition are subsets
of V. This yields that the collection of all internal direct product decompo-
sitions of V' is a set. On the other hand, the collection of all direct product
decompositions of V' is a proper class.

The definition of the internal direct product decompositions for lattice or-
dered groups and for lattices having the least element are analogous.

For a vector lattice V' we denote by s(V) the system of all nonempty subsets
X of V such that, whenever z,y € X and r € R, then all the elements = — y,
z Ay, zVy and rr belong to X. Under the operations induced from V', each
X € s(V) is a vector lattice.

From the definition of the internal direct product decomposition we infer that
(1) is internal if and only if the following conditions are satisfied:

(i) all V; belong to s(V);

(ii) whenever i € I and z € V;, then z;, =z and z; =0 for j €I, j #1.

In view of 4.4 and 4.5, we are interested in finite internal direct product

decompositions of elements of C. If V € C, then without loss of generality we
can suppose that V = C(B), where B is a generalized Boolean algebra.

LEMMA 5.1. Let V be a vector lattice and let V,,...,V, be nonzero elements
of s(V). Then the following conditions are equivalent:

(i) V is an internal direct product of V},...,V, .
(if) If z € V', then = can be uniquely ezxpressed in the form x =z, +-- -+,
with ¢, €V, ..., z, € V. If y is another element of V having the
analogous ezpression y =y, +---+y,,, then Sy if and only if z, <y, ,

2, Sy,

Proof.

a) Assume that (i) holds. Let ¢ be the corresponding isomorphism of V' onto
Vi x+---x V. From the definition of the internal direct product decomposition
we conclude that whenever ¢ € {1,2,...,n} = I and z € V,, then ¢(z); = 2
and ¢(z); =0 for jeI, j#1.
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Let z € V, ¢(z) = (2;,2,,...,2,). Denote ¢’ = z; +--- 4+ z,. We have
o(z,) = (,0,...,0), ..., ¢(z,) =(0,...,0,z,), whence

(10(1',) = (p(zl) +e QD(.’I?n) = (xl"rzi" ~a$n) = (,0(3}) :
Therefore z =z, +--- +z,,.

Assume that, at the same time, z = z'+---+2z" with 2’ € V,... ;2" € V.
Then
o(z) =) + -+ o) = (z!,...,2").
Hence z! =z, ..., 2" = z,, and thus the expression of = under consideration
is unique.

Let y € V have an analogous expression y =y, +---+vy,. lf z, Sy, ...,
z, < y,, then clearly z £ y. Conversely, assume that z < y. Thus z vy =y.
From

(P(III)=(.’L‘1,...,$L‘n), go(y)=(y1,...,yn)
we obtain

o(y) =@ Vy) = (2 V-2, VU,),
whence y; =2, V¥, ..., Y, =2, Vy,. Therefore z, Sy,,..., z, S y,. We
verified that (i) = (ii).

b) Assume that (ii) is valid. Let z € V. There exists uniquely determined
elements z,,...,z,, withz, € V|, ..., z, €V, suchthat z =2, +---+z,.
Put ¢(z) = (z,,...,%,). Hence p(z) € V; x---xV, and ¢ is a bijection. Then
rz; € V; for each i € I, whence ¢(rz) = ry(z). Further, if z,y € V, then
o(z +y) = ¢(z) + ¢(y). Therefore (i) holds. ]

For a lattice ordered group G we denote by s(G) the system of all £-subgroups
of G. Then the result analogous to 5.1 is valid for G (with the same idea of the
proof).

Let B be a generalized Boolean algebra. We denote by s(B) the system
of all sublattices X of B such that 0 € X and X is a Boolean algebra. If
B is expressed as an internal direct product of a system (B;);c;, then clearly
B, € s(B) for each i € I.

LEMMA 5.2. Let By, ..., B, be nonzero elements of s(B). The following con-
ditions are equivalent:

(i) B is an internal direct product of B,,...,B,,.
(ii) If z € B, then = can be uniquely expressed in the form ¢ =z, V---Vzx,
with z, € B, ..., z,, € B,.

Proof.

a) Let (i) be valid and suppose that ¢ is corresponding isomorphism. Let
z € B and ¢(z) = (z,,...,z,). We have

o(z,) = (2,,0,...,0), ..., o(z,) =(0,...,0,z,).
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Thus we obtain

oz, V-V ) =p(z) V- Vo(z,) = (z,,...,2,) = o(z).
Therefore z =z, V---Vz,.
Ifz'eB,, ..., z" € B, and ¢ =z! V---Vz", then we obtain

e(z) =)V - Ve@") = (@',...,2"),

whence z! =z, ..., 2" = z,, and so the condition (ii) is satisfied.

b) Assume that (ii) holds. At first we verify that whenever i,5 € I, i # 7,
then B; N B; = {0}. Obviously, 0 € B; N B;. By way of contradiction, assume
that there exists 0 < z € B; N B;. Put zt=2z, 2 =zand 2F =0 for k€I,
i # k # j. Further, we set 4 = z and y* =0 for k € I, k # i. Then we obtain
z=g'V.--vz" =y V... Vy", which is a contradiction.

Under the notation as in (ii) we put ¢(z) = (z,,...,z,). Then the set
{z,,...,z,} is orthogonal. The mapping ¢ is a bijection of B onto B, x---xB,,.
Let y € B, o) = (Y1,--+¥,)-f 2, Sy, ..., z, S y,, then z L y.

Suppose that © <y and let ¢ € I. Then

T,ETSY=Y V-V,
T, =z, ANy=(z;Ay)V--V(z;Ay,).
Let j € I.If j #14, then z; Ay; =0. Thus z; = z; Ay, and therefore z; < y,.
This yields that the mapping ¢ is an isomorphism.
Let i € I, z € B;.Put y* =z, 9/ =0 for j € I, j # i. Then z =
y' V---Vy", whence z; = z and z; =0 for j € I, j # i. Therefore the

mapping ¢ determines an internal direct product decomposition of B; hence (i)
is valid. O

Remark 5.2.1. Looking at the proof of the implication (ii) = (i) in 5.2 we
see that the internal direct product decomposition mentioned in (i) is given by

the mapping ¢(z) = (z,,...,7,), where £ =z, V.-V (under the notation
as in (ii)).

LEMMA 5.3. Let B be a generalized Boolean algebra. Assume that
p:C(B) =V, x---XV,

is an internal direct product decomposition of C(B). Put ¢, = ‘PIB (the cor-
responding partial mapping defined on B) and B, = V,N B for i € I =
{1,2,...,n}. Then

¢,:B— B x---x B,

s an internal direct product of B.
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Proof. Let i € I. In view of ¢ we infer that V; is a convex sublattice of
V' containing the element 0. Thus 0 € B; and B, is a convex sublattice of B.
Hence B, is a generalized Boolean algebra. Further, from the definition of ¢ we
easily obtain that V; NV, = {0} whenever i and j are distinct elements of I;
hence in such case we also have B; N B; = {0}.

Let z € B, z > 0. If ¢,(z) = (z,,...,2,), then z =z, +--- + z_, and
z, 20, ..., z, 2 0. Since the set {z,,...,z,} is orthogonal, we obtain z =
z,V---Vez,. Ifz' € B, ..., 2" € B and z = z' V--- V2", then z =
z! + .-+ +z". In view of the properties of ¢ we get 2! =2,, ..., z" =1z, .

Thus according to 5.2 and 5.2.1, ¢, determines an internal direct product
decomposition of B. O

Let X be a subset of a vector lattice V. We put
X={yeV: |y Alz| =0 for each z € X}.

Then X?¢ is a polar of V. It is well-known that X° € s(V).

Again, let B be a generalized Boolean algebra. For ) # X C B we denote
by X the set of all elements € C(B) which can be expressed in the form
z=a;b+---+a,b,, where a, € R and b, € X for i =1,2,...,n.

Assume that 9: B — B; x --- x B, is an internal direct product decompo-
sition of B.

LEMMA 5.4. Leti € {1,2,...,n}. Then B, = B%.
Proof. We have B; C B{. Since B{® € s(C(B)), we get B; C B.
In view of ¢ we have

B, CB] foreach i€<{l,2,...,n}, j#i. (%)

Let 0 # z € B?®. The element z can be expressed in the form z = a,b] +
-+-+a,,bl , where b],...,b arenonzero elements of B, a,,...,a,, arenonzero

elements of R and (in view of 2.1) the system {b},...,b] } is orthogonal. Then
we have

Consider the element |a, [b}. We obtain |a,|b] < |z|, thus |a, |V} € B$. Since
B € s(C(B)), we get b € BY.
In view of 9 and 5.2, b] can be expressed in the form

by=00v.-v?,

where b € B, ..., b) € B, . If j € I ={1,2,...,n}, j #i and b > 0, then
in view of (*) we arrive at a contradiction. Thus b} = b e B;. Analogously we
have b, € B;, ..., bl € B,. Hence z € B,. Therefore B}’ C B,. O
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COROLLARY 5.4.1. Let i € I. Then B, € s(C(B)).

LEMMA 5.5. C(B) is an internal direct product of By, ..., B, .
Proof. Let 0 # z € C(B). Then there are a,,...,a,, € R and b,,...,b,,

€ B such that £ = ab; +---+a,b.. Put J = {1,2,...,m} and let j € J.

In view of 9, b; can be expressed in the form b; = \/ b,;, where b;; € B; for

i€l
i€{1,2,...,n} = I. Thesystem (bji)iel is orthogonal, whence \ b;; = > b;;.
iel i€l
Thus we obtain

:”:Zajbj :ZZajbjizzzajbji‘

jeJ Jj€J iel iel jeJ

n

Put Zajbjizxi.Then mieB_iforeachieIandx=x1+---+:c

jeJ
If >0, then in view of 3.2.1 we have a; >0, ..., a,, > 0. This yields that
£, 20, ...,z,20.

For any z € V we put ¢,(z) = (z,,...,z,). Hence 9 is a mapping of C(B)
into [[ B;, I ={1,2,...,n}.
iel
Assume that z} € By, ..., 2/, € B, such that, at the same time, we have
r=xy+---+z . Then
0y = 8 = (B =) 4o (2~ )

and z, — 7| € B|, zh — 2, € B,, ..., z! —z, € B, . By applying the facts
known from proof of 5.4 we obtain

[ 86 ! 8 ! d
z, —r; € B)’, zy—Zy€B], ..., T, —z, €B].

Then (zh—z,)+- -+ (z}, —z,) € BY. Since B NB?¢ = {0}, we get z, —z; =0,

thus z, = 2} . Similarly we obtain z, =z, ..., z, =z .
Let y be another element of C(B) and %,(y) = (y;,--.,%,)- Thus y =
y+-+y,. fz, <y, ..., z, Ly, then clearly z < y. Conversely, suppose

that ¢ £ y. Put 2 = y —z. Let ¢,(2) = (24,...,2,). Then 2z, =y, — z, for
1 € I. Since z 2 0, we must have (in view of the case £ > 0 considered above)

2,20, ..., 2,20.Hence y, 2 z, for i € I.
Now according to 5.1, 9, determines an internal direct product decomposi-
tion of C(B). m|
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Let ¢ and ¢, be as in 5.3. The basic idea in constructing ¢; from ¢ can be
described by the correspondence

V, % B, =V,NB, (a)

where V] is an internal direct factor of V = C(B) and B, is an internal direct
factor of B.
Further, the main idea of 5.5 consists in applying the correspondence

B, 5 B, (b)

where B, is an internal direct factor of B and -B_1 is an internal direct factor
of C(B).
By applying the correspondence (a) for B, we get

B, >+ B NB.
LEMMA 5.6. Under the denotation as above, we have B, N B = B .

Proof. We have clearly B, C B, N B. Let z € B, N B. Thus « € B and
hence z 2 0. The case z = 0 yields € B;. Let > 0. We have z € B, thus
there are nonzero mutually orthogonal elements b,,...,b, of B, and nonzero
elements a,,...,a, € R such that

z=a.by+---+ayb, .

According to 2.3 we have £ = b; V---Vb,_ . Thus = € B, . Therefore EﬂB c B,.
O

From 5.6 we immediately obtain:

COROLLARY 5.7. There exists a one-to-one correspondence between internal
direct factors of B and internal direct factors of C(B).

Summarizing, 5.3, 5.5 and 5.7 yield:

PROPOSITION 5.8. Let B be a generalized Boolean algebra. There ezists a
one-to-one correspondence between internal direct product decompositions of the
vector lattice C(B) and finite internal direct product decompositions of B.

By the same method as in 5.1 we obtain:
LEMMA 5.9. Let G,,...,G, be nonzero [-subgroups of a lattice ordered

group G. The following conditions are equivalent:

(i) G is an internal direct product of G,...,G,,.

(ii) If z € G, then x can be uniquely expressed in the form r =z +.--+z_
with ¢, € G, ..., z,, € G,. Whenever y =y, +---+ ¥, is such an
ezxpression for y € G, then x Sy if and only if z; S vy, .., z,Svy,.
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Now let us consider the lattice ordered group S(B), where B is a generalized
Boolean algebra. Several results on S(B) can be proved by methods analogous
to those which were applied for C(B). We have: If

p:8(B) =G, x--xG,
is an internal direct product of S(B) and B, =G, NB (i=1,2,...,n), then
@o: B—= By x---xB,

is an internal direct product decomposition of B. (Cf. 5.3.)
For each internal direct factor B, of B we denote by Bj the set of all
x € S(B) which can be expressed in the form
z=a;b+---+a,b

n-'n’

where b,,...,b, € B; and a,,...,a, are integers. If
Y:B— B, x---XB,
is an internal direct product decompositions of B, then
¥,: S(B) =+ B} x---x B},

is an internal direct product decomposition of S(B). (Cf. 5.5; the corresponding
coefficients in the proof are now assumed to be integers.)

If B, is an internal direct factor of B, then B} N B = B, . (Cf. 5.6; again,
we have to apply integral coefficients.)

Therefore, similarly as in 5.8, we conclude that there exists a one-to-one cor-
respondence between internal direct decompositions of S(B) and finite internal
direct product decompositions of B.

As a consequence we obtain that there is a one-to-one correspondence between
internal direct product decompositions of C(B) and internal direct product
decompositions of S(B).
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