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Math. Slovaca 36,1986, No. 3, 297—312 

ON /-CONTINUITY 
AND I-SEMICONTINUITY POINTS 

TOMASZ NATKANIEC 

Let /: X—> J? be a real function. The purpose of the present paper is to study the 
relation between the set C(f) of all points at which / is continuous, the set G(f) of 
all points at which / is /-continuous, the set Si(f) of all points at which / is I-upper 
semicontinuous and the set S1//) of all points at which /is I-lower semicontinuous. 

Let X be a Polish space and 3 c SP(X) be a a-complete ideal which has the 
following properties: 
(a) if xeXthen {x}e$, 
(b) if 0 ^ U c X is open then U$#. 
We say that a subset A czX is ^-small at point p e X iff there exists a neighbour­
hood U(p) of p such that U(p)nA e 3. We denote by di(A) the set of all points at 
which A is not ^-small, namely 

di(A) = {p: VV(p) V(p)nA43} 

(di(A) is A* in the sense of Hashimoto [2]). 
The family of subsets of X 

{G — I: Gis open and IeJ>} 

is a new topology on X (it is *-topology in the sense of Hashimoto or "^-topology" 
in the sense of Vaidyanathoswamy — c. f. [2], [4], [7], [11]). 

We say that a function /: X—>R is /-continuous (semicontinuous) iff / is 
continuous (sen licontinuous) in the ^"-topology. 
We use the following notation: 

I-lim inf/(f) = sup {ye R: x$dt({t: y>f(t)})}, 
t-*x 

I-lim sup f(t) = inf {ye R: x^d,({t: y<f(t)})}, 
t-*x 

C(f) is the set of all points at which / is continuous, 

Q(f) = {xeX: I-lim inf f(t) = f(x) = Mim sup /(*)}, 
t-*x r-»x 
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S,(f) = {xeX: M i m s u p / ( t ) ^ / O t ) } , 
f—>x 

S\(f) = {xeX: Miminf f(t)^f(x)}, 
t—fX 

T,(f) = {xeX: Mim sup f(t)<f(x)}, 
t-*x 

V,(f) = {xeX: Mim inf/(f) > / (* )}• 
t-*x 

Let i(>i(A) denotes the set of all points at which the set X— A is i'-small, namely 

yI(A) = {x: 3U(x) U(x)-AeJ>}. 

(\l>i(A) = X-(X-A)* in the sense of H a s h i m o t o ) 
Notice that 

(i) for every A czX the set ipi(A) is open, 
(ii) if A c B then ^(A)cz^(B), 
(iii) for every A czX ipi(A) -Ae$>. 
In fact, if (Un) r t € N is a basis of X and A „ - = { j c e ^ ( A ) : U(x)=Un} then 

An - A cz Un - A e $ and ^ ( A ) - A = | j A „ - A e i 
neN 

We shall use the following simple facts. 

Fact 0. For every function f: X-+R we have 

Mim sup f(t) = - M i m inf (-f)(t). 
t-*x t-*x 

Fact 1. 1/ function / , g: X—>R are bounded then 

a) Mim sup /(*) + Mim sup g(t)^ I Aim sup ( / + g)(t)$>Mim stfP / ( 0 + 
f - * x r-^x f~>* r-»x 

+ Mim inf g(t), 
r—>x 

b) Mim inf /(f) + Mim inf g(t) *£ Mim inf (/+ g)(t)^i-\\m inf f(t) + 
f—»x r-*x t~*x t_¥X 

+ Mim sup g(t). 
t—*x 

Proof, a) Assume that Mim sup/( / ) = a ancj I-\im suf d(t) = b. Then 
t-*x t-*x 

xkdi(\t: / ( 0 > « + | } W r ( { ' : # ( ' ) > & + ! } ) for all e > 0 . H e n c e * M - ( { ' : 

/ ( ' ) + 0 ( ' ) > a + *> + £/) f ° r a11 e > 0 a r - d 

Mim sup ( / + g)(t)^ a + b, 
t—*x 
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Mim sup f(t) = Mim sup [(/+ g)(t) - g(t)] ^ Mim sup (/+ g)(t) + 
t-*x t-*x t-+x 

+ Mim sup (-g)(t) = Mim sup (/+ g)(t) - Mim inf g(t). 
' - > * r—x *->x 

Hence Mim sup f(t) + Mim inf ^(O^Mim sup (/+ g)(t). 
t-*x t->x t-*x 

The case (b) is similar. 

Fact 2. If ^ fn(t) is uniformly convergent in some neighbourhood Uofx then 
neN 

I-lim sup 2 UtH 2 7- , i m SUP /-W 
i1-**: n e N n e N r—>x 

and 
Mim inf 2 / n ( O ^ S J - , i m in f /»(0-

r—*x n e N n e N J-** 

This fact follows from Fact 1. 

Lemma 0. If D cz X is a G6 sef rhen f/iere exists Ecz X such that E is a G5 set, 

DczE, E-De3>, E=f] Gn, G„ are open, Gn+1^Gn and E=f] \pj(Gn). 
neN neN 

Proof. Assume that D = f] Hn, Hn is open and Hn+1^Hn. Then ipi(Hn+1)<^ 
n e N 

Vi(-fJ.)> ^(H.,) is open and ipi(Hn) - Hn e A 
We define E as follov/s : 

E = D *(H. ) . 
neN 

Then iM<MH.)) = iMH,) and E - D = f ) *MH, ) - f l H , e | J (xl>,(H„)-Hn). 
neN neN neN 

Remark. If ^is the ideal of the sets of first category then tyi(A) = A means that 
A is a regular open set i. e. A = ipi(A) iff Int C\ A = A. 

Proof. If A = \pi(A) then A is open, so A czlnt CI A. If x elnt CI A then there 
exists a neighbourhood U of x such that L t CI A Since A is open and dense in 
u, A is residual in U and U— Ae$. Hence xe tyi(A) = A. 

If Int Q A = A then A is open and Acz^j(A). If xe tyi(A) then there exists 
a neighbourhood U of x such that U- Ae3>. Then U cz CI A and x e Int CI A = 
A. 

I. 
Fact 0. C(f) is a G6 set. 

It is the well known fact (cf. [9]). 
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Factl . T X ( / ) U T K / ) G A 
Proof. Let ([/„) r t eN(resp. (Vn)nei..) be a countable basis of X (resp. R). If 

xeTi(f) then /(jc)>I-lim sup /(f). Thus there exist n(x), m(x)eN such that 
t—*x 

xe Un(x), f(x)e Vm(je) and U , . ^ / " 1 * Vm(x)e J3. Let A(n, m) = {xe Ti(f): 
n(;t) = tt and m(jc)=m}. Then for every xeA(n,m) we have A(n, m)cz 

L ^ n / " 1 * V m U ) e A Hence Tj(/)= [J A(n, m)ef. Similarly, Tj(f)eJ. (Z. 
n, meN 

G r a n d e in [1] proved this fact for X=R and the ideal of all sets of the first 
category.) 

Fact 2. There exists a G6 set D such that. 

C,(/) = D - ( T , ( / ) u T } ( / ) ) . 

Proof. We define D as follows: 

D = {* e X: Mim inf f(t) = I-lim sup f(t)}. 
t-*x t—*x 

It is clear that C,(/) = D - (T,(/)u T}(/)). We shall prove that X - D is a F„ set. 

X - D = { x e X : Mim inf f(t)<Mim sup / ( / ) } . 
t—*x t—*x 

Let A(p , q) = {xeX: I-lim inf /(f) ^ p and I-lim sup f(t)^q}. For each p , g e Q 
f—•* r—»x 

the set A(p , (7) is closed. 

Indeed, if xn > x and {xn: neN}^ \(p, q) then I-lim inf/(f) =^p and 

I-lim sup f(t)^q. 
t-*x 

Since X - D = IJ A(p, q), X-D is a Fa set. 
P. <7€Q 

Fact 3. Q ( / ) - C(/) <= CI (T,(/)u T}(/)). 
Proof. Assume that x e C(f) and there exists a neighbourhood U of x such that 

Un(Tj(f)un(f)) = 0 i. e. for each teU 

I-lim inf f(s)^f(t)^I-lim sup /(f) and 
5-*f s-w 

I-lim inf f(t) = /(JC) = I-lim sup /(f). 
r-*x t-*x 

Notice that: 

(i) I-lim inf / ( f )^ l im inf (i-lim inf f(s)) and 
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(ii) J-lim sup f(t)^\im sup ( J-lim sup f(s)). 
t—*x t—>x \ s—*t / 

In fact, let xn > x such that 

lim (J-lim inf f(s)) =lim inf ( J-lim inf f(s)) = g. 
n—foo \ s—*xn / t—*x \ s—*t / 

Suppose that J-lim inf f(t)>g. Then for some e > 0 J-lim inf f(t)>g + e i. e. there 
t—>X f—•* 

exists a neighbourhood U of x such that {t e U: f(t) < g + e} e 3. Since there exists 

keN such that for every n>kxneU then for n >k J-lim inf f(s)^g + e. Hence 
s-*xn 

lim ( J-lim inf f(s)) ^g + e — a contradiction. 

The same arguments work in the case (ii). 
Thus 

J-Hm inf f(t) ^l im inf (J-lim inf f(s)) ^ l im inf f(t) ^ l im sup f(t) ^ 
t-*x t—*x \ S—>t / t—*x t—*x 

^lim sup ( J-lim sup f(s)) ̂  J-lim sup f(t) = f(x). 
t—*x \ s—*t / t—*x 

Hence lim inf f(t) = lim sup f(t) = f(x) and x e C(f). 

Corollary, (a) Int G( / )czC( / ) , 
(b) If f is I~continuous then f is continuous. 

II. 

Let 38 denotes the family of Borel sets on X. We say that 3 is a Borel ideal on X 
iff for every Ae$ there exists Be3n$R such that A^B. (The collection of all 
countable subsets of X, the family of all first category subsets of X and the 
collection of all measure zero subsets of Rn are Borel ideals.) 

In this and next parts of this paper we assume that 3 is a Borel ideal and for 
every open non-void subset G czXcard. G is continuum. 

Lemma 1. There exists a partition A, B of X such that for every x e Xand every 
closed set FczX if x e d^F) then x e dj(Fn A) and x e d^FnB). 

The construction of A and B is very similar to the construction of Bernstein's set 
(cf. [3], [6], see proof of Lemma 2). 

Proposition 0. If D is a Gs set then, there exists a function g: X—• R such that 
C(g)=Q(g) = D. 
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Proof. Let X-AuB, AnB-0, where A and B are defined in Lemma 1. 

Assume that X— D = I J Fn, where FnczFn+1 and Fn are closed. Let (an)neNbe 
neN 

a sequence of positive real numbers such that ]T an = 1 and a n>2 ^ #*• 

For every neN, we define the function gn: X-+R: 

I
an for xeFnnAy 

— an for xeFnnB, 
0 for xeX-Fn. 

Then 
(a) Q(gn)=C(gn) = X-Fn, 

(b) /-lim inf gn(t)^-an and J-lim sup gn(t)^an for all xeFn. 
t—*x f—»x 

Let us define g: X—>i? as follows: 

neN 

The uniform convergence of this series implies the continuity of g on D. If x £ D 
then there exists n e N such that xeFn. Let 

tt(x) = min {neN: xeFn}. Then, if xe ipi(Fn) so g(x)= ]T «fc 
fc>n(x) 

I-lim sup #(f)^I-lim sup gn(x)(t)+ ^ I-lim inf gk(t)^an(x)- ^ ak>0and 
t—»x r—.»x Jc>n(x) f—»x fc>n(x) 

I-lim inf #(l)^I-lim inf gn(x(t)+ ^ I-i™ SUP gk(t)^~a n(x)+ ^ a*<0. 
f—»x t-*x k>n(x) t-*x k>n(x) 

Hence x^{xeX: I-lim inf #(t) = I-lim sup g(l)}. If xe AnFn- \pj(Fn) then 
f—>x t—*x 

six)- ^ Uk> 2 ^-^I-lim sup #(t). Similarly, if xeBnFn- \pj(Fn) then 
/f^n(x) fc>n(x) f-*x 

#(*)< I-lim inf #(t). 
f -*x 

Proposition 1. If D is a G6 set and Ie$ then there exists a function f: X—> R 
such that G(/) = D - I . 

Proof. Let g: X-*R be the function which is defined in Proposition 0. 
We define /: X-+R as follows: 

g(x)+\ for xelnD, 
f^~ \ g(x) for xeX-(InD). 

It is easy to show that / satisfies the above conditions. 
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Proposition 2. Assume that B, D are G* subsets of X and Bc=D. Then there 
exists IeJ> and there exists a function f: X - » J R such that C(f)-=B and G ( / ) = 
D-L 

Proof. Let g: X—>(~1, I) be a function which is defined in the proposition 
0 i .e . g\D = 0 and 

G(g)=C(g) = D. 

Let B = f | G„, X - B = I J Fn, Fn = X-Gn, F , c F B + 1 and Fn are closed. For 
neN neN 

xe X- B let us define rj(jc) = min {n: JceFn} . 
We define inductively the sequence (In)„GN of subsets of X such that: 

(i) L^Fn, (v) Inn(TI(g)uT\(g)) = 0. 

(ii) L^In^ 
(iii) In is dense in Fn - (Ti(g)^T\(g)), 
(iv) Jn is countable. 

Let (an) be a sequence of positive real numbers such that ]? an = 1. For each n we 
neN 

define the function fn: X—»R as follows: 

*(v\-\ a»(g(x) + 3) for xel„, 
; " U J ~ 1 «n^(jc) for xH. 

Then C(fn) = D-C\(In) = D-Fn. 

Let us put / ( * ) = £ /«(*)• 
n e N 

Since {JC: f(x)±f(x)} = \JIn = Ie#, Mim sup/ ( l ) = Mim sup cj(r) and 
neN t—* t~»* 

Mim inf f(t) = Mim inf 0(f) for all JC e X. Hence T,(g) c T,(/) and TK0) g TK/). 

(a) If xelnD then there exists n such that xeln. Let m(x) = min {" e N: 

JC e 1n}. Then 

/(JC) = , ^ ( J C ) F 3 X «n=3 2 fl«>O=Mimsup/(0. 
n=*m(;c) n^m(x) f~*x 

Hence I n D c X - G ( / ) . 

(b) If JC e D - I then /(JC) = g(x) = Mim sup f(t) = Mim inf /(f). Thus D - I c 

C,(/). 

(c) If x i D and x$T,({i)vTj(g) then 7-lim sup/(<) = Mim sup .<?(')> 

Mim inf / ( / ) . Hence C,(f) =D-I. 
t—*x 
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Assume that xeB. The uniform convergence of ^ U implies the continuity of / 
n = l 

at x. 

If x e D — B then x e Fn(x) and xe f] Gk. The following two cases may occur: 
k<n(x) 

(a) There exists a sequence (xk) in In(X)~ {*} such that lim xk = x. Then for each 

keNf(xk)^g(xk)4-3 ^ fl«• T h u s 

mSsn(x) 

lim sup / ( l )^ l im / ( x k ) ^ 3 2 fl-»-

Let (yk) be a sequence of points in X-In(x) such that lim yk-X. Then / ( y * ) ^ 
k->oo 

fj(yk) + 3 2 flm. Hence lim inf f(t)^ lim f(yk) ^3 2 ! ^ - T h u s * 4 c(/)-
m>n(jc) r—>x k—*°° m>n(x) 

(b) Assume that the point (a) do not hold. Then xeln(x) and there exists 

a neighbourhood U of x such that 17— {*} cz Gn(x). Then /(JC) = #(x) + 3 ^ flffl 
m^n(x) 

and lim sup f(t)^3 2 fl»» h e n c e * £ c(/)- T h u s c(f) = B a n ^ Q(f) = D-I. 
t—*x m>n(x) 

Ques t i on , 0. Assume that B, D are G& subsets of X, le 3, BczD — I and 
D - BczCl J. Is there a function/: X-->i? such that C(/) = B and C7(/) = D-I? 

III. 

We say that an ideal ^czP(x) is uniform iff {AczX: card A < 2 "<} czj? Notice 
that if CH or Martin's Axiom are assumed then the ideal ^czP(X) of all sets of 
first category and 3^P(Rn) of all measure zero subsets of Rn are uniform (cf. 
[10]). 

Lemma 2. Assume furthermore that an ideal 3 is uniform. Let (An)neN be 
a sequence of subsets ofX. Then there exists a partition (Kn)neNofXsuch that 

V x e X VmeN [xedj(Am)^\fneN xe dj(AmnKn)]. 

Proof. The construction of Kn is very similar to the construction of Bernstein's 
set (cf. [3], [6]). 

Let a sequence (Gn)neN be a countable basis of X. For every neN let (Hn^) 
(%<2<°°) be an enumeration of the family {AczX: 3Ie3nS8 A = Gn-I) (ffi 
denotes the family of all Borel sets of X). It is possible for card SB = 2"°. Since 3 is 
uniform and Gn <(. 3, card Hnf=2%. 
Notice that if GnnAm^3 then HnnAm$3. 
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Zjm — Í Hnђ 

We define 
r„s iff GnnAmeJ, 

n^nAm iff GnnAm$J>% 

Let (He) (?<2<0°) be an enumeration of all sets H£, m,neN, g ^ " 0 and (r§) an 
enumeration of X. 
We shall construct inductively a sequence (*$,„) of the type 2tYc0o 

xr?0 = min{^: * 6 ef t , -{*-* : k<c00, y<r?}}, 

x„rt = min {xt: x^eHv-{xYk: y<rjv(y=?7 & /c<n)}}-

This construction is possible since card Hn = 2a,°. 
Let us define sets Kn as follows: 

í {*,„: í)<2°«>} for «>0 , 
K. = ł 

X- U -C foг и=0. 
лeN-(O) 

The family {Kn} satisfies the above condition. Indeed, if xedi(Am) then 
GknAm e 3 for some k. If Gkn AmnKn e 3, then there exists B e $SnJ> such that 
B=Gk and GknAmnKn<^B. This is impossible since thtr set H £!= (G* — B)nAm 

satisfies the condition Hk\nKn4^0. 

Theorem. Let us assume that 3 is a uniform ideal on X. Let A, Au Bu C, d are 
subsets of X such that 

(i) CvQeJ, 
(ii) Bi = AnAi, 

(iii) C Q 4 - B I , C I < = A I - B I , 

(iv) there exists D c X s u c h that D is a G& set and Bi = D-(Cud), 
(v) the sets A — Bu A2 — Bt do not contain subsets of the form U— I, where Uis 

open and non-empty and Ie$, 
(vi) E — D is a Fa set (where E is defined in Lemma 0). 
Then 
(x) there exists a function f: X—>R such that 

d m = Bi, Sr(f) = A, S/(/)=Ai, -:(f)=C, and T}(f) = C1. 

If we assume furthermore that B is a subset of X such that 
(vii) BcBi , B is a G6 set, B j - B c C l (CuCi) and 

(viii) BnCl(CuCi) = 0 then C(f) = B. 
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Proof. The set JR —Eisa Fa set i.e. R — E= U Fn,Fn are closed and FnczFn+1. 
neN 

By lemma 2 there exists a partition (Kn)neN of X such that: 
(0) VJCGX VneN xedj(Kn), 
(1) VJCGX [JCG ^ ( [ - ( A U A O J U B I ) 

- ^ V n e N JCGd I(([X-(AuA1)]uB1)nKn)], 
(2) VJCGX VmeN [JCG d,(Fm- A ) = > V M G N JC Gd , (F„ .nKn-A)], 

(3) VJCGX V W G N [jcGd,(Fm- A1)^>VneN JCG dj(FmnKn - A,)]. 

I. In the first step we shall construct a function g: X—>i? such that 

I-lim inf g(t) = - 1 and I-lim sup # (0 = 1 for all a e X 
t—*x t-*x 

The function g is defined as follows: 

<K*)=(-i)n2^T for xeK-

It is easy to show that g satisfies the above conditions. 
II. In the next step we shall construct a function h: X-+R such that Q(h) = 

T-(/i)=T}(fi) = 0, SI(h) = A-B1 and S\(h) = Al-Bl. Let 

I-lim inf g(t) = -l for xeAx-Bu 
t-*x 

I-lim sup 0 ( 0 = 1 for xeA-Bu * ( * )= 

g(x) for J C G [ X - ( A U A I ) ] U B L 

The following two cases may occur: 
(a) JC € dj(A, - Bi)ndi(A - B x ) , 
(b) since (v) holds, if (a) do not hold then jc6t i / ( [X-(AuAi) ]uB 1 ) . Hence 

I-lim inf h(t) = I-lim inf g(t) = - 1 , I-lim sup h(t) = I-lim sup g(t) = 1 and the 
t—>x t-*x t-*x t-*x 

function h has the above properties. 
III. Let for J C G X - E , n(jc) = min {neN: JCGF„}. We define a following 

function k: X—*R 

í 2~n(x)i 
Ңx) = {2 ' 

2~n(x)h(x) for J C G X - E , 

for xeE. 

The following cases may occur : 

(a) Let xeE. Then k is continuous at JC. In fact, if jcn > JC then 

VmeN 3keN V/>Jt (x,eG„) i .e . 
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^meN =>kel\ \/l>k \k(x1)\<2~m. Thus k(xn) > 0= k(x) and xe C(k) 
n—>°o 

(b) Let x|=E. Since the assumption (v) holds, xedi(X-(A-B1)) and 
x e d , ( X - ( A , - B , ) ) . Let 

K={neN: xed , (F„- (A-B, ) ) } , L = {neN: xed , (F n - (A 1 -B 1 ) ) } , 

minK if K>0, - Í П o~ì - if к = ø, ~°= 
fminL if L£0, 

oo if L = 0, 

Notice that n0eN or nioeN. Indeed, if for all rz e N 
JC ^ dj(Fn - (A - Bi)) and x £ dj(Fn - (Aj - BO) then for each n the set Fn is 

J-small at point x. Then xe D tl>i(X-Fn) = E — a contradiction. If n0eN and 
neN 

m0eN then 

J-lim sup fc(r) = 2 '^ J-lim sup h(t) = 2~"*° and 
t-*x t—*x 

J-lim inf k(t) = 2-* J-lim inf h(t) = -2~n°. 
r—>x r—>x 

Assume that n0eN and mo=°°. Hence 

J-lim sup fc(r) = 2~"° J-lim sup h(t) = 2~n° and 
r—>x t-*x 

Mim inf fc(0 = 2-"° Mim inf h(t) = -Tn°. 
r-*x «—»x 

Similarly, if m^eN and n0 = °° then J-lim sup k(t) = 2~m° and J-lim inf k(r) = 
f~>x r-*x 

-2~n°. Since the sets F^, F^ are closed, xeFrtonF^. Therefore n(x)^ 
min (no, mo). 

If j teA-Bx then /c(x) = 2~nCi>^ J-lim sup fc(f). So A - E c S j ( f c ) - Q(k). 
r—*x 

If JCe At-Bi then fc(x)^ J-lim inf k(t). Hence A , - E c S } ( k ) - G(/c). 
I—>x 

If x e X - ( A u A 0 then k(x) =£ Mim sup k('X fc(x) ^ Mim inf k(t) and 
r-*x .,-*x 

J-lim inf k(t) -..-= J-lim sup /c(f). 
i-*x r-*x 

Thus [X-(AuA,)]-Ec[X-(SI(/t)uS}(fc))]uTI(fe)uTKfc). ' 
IV. In the fourth step we define a function /: X—*R such that Q(l) = E, 

T,(l)=T,(l) = 0, S,(0 = A u E and S}(0 = A,uE . 

307 



Let us define / as follows: 

r I-lim sup k(t) 
t—*x 

I-lim inf k(t) 

l(x) = 

for xe(A-B1)nTI(k), 

for xe(A1-B1)nTj(k), 

for xe[TI(k)uTI(k)]-(AuA1) 

elsewhere. 

- (I-lim inf k(t) + I-lim sup k(t)) 
- - V t-*x t-*x / 

k(x) 

Since {JC e X: l(x) ± k(x)} e $, for each JC e X 

I-lim inf l(t) = I-lim inf k(t) and I-lim sup l(t) = I-lim sut kl t). 
t—*x t-*x t—*x t-*x 

It is clear that / satisfies the above conditions. 
V. Since E- D is a Fa set and E-DeJ>, there exists a sequence of closed sets 

(Hn)neNsuch that E — D= (J Hn, HnczHn+iand Hn e A Let (an)neNbe a sequence 
neN 

of positive real numbers such that ^ an = l and an^2 ^ fl/- For every neN 
neN i '2sn+l 

theTe exists a function ran: X—>( — «„, an) such that: 
(0) mn is continuous at every point JC^Hn, 

(1) VjceHn I-lim inf mn(t) = -I-lim sup mn(t) = an, 
t-*x t-*x 

(2) VjceHn mn(x) = 0. 

We shall define the function m„ as follows. There exists a sequence (wk) or natural 
numbers such that wk+1>wk and the sets Uk = {xeX: WfcJ>dist(jc, Hn)>w^ii} 
are open and non-empty. 
Let 

an for ;ceCl U4k, 
for jceCl U4k+2. mn «-{-: 

By Tietze- Urysohn Theorem we shall extend ra„ to the function 3ntinuous on 
X - H n . 

We define a function m: X-»K such that S7(™) = S\(m)= Q(m) = X - IJ Hn 
r.<=N 

and TJ(m)=T}(m) = 0. 

Let m ( * ) = 2 mn(x). 
neN 

The verification that m has the above properties is very similar to tfic verification 
that the adequate properties posses the function g which is defined in Proposition 0. 
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Let /: X—»R be the following function: 

f I-lim inf m(t) for xeAxn\J Hn, 

j(x) = I-lim sup m(t) for xeAr\\J Hn, 
t-*x neN 

m(x) elsewhere. 

Since {xeX: j(x)£ m(x)} e $>, for each JceXwe have 

I-lim inf j(t) = I-lim inf m(t) and I-lim sup j(t) = I-lim sup m(t). 
t-*x r - * jc r—•* t—*x 

Hence Q(j) = X-\J Hn, S,(j) = (x-[J Hn)u(An\J Hn) , 
neN \ neN I ^ neN ) 

SXJ) = (X- U H . W A . O U H) and T,(j) = T,(j) = 0. 
\ neN J \ neN A 

VI. The final step consists in the construction of a function / : X—> R such that 
Sj(f) = A, S\(f) = Au Q(f) = Bu T1(f)=C and r i ( / )=C 1 . 
Let us define a function / as follows: 

r 3 for jceC, 

/(*)= - 3 for x e d , 

^/(*) + /(*) for J C ^ C U Q . 

(a) It is clear that CcT/( / ) and Q c T ^ / ) . 

(b) Assume that xeX— ( | J H„u Cu Ci). since the function / is continuous a t x, 
\neN / 

I-lim inf f(t) = I-lim inf l(t) + /(JC) and 
t—*x t—*x 

I-lim sup f(t) = I-lim sup Z(f) + j(x). Hence, 
r—>x r-H>x 

if J C ^ U H - u C u d then 
neN 

(0) x e G ( / ) iff « C , ( 0 , 
(1) xeS,(f) iff xeS,(/), 
(2) xeS}(f) iff xeS}(0-

Similarly, if xe \J Hn-(OjQ) then 

(0) xeS,(f) iff A : 6 S , 0 ) and 
(1) xeS\(f) iff xeSlO). 
Thus Ae function f has the following property: 
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Ci(/) = [ G ( / ) - ( C u C 1 ) ] - U « , = [ E - ( C u C 1 ) ] - ( E - D ) = D - ( C u C 1 ) = B„ 
MEN 

Si(f) = [ Sr(Z) - U H„l u [ S,(j)n U H.1 u C = A, 
L rt€N J L rt€N J 

S}(f) = \s}(l)-\J Hn]u\s\(j)n\J Hn]uC1 = Al, T , ( / ) = C and T}(/) = C . 
L «€N J L rt€N J 

R e m a r k . (MA) If X = R and ^ is the ideal of all sets of the first category then 
the conditions (i)—(v) and (x) are equivalent (see [5]). 

Q u e s t i o n s . 1. Let us assume that for A, Au Bu C, d c X the conditions 
(i)—(v) and (vii) hold. Does then the statement (x) hold? 

2. Let us assume that for A, Ai, B, Bu C, Q c z X the conditions (i)—(v) and 
(vii) hold. Is there a function / : X—>R such that 

C(f) = B, Q(f) = Bu Sj(f) = Ay S\(f) = Au Tj(f) = C and T}(/) = C1? 

IV. 

In this part we shall consider the followig question: is the condition (v) from 
Theorem essential? 

Let N denotes the ideal of all sets of the first category in X. 

Proposition3. If $ is a o-ideal and ^czjV or JVCZ/^ then for every function 
f: X—» R the set S^f) — Q(f) do not contain subsets of the form G — I where G is 
non-empty and open and le $. 

Proof. Assume that U is an open and non-empty subset of X,IeJ> and 

I I - 1 c Sj(f). Then Mim sup f(t)^f(x) for all xeU-I. Hence for each y>f(x) 
f-*x 

there exists a neighbourhood Vof x such that {te V: f(t)^y} e $. Let (p„, qn) be 
a sequence of all open, non-empty intervals such that pn, qne Q. Then for each 
neN there exist a Fa subset Ancz U and Jn e3 such that 

(f\U)-U(pn,qn) = AnAJn. 

Let J= Iu|J Jn and B=U-J. Then f\B belongs to the first class of Baire. Since 
neN 

Je^,B^.lf J?cz^then JeJVand B^Jf. Similarly if Jf c 3 then B£-/V. By the 
Baire Theorem the set of all points at which f\B not continuous is of the first 
category in B. (cf. [9]) Thus there exists a point xe UnQ(f\U)= UnQ(f). 

Proposition 4. Let X=R and $ be the ideal of all measure zero subsets of X. 
Then there exists a function f: R—>R such that 

S,(f) = R and Q(f) = 0. 
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Proof. Assume that A and B is a partition of R such that A is a set of the first 

category and Be^J. (cf. [6]). It is possible to assume that A, is a F„ set, A = [J Fn, 
rt€N 

the sets Fn are pairwise disjoint, closed and nowhere dense (see [8]). Notice that 
infinite many of Fn have a positive measure. In fact, suppose that there exists meN 

such that Fn e $ for n >m Then the set F = U F„ is closed, nowhere dense and 
re-£m 

R—Fe$ — a contradiction. Hence it is possible to assume thar F„ £ J for each 
neN. 

Let us define a function / : R-+R: 

«*>-{;" 
for JCЄF П , 

foг JCЄß. 

Then / satisfies the conditions of this proposition. 
If xeB then J C G T J ( / ) C S J ( / ) . 

If xeFn and (xk) is a sequence in A then almost all terms of (xk) belong to (J Fk. 
k&n 

Thus lim sup (xk)^n~x and I-lim sup f(t) ^f(x). Since for each meN the set 

U Ffc is nowhere dense, in every neighbourhood U of x there exist an open, 

non-empty subset V c R - | J Fk. Thus J-lim i n f / ( r ) ^ m - 1 for all meN and 

consequelly, Mim inf /(f) = 0. Hence G( / ) = 0 and Sj(/) = R. 

For every A c X we define Intj A as follows: 

Intj A = {xeA: 3V(jceV, Vis open and V-Ae$)}. 

Proposition 5. For every subset A of X there exists a function f: X—>R SUch 
thatSi(f) = A. 

Proof. Let B = Intj A. By Lemma 0 there exists an open set G and Ie$ such 
that B = G - 1 and G = t/>j(G). 
Let (Kn)«€Nbe a partition of the set X— G such that for each x e Xif x e di(X— G) 
then x e dt(Kn - G). 
We define f as follows: 

' 1 for x e A, 

For this function St(f) = A. 

( - l Y ^ P Y for xeK-A, 

- 1 for x e l — A. 
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If x e A then x e dt(X- G) or x e I. Indeed, suppose that x £ A and x £ I. Then 
x$B and x$G. Since i/>r(G) = G, JC e d,(X- G). 
If xel-A then xeS}( / )£X-S , ( / ) . 

If x € d,(X- G) then f(x) s=Mim sup /(f). Thus A = S,(/). 
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POLAND 

О ТОЧКАХ 1-НЕПРЕРЫВНОСТИ И 1-ПОЛУНЕПРЕРЫВНОСТИ 

Тота$2 № 1 к а т е с 

Резюме 

Пусть (X, 3) — польское пространство и /^с2 х — есть а-идеал. 1-топологией на X будем 
называть семейство {А-В: Ае2Г, ВеУ}. В работе исследованы связи между множествами 
точек непрерывности, точек 1-непрерывности и точек 1-полунепрерывности вещественной 
функции /: X—>К. В частности, рассмотрен случай, когда Х= К и ^ есть идеал всех множеств 
с мерой Лебега равной нулю. В случае, когда 3> является идеалом множеств первой категории, 
обобшены результаты 3. Грандэ. 
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