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ON I-CONTINUITY
AND I-SEMICONTINUITY POINTS

TOMASZ NATKANIEC

Let f: X— R be a real function. The purpose of the present paper is to study the
relation between the set C(f) of all points at which f is continuous, the set G(f) of
all points at which f is I-continuous, the set S;(f) of all points at which f is I-upper
semicontinuous and the set S(f) of all points at which f is I-lower semicontinuous.

Let X be a Polish space and ¥ < P(X) be a o-complete ideal which has the
following properties :

(a) if xe X then {x}e 4,

(b) if #+ Uc X is open then U¢ 4.

We say that a subset A < X is $-small at point p € X iff there exists a neighbour-
hood U(p) of p such that U(p)n A € $. We denote by d;(A) the set of all points at
which A is not $-small, namely

d(A)={p: YV(p) V(p)nAd ¥}

(di(A) is A* in the sense of Hashimoto [2]).
The family of subsets of X

{G—1I: Gisopenand I e #}

is a new topology on X (it is *-topology in the sense of Hashimoto or “ $-topology”
in the sense of Vaidyanathoswamy — c.f. [2], [4], [7], [11]).

We say that a function f: X— R is I-continuous (semicontinuous) iff f is
continuous (sen iicontinuous) in the $-topology.
We use the following notation:

Ilim inf f(f)=sup {ye R: x¢&di({t: y>f()})},

Ilim sup f(¢£)=inf {ye R: x&d:i({t: y<f(1)})},
C(f) is the set of all point8 at which f is continuous,
G(f)={x€ X: I-lim inf f(¢) = f(x) = I-lim sup f(t)},
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Si(f)={xeX: Himsup f()<f(x)},

t—x

Si(f)={xe X: IMNiminf f(£)=f(x)},

—x

Ti(f) = {x e X: I-lim sup f(t)<f(x)},

Ti(f)={xe X: I-lim inf f(£)>f(x)}.

—x

Let ¥1(A) denotes the set of all points at which the set X — A is $-small, namely
P(A)={x: AU(x) U(x)—Ae ).

(y1(A)=X—(X— A)* in the sense of Hashimoto)
Notice that
(i) for every A =X the set Y(A) is open,
(ii) if A < B then y1(A)<¥i(B),
(iii) for every AcX yy(A)—Ae S.
In fact, if (U,),..~is a basis of X and A,={xey,(A): U(x)=U,} then

A,—Ac U —-—Aef and y(A)—A=J A, —Ae .
neN

We shall use the following simple facts.

Fact 0. For every function f: X— R we have

I-lim sup f(t) = —I-lim inf (—'f)(t)

t—Xx

Fact 1. If function f, g: X— R are bounded then
a) I-lim sup f(t)+ I-lim sup g(t)=I-lim sup (f + g)(t) = I-lim sup f(£) +

t—x t—x t—x

+ I-lim inf g(t),

t—x

b) I-lim inf f(¢) + I-lim inf g(¢)<I-lim inf (f + g)(¢) < I-lim inf f(D) +

t—x t—x t—x t—x

+ I-lim sup g(t).

t—x

Proof. a) Assume that I-limsup f(f)=a and [I-lim sup 9()=b. Then

—X t—x

x¢d:<[t: f(t)>a+§}>ud;<{t: g(t)>b+§}) for 41 e>0. Hence x&di({t:

f(t)+g(t)>a+b+¢}) for all £>0 and
I-lim sup (f+ g)()<a+b,

t—x
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I-lim sup f(t) = I-lim sup [(f+ g)(£) — g(D] < 1'13_12 sup (f+g)(D)+

—x

+ I-lim sup (—g)(t) = I-lim sup (f + g)(¢) — I-lim inf g().

Hence I-lim sup f(¢) + I-lim inf g(¢)<I-lim sup (f+ g)(?).

1—x t—x t—x

The case (b) is similar.

Fact 2. If >, f.(¢) is uniformly convergent in some neighbourhood U of x then
neN

Illim sup Y, fu(£)< > I-lim sup f.(?)
t—x neN

neN t—x

and
I-lim inf >, f,()=>. I-lim inf f,(?).
t—x neN neN t—x
This fact follows from Fact 1.

Lemma 0. If Dc X is a Gs set then there exists E < X such that E is a G; set,

DcE, E-De$, E=() G., G, are open, G ,..c G, and E= () y1(G,).

neN neN

Proof. Assume that D={) H,, H, is open and H,., < H,. Then y;(H,.\) <

neN

Yi(H,), vi(H,) is open and y;(H,)— H,e $.
We define E as follows:

E= n wI(Hn)'

neN

Then W:(W:(Hn))= wI(Hn) and E-D= DN'I’:(H-)— DNH" = yN(wI(Hn) - I'In)

Remark. If $is the ideal of the sets of first category then y;(A) = A means that
A is a regular open set i.e. A=1y;(A) iff Int Cl A= A.

Proof. If A=y;(A) then A is open,so A cInt Cl A. If xeInt Cl A then there
exists a neighbourhood U of x such that U= Cl A Since A is open and dense in
u, A is residual in U and U— A € $. Hence xe y,(A) = A.

If Int C1 A=A then A is open and A cyi(A). If xe Y1(A) then there exists
a neighbourhood U of x such that U— A € $. Then UcCl A and xeInt C1 A =
A.

L
Fact 0. C(f) is a G; set.
It is the well known fact (cf. [9]).

299



Fact1l. T,(f)uTif)e 4.
Proof. Let (U,) . (resp. (V.) .y be a countable basis of X (resp. R). If

xe Ti(f) then f(x)> I-lim sup f(t). Thus there exist n(x), m(x)e N such that

—x

x€ Unw, f(X)€Vw and U,onf'x Ve $. Let A(n, m)={xe T:(f):
n(x)=n and m(x)=m). Then for every xe A(n, m) we have A(n, m)c
U f' % Ve $. Hence Ti()= U A(n, m)e $. Similarly, T(f)e 4. (Z.

n, meN

Grande in [1] proved this fact for X= R and the ideal of all sets of the first
category.)

Fact 2. There exists a Gs set D such that.

G(f)= D = (T:()v Ti(f))-

Proof. We define D as follows:

D ={xeX: I-liminf f(t)=I-lim sup f(¢)}.

t—x t—x

It is clear that G(f) = D — (T;(f)u Ti(f)). We shall prove that X— D is a F, set.
X—D={xeX: I-liminf f(t)<I-lim sup f(t)}.

t—x t—x

Let A(p, 9)={xe X: I-liminf f(f)<p and I-lim sup f(1)=q}. For each p, g€ Q

—Xx t—x

the set A(p, q) is closed.
Indeed, if x,— x and {x,: ne N}c A(p, q) then I-liminf f(f)<p and

I-lim sup f(¢) =q.

t—x

Since X—D= |J A(p,q), X—Dis a F, set.
e

P qe

Fact 3. G(f) - C(f) cCl (Ta(f)u Ti(f)).
Proof. Assume that x € Gi(f) and there exists a neighbourhood U of x such that
UNn(Ti(f)uTi(f))=0 i. e. for each te U

I-lim inf f(s)<f(¢t)<I-limsup f(¢)  and

I-lim inf f(t) = f(x) = I-lim sup f(t).
Notice that:
() I-lim inf f(£)<lim inf (I—lim inf f(s)) and
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(ii) I-lim sup f(¢)=lim sup (I-Iim sup f(s)).

t—x t—x s—t

In fact, let x, — x such that

n—soo

lim (I-lim inf f(s)) = lim inf (I—lim inf f(s)) =g.

Suppose that I-lim inf f(¢)> g. Then for some £ >0 I-lim inf f(t)> g + €. e. there

—x t—x

exists a neighbourhood U of x such that {te U: f(¢)< g+ €} € . Since there exists

k € N such that for every n>k x, € U then for n> k I-lim inf f(s)= g + €. Hence

S—>Xp

lim (I-lim inf f(s)) =g+ & — a contradiction.

n—so S—Xp
The same arguments work in the case (ii).
Thus

I-lim inf f(£) <lim inf ( I-lim inf f(s)> <lim inf f(t)<lim sup f(1) <

1—x s—t

<lim sup (I-nm sup f(s)> <I-lim sup () = f(x).

t—x st

Hence lim inf f(¢) =lim sup f(¢) = f(x) and x e C(f).

t—x t—x

Corollary. (a) Int G(f) < C(f),
(b) If f is I-continuous then f is continuous.

IL.

Let B denotes the family of Borel sets on X. We say that $ is a Borel ideal on X
iff for every A € $ there exists Be $n% such that A = B. (The collection of all
countable subsets of X, the family of all first category subsets of X and the
collection of all measure zero subsets of R" are Borel ideals.)

In this and next parts of this paper we assume that $ is a Borel ideal and for
every open non-void subset G =X card. G is continuum.

Lemma 1. There exists a partition A, B of X such that for every x € X and every
closed set Fc X if x € di(F) then x € di(FnA) and x € di(FNnB).
The construction of A and B is very similar to the construction of Bernstein’s set
(cf. [3], [6], see proof of Lemma 2).

Proposition 0. If D is a G; set then, there exists a function g: X— R such that
C(9)=G(9)=D.
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Proof. Let X=AuUB, AnB=0, where A and B are defined in Lemma 1.
Assume that X— D= F,, where F,c F,., and F, are closed. Let (a.).n be

neN

a sequence of positive real numbers such that > a,=1 and a,>2 >, a.

neN k>n

For every ne N, we define the function g,: X— R:

a, for xeF,NnA,
gn(x)={ —a, for xeF,nB,
0 for xeX-—F,.
Then
(a) G(g.)=C(9:,)=X—F,,
(b) i-lim inf g,(t)=—a, and I-lim sup g.(1) <a, for all xe F,.

t—x 1—x

Let us define g: X— R as follows:

y(X)=nEZN Gn(x).

The uniform convergence of this series implies the continuity of g on D. If x& D
then there exists n e N such that xe F,. Let

n(x)=min {ne N: xeF,}. Then,if xe y5(F,)s0 g(x)= > a

k=n(x)

I-lim sup g(t)=I-lim sup g,.t) + E I-lim inf g, (1) = d o — z a,>0and

t—x t—x k>n(x) 1—x k>n(x)

I-lim inf g(t)<I-liminf g ..(f)+ E I-lim sup g (1) < —a p0+ Z a <0.

t—x t—x k>n(x) —x k>n(x)

Hence xé{xeX: I-liminf g(¢t)=I-limsup g(¢t)}. If xe AnF,—y,(F,) then

t—x 1—x

gx)= 3 a> > a.=I-lim sup g(¢). Similarly, if xe BAF, —y,(F,) then
k=n(x) k>n(x) t—x

g(x)<I-liminf g(1).
Proposition 1. If D is a G, set and 1€ then there exists a function f: X— R

such that G(f)=D - L.
Proof. Let g: X— R be the function which is defined in Proposition 0.

We define f: X— R as follows:
f(x) __{ g(x)+1 for xelnD,
“1glx) for xe X—(InD).

It is easy to show that f satisfies the above conditions.
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Proposition 2. Assume that B, D are G; subsets of X and B< D. Then there
exists I'e $ and there exists a function f: X— R such that C{f)= B and G(f)=
D-1I.

Proof. Let g: X—(—1, 1) be a function which is defined in the proposition
0i.e g|D=0 and

G(g)=C(g9)=D.

Let B=() G,, X—-B=J F,, F,=X-G,, F,cF,,, and F, are closed. For

neN neN
xe X — B let us define n(x)=min {n: xekF,}.
We define inductively the sequence (I.).en of subsets of X such that:

(i) L cF,, (v) Ln(Ti(g9)v Ti(g))=9.
(i) Lcl,.,
(iii) I, is dense in F, —(T,(g)v Ti(g)),
(iv) I, is countable.
Let {a,) be a sequence of positive real numbers such that > a, =1. For each n we

neN

define the function f,: X— R as follows:

a.(g(x)+3) for xel,

f,.(X)Z{ a,g(x) for x¢1,.

Thea C(f,)=D~Cl (I,)=D—F,.
Let us put f(x)= 2, fu(x).

Since {x: f(x)#f(x)}=U L=Ied, [limsup f(1)=I-limsup g(t) and

t—x t—x

I-lim inf f(¢) = I-lim inf g(1) for all x € X. Hence Ti(g) < Ti(f) and Ti(g) < Ti(f).

1—x —x

(a) If xeInD then there cxists n such that xe L. Let m(x)=min {neN:
xel,}. Then

f)=g(x)+3 > a,=3 > a,.>()=I-li:r:supf(0.

n=m(x) n=m(x)
Hence InD < X — G(f)-
(b) If xe D—1I then f(x)= g(x)=I-lim sup f(t)= I-lim inf f(r). Thus D—1I<c
G(f).
(¢) I x¢D and xéTi(g)uTi(g) then I-limsup f(r)=I-lim sup g(1)>

t—x

I-lim inf f(r). Hence G(f)=D—-L

t—x
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Assume that x € B. The uniform convergence of . f. implies the continuity of f

n=1

at x.

If xe D—BthenxeF,and xe [| Gi. The following two cases may occur:

k<n(x)

(a) There exists a sequence (x;) in I)— {x} such that lim x, = x. Then for each

k—>

keNf(x)=g(x)+3 > a, Thus

m=n(x)

lim sup f()=lim f(x)=3 2 an.

t—x k: =n(x)

Let (y.) be a sequence of points in X — I« such that lim y, =x. Then f(y)<

k—»0

g(¥»)+3 > a.. Hence liminf f()<lim f(yi)<3 D a.. Thus x¢ C(f).

m>n(x) t—x m>n(x)

(b) Assume that the point (a) do not hold. Then xe€ I, and there exists

a neighbourhood U of x such that U— {x} € G, Then f(x)=g(x)+3 D, an.
m=n(x)

and lim sup f(t)<3 Y a,., hence x ¢ C(f). Thus C(f)=B and G(f)=D-1.

t—x m>n(x)

Question, 0. Assume that B, D are G, subsets of X, Ie $, Bc D—1I and
D — Bc(Cl I Is there a function f: X— R such that C(f)=Band G(f)=D—1?

IIL.

We say that an ideal $<P(x) is uniform iff {A = X: card A <2 “} = $ Notice
that if CH or Martin’s Axiom are assumed then the ideal ¥ = P(X) of all sets of
first category and $< P(R") of all measure zero subsets of R" are uniform (cf.

[10]).

Lemma 2. Assume furthermore that an ideal $ is uniform. Let (A,).e~n be
a sequence of subsets of X. Then there exists a partition (K, ) .e~of X such that

VxeX VmeN [xedi(A,)>VneN xedi(A.nK,))].

Proof. The construction of K, is very similar to the construction of Bernstein’s
set (cf. [3], [6])-

Let a sequence (G,)..~ be a countable basis of X. For every ne N let (H,)
(E<2%) be an enumeration of the family {AcX: IIe INnB A=G,— I} (B
denotes the family of all Borel sets of X). It is possible for card % =2. Since # is
uniform and G, ¢ $ card H,=2 .

Notice that if G,nA,, ¢ # then H,nA, 4 5.
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We define

™m __{ HnE iff G,.f\A,,. Ef,
"7 HenA., iff G.nA.¢9.

Let (H;) (§<20) be an enumeration of all sets Hj, m, ne N, §<2“ and (r¢) an
enumeration of X.
We shall construct inductively a sequence (X, ) of the type 2%, wo

Xpo=min {xg: x:€ H,— {xu: k<wo, Y<n}},
&
xm=mgn {xe: e H,—{xp: y<nv(y=n & k<n)}}.

This construction is possible since card H, =2%.
Let us define sets K, as follows:

{xpm: n<2%} for n>0,
K. =
X- U K. for n=0.
neN—-{0)

The family {K,} satisfies the above condition. Indeed, if xe€di(A,) then
GiNA, € ¥ for some k. If GinA,.nK, € %, then there exists Be BN .S such that
BcG, and GinA..NnK, c B. This is impossible since the set H 7= (G — B)n A,
satisfies the condition HpA K, # 0.

Theorem. Let us assume that $is a uniform ideal on X. Let A, A,, B,, C, C, are
subsets of X such that
(i) CuCed,
(i) Bi=ANA,,
(lll) CQA—Bl, ClgAl—Bl,
(iv) there exists D = X such that D is a G, set and B,=D —(CuG,),
(v) the sets A — B, A, — B, do not contain subsets of the form U — I, where U is
open and non-empty and 1€ ¥,
(vi) E—D is a F, set (where E is defined in Lemma 0).
Then
(x) there exists a function f: X— R such that

G(Nh=B,, S(f)=A, Si()=A, =(f)=C, and Tll(f)=cl

If we assume furthermor. that B 15 a subset of X such that
(vii)) BBy, Bis a Gs set, B.— BcCl (CuC,) and
(viii) BNCl (Cu G ) =0 then C(f)=B.
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Proof. Theset R—Eisa F,seti.e. R—E=]J F,, F, are closed and F, c F,,,.

neN
By lemma 2 there exists a partition (K,)..n of X such that:
(0) Vxe X Vne N xed(K,),
(1) VxeX [xedi([-(AUA)]UB))
>VneN xed(([X-(AUA)]uB)NK,)],
(2) Vxe X VmeN [xedi(F,— A)>VneN xed(F.nK,— A)),
(3) Vxe X YmeN [xed(F,— A)>VneN xed(F.nK,—A))].

I. In the first step we shall construct a function g: X— R such that

I-llim inf g(¢f)=—1 and I-limsup g(¢)=1 forall ae X

t—x 1—x

The function g is defined as follows:

2n
2n+1

g(x)=(-1)" for xe K,.
It is easy to show that g satisfies the above conditions.
II. In the next step we shall construct a function h: X— R such that G(h)=

Ty(h)= Ti(h)=0, S;(h)=A — B, and Si(h)=A, - B.. Let

I-lim inf g(£)=—-1 for xe A, — B,
h(x)={ I-limsup g(1)=1 for xe A-B,,
g(x) for xe[X—(AUA)]UB,.

The following two cases may occur:

(a) xedi(A,—Bi)ndi(A—B)),

(b) since (v) holds, if (a) do not hold then x € di([ X~ (AuA1)]uB,). Hence
I-lim inf h(¢)=I-lim inf g(t)=—1, I-lim sup h(tf)=I-limsup g(t)=1 and the

t—x —x t—x —.

function h has the above properties.
IIl. Let for xe X—E, n(x)=min {neN: xeF,}. We define a following
function k: X— R

~n(x) —
R R
The following cases may occur:
(a) Let xe E. Then k is continuous at x. In fact, if x, — x then
¥meN ke N VI>k (x1€Gy) ie. M
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vmeN akeN VI>k |k(x)|<2 ™ Thus k(x,) —> 0= k(x) and x e C(k)

(b) Let xgEE. Since the assumption (v) holds, xedi(X—(A~B;)) and
X € d](X"‘ (Al - Bl)). Let

K={neN: xedi(F,—(A-B))}, L={neN: xed/(F.—(A,—B))},

_{minK it K~0, _(minL if L&,
M= »  if K=, ”‘°‘{ o if L=,

Notice that noe N or mpe N. Indeed, if for all ne N
x&di(F,—(A—B,)) and xé&di(F,—(A;— B,)) then for each n the set F, is
I-small at point x. Then x€ [} ¥1(X—F,)=E — a contradiction. If noe N and

neN
mo€ N then

I-lim sup k(¢)=2"" I-lim sup h(t)=2""° and

1—x —x

I-lim inf k(z)=2"" I-lim inf h(f)=—2"0.

1—x t—»x
Assume that noe N and my= . Hence

I‘lim Sup k(t): 2_"0 I_lim Sup h(t) — 2""0 and

—x t—x

I-lim inf k(t)=2"" I-lim inf h(t)=—2"".

t—x

Similarly, if moe N and no= then I-limsup k(¢)=2"" and I-lim inf k()=

—»x

—27". Since the sets F, F, are closed, xeF,nF,, Therefore n(x)<
min (nO’ rnO)‘

If xe A—B,; then k(x)=2""®z=]-lim sup k(t). So A —E c Si(k)— G(k).
If xe A, — B, then k(x)<I-lim inf k(¢). Hence A,— Ec S}(k)— G(k).

1—x

If xe X—(AUA,) then k(x)# I-lim sup k(t), k(x)# I-lim inf k(¢) and

I-lim inf k(¢)+# I-lim sup k().
Thus [X—(AUA))] - Ec[X - (Si(k)uSi(k))]u Ti(k)u Ti(k).

IV. In the fourth step we define a function I: X— R such that G(I)=E,
T,()=Ty1)=0, Si(I)=AUE and Sj(l)= A,VE.
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Let us define [ as follows:

( I-lim sup k() for xe (A — B)nTi(k),

—Xx

I-lim inf k() for xe (A, — B,)nTi(k),

t—x

I(x)=¢<
L (i inf k() + Flim sup k(t)) for xe[Ti(k)UTH(K)] - (AUA,)

2\ J

k(x) elsewhere.

Since {xe X: I(x)# k(x)} € ¥, for each xe X
I-lim inf [(t) = I-lim inf k() and I-lim sup [(¢) = I-lim su, k‘t).

t—x t—x t—x t—x

It is clear that [ satisfies the above conditions.
V. Since E—~Dis a F, setand E— D € $, there exists a sequence of closed sets
(H)nensuch that E- D=J H,, H.c H,.,and H, € $. Let (a,) ..~be a sequence

neN

of positive real numbers such that  a,=1 and a,=2 > a;. For every ne N

neN i=zn+1
there exists a function m,: X— (—a,, a,) such that:
(0) m, is continuous at every point x ¢ H,,
(1) Yxe H, [I-liminf m,(t)=—I-lim sup m,(t) = a,,

(2) VxeH, m,(x)=0.
We shall define the function m, as follows. There exists a sequence (w,) or natural
numbers such that w.;> w;, and the sets U, = {x e X: wi'>dist (x, H,)>wil,

are open and non-empty.

Let
a, for xeCl Uy,

m"(x)z{ —a, for xell Uiz

By Tietze- Urysohn Theorem we shall extend m, to the function >ntinuous on
X—-H,.
We define a function m: X— R such that §(r)=Si(m)=G(m)=X-J H,

neN

and T,(m)= Ti(m)=4.
Let m(x)= >, m,(x).

The verification that m has the above properties is very similar to the verification
that the adequate properties posses the function g which is defined in Proposition 0.
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Let j: X— R be the following function:

( Illiminf m(t) for xe A\nlJ H,,

t—x neN

j(x)={ Ilimsup m(t) for xe AnU H,,

—x neN
m(x) elsewhere.

Since {x e X: j(x) #m(x)} € %, for each x e X we have
I-lim inf j(t) = I-ljrr: inf m(t) and I-lim sup j(t) = I-lim sup m(¢).

t—x t—x —x

Hence G(j)=X~U H,, s,(j)=(x— U H,.)u(AnU Hn) ,

Sio)=(x- U Hn)u(Alr::gN H,)\ and T:(i)= Ti(j)=9.

VI. The final step consists in the construction of a function f: X— R such that
Si(f)=A, Si(f)=A;, G(f)=B,, Tu(f)=C and Ti(f)=C.
Let us define a function f as follows:

3 for xeC,
f(x)=9 -3 for xe G,
j(x)+1(x) for x¢ CuC,.
(a) It is clear that C < Ti(f) and C, < T'(f).

(b) Assume that xe X — ( U H,uCu C,). since the function j is continuous at x,
neN

I-lim inf f(¢t) = I-lim inf I(¢) +j(x) and

t—x —x

I-lim sup f(¢t)=I-lim sup [(¢f)+j(x). Hence,

t—x —x

if x¢J H.uCuUQG, then

0) xe G(f) iff xeG(D),
(1) xeS(f) iff xeS(),
) xeSi(f) iff xeSi).

Similarly, if xe | H, —(CuC,) then
neN
0) xeSi(f) iff xeS(j) and

(1) xeSi(f) iff xeSi(j).
Thus :he functicn f has the following property:



a(H=[G(H)-(CuC)]-U H.=[E-(CuC)]—-(E—D)=D—(CuC)=B,,

s =[50~ U H]o[s()nU H]uc=a,

neN

sitn=[s10- U H|u[si()nU H|uC=A. T()=C and Ti(H=C..

Remark. (MA) If X=R and £ is the ideal of all sets of the first category then
the conditions (i)—(v) and (x) are equivalent (see [5]).

Questions. 1. Let us assume that for A, A,, B;, C, C,c X the conditions
(1)—(v) and (vii) hold. Does then the statement (x) hold?

2. Let us assume that for A, A,, B, B,, C, C,c X the conditions (i}—(v) and
(vii) hold. Is there a function f: X— R such that

C()=B, G(H=B; S(fi=A, Si(f)=A;, T(f)=C and Ti(f)=C.?

IV.

In this part we shall consider the followig question: is the condition (v) from
Theorem essential ?

Let N denotes the ideal of all sets of the first category in X.

Proposition 3. If $ is a o-ideal and $c N or N = $ then for every function

f: X—R the set S;(f) — Gi(f) do not contain subsets of the form G — I where G is
non-empty and open and Ie $. -

Proof. Assume that U is an open and non-empty subset of X, Ie $ and
U—1I c Si(f). Then I-lim sup f(t)<f(x) for all xe U— I. Hence for each y> f(x)

there exists a neighbourhood V of x such that {te V: f(t)=y} e #. Let (p., g.) be
a sequence of all open, non-empty intervals such that p,, g. € Q. Then for each
n € N there exist a F, subset A,c U and J, € $ such that

(FIUY " %(Pas gu) = An A,

Let J=IulJ J, and B= U-1J. Then f| B belongs to the first class of Baire. Since

neN

Je$,BES. If $c N thenJeNand BEN. Similarly if N'c F then B £ N. By the
Baire Theorem the set of all points at which f|B not continuous is of the first
category in B. (cf. [9]) Thus there exists a point x e UnG(f|U) = Un G(f).

Proposition 4. Let X=R and $ be the ideal of all measure zero subsets of X.
Then there exists a function f: R— R such that

S[(f) =R and C[(f) = ﬂ
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Proof. Assume that A and B is a partition of R such that A is a set of the first

category and B € ¥. (cf. [6]). It is possible to assume that A,isa F, set, A=|J F,,

neN
the sets F, are pairwise disjoint, closed and nowhere dense (see [8]). Notice that
infinite many of F, have a positive measure. In fact, suppose that there exists me N

such that F, € $ for n>m Then the set F= J F, is closed, nowhere dense and

R —Fe $ — a contradiction. Hence it is possible to assume that F, ¢ $ for each
ne N.
Let us define a function f: R— R:

se={3

-t for xekF,,

for xeB.

Then f satisfies the conditions of this proposition.
If x e B then x € T:(f) = Si(f).

If xeF, and (x) is a sequence in A then almost all terms of (x;) belong to |J F.
k=n
Thus lim sup (x)<n~! and I-lim sup f(t) <f(x). Since for each me N the set
k—so0 t—x

J F« is nowhere dense, in every neighbourhood U of x there exist an open,

ksm

non-empty subset VR — (J F.. Thus I-lim inf f(f)<m™ for all me N and

ksm t—x

consequelly, I-lim inf f(t)=0. Hence G(f)=#@ and S(f)=R.

—x

For every A cX we define Int; A as follows:
Int; A={xe A: 3V(xeV, Visopenand V— A € $)}.

Proposition 5. For every subset A of X there exists a function f: X— R such
that Si(f) = A.

Proof. Let B=Int; A. By Lemma O there exists an open set G and I € # such
that B=G—1I and G=yi(G).
Let (K, ).en be a partition of the set X — G such that for each x € X if xe (X — G)
then x € di(K, — G).

We define f as follows:
1 for xeA,

f(x)= (—1)~ﬁ for xeK,—A,

-1 for xeI—A.
For this function S;(f)=A.
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If xe A then x e di(X— G) or x eI Indeed, suppose that x¢ A and x ¢ I. Then
x¢ B and x ¢ G. Since Y,(G)=G, xe di(X—G).
If xeI— A then xeSHf) = X—S:i(f).

If xed (X~ G) then f(x)<I-lim sup (). Thus A =S(f).
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POLAND

O TOYKAX I-HEIMIPEPEIBHOCTU H I-ITOJIYHEINIPEPBIBHOCTH
Tomasz Natkaniec

Pe3ome

Mycts (X, J) — nonsckoe npocTpacTBo U F =2* — ectb o-ugean. I-tomonorueit Ha X Gynem
Ha3bIBaTh ceMeiicTBO {A —B: A€ J, Be $}. B paGoTe MccneqoBaHbl CBA3H MEXAY MHOXeCTBaMH
TOYeK HEMpepbIBHOCTH, TOYeK I-HEMpepBIBHOCTH M TOYeK I-noNyHenpepbIBHOCTH BeLLiECTBEHHOM
¢ynkumn f: X— R. B yacTHOCTH, paccMOTpeH ciaydait, korga X= R u $ ecTb Hean Bcex MHOXECTB
¢ Mepoii Jle6era papHoil Hymo. B ciyyae, Korna $ siBasieTcs MieanioM MHOXECTB NepBOi KaTeropHH,
06001IeHb! pe3ynbTaThl 3. I'paHns.
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