Tomasz Natkaniec
On I-continuity and I-semicontinuity points

Mathematica Slovaca, Vol. 36 (1986), No. 3, 297–312

Persistent URL: http://dml.cz/dmlcz/128786

Terms of use:
© Mathematical Institute of the Slovak Academy of Sciences, 1986

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz
ON I-CONTINUITY
AND I-SEMICONTINUITY POINTS

TOMASZ NATKANIEC

Let $f: X \rightarrow \mathbb{R}$ be a real function. The purpose of the present paper is to study the
relation between the set $C(f)$ of all points at which f is continuous, the set $G(f)$ of
all points at which f is I-continuous, the set $S_i(f)$ of all points at which f is I-upper
semicontinuous and the set $S^1_i(f)$ of all points at which f is I-lower semicontinuous.

Let X be a Polish space and $\mathcal{J} \subseteq \mathcal{P}(X)$ be a σ-complete ideal which has the
following properties:
(a) if $x \in X$ then $\{x\} \in \mathcal{J}$,
(b) if $\emptyset \neq U \subseteq X$ is open then $U \notin \mathcal{J}$.

We say that a subset $A \subseteq X$ is \mathcal{J}-small at point $p \in X$ iff there exists a neighbour­
hood $U(p)$ of p such that $U(p) \cap A \in \mathcal{J}$. We denote by $d_I(A)$ the set of all points at
which A is not \mathcal{J}-small, namely

$$d_I(A) = \{ p: \forall V(p) \ V(p) \cap A \in \mathcal{J} \}$$

($d_I(A)$ is A^* in the sense of Hashimoto [2]).

The family of subsets of X

$$\{ G - I: G \text{ is open and } I \in \mathcal{J} \}$$

is a new topology on X (it is *-topology in the sense of Hashimoto or "\mathcal{J}-topology"
in the sense of Vaidyanathoswamy — c.f. [2], [4], [7], [11]).

We say that a function $f: X \rightarrow \mathbb{R}$ is I-continuous (semicontinuous) iff f is
continuous (semicontinuous) in the \mathcal{J}-topology.

We use the following notation:

$$I\liminf_{t \to x} f(t) = \sup \{ y \in \mathbb{R}: x \notin d_I(\{ t: y > f(t) \}) \},$$

$$I\limsup_{t \to x} f(t) = \inf \{ y \in \mathbb{R}: x \notin d_I(\{ t: y < f(t) \}) \},$$

$C(f)$ is the set of all points at which f is continuous,

$$C(f) = \{ x \in X: I\liminf_{t \to x} f(t) = f(x) = I\limsup_{t \to x} f(t) \},$$
\[S_t(f) = \{ x \in X : \limsup_{t \to x} f(t) \leq f(x) \}, \]
\[S^1_t(f) = \{ x \in X : \liminf_{t \to x} f(t) \geq f(x) \}, \]
\[T_t(f) = \{ x \in X : \limsup_{t \to x} f(t) < f(x) \}, \]
\[T^1_t(f) = \{ x \in X : \liminf_{t \to x} f(t) > f(x) \}. \]

Let \(\psi_t(A) \) denotes the set of all points at which the set \(X - A \) is \(\mathcal{J} \)-small, namely
\[\psi_t(A) = \{ x : \exists U(x) \ U(x) - A \in \mathcal{J} \}. \]

\(\psi_t(A) = X - (X - A)^* \) in the sense of Hashimoto.

Notice that

(i) for every \(A \subseteq X \) the set \(\psi_t(A) \) is open,
(ii) if \(A \subseteq B \) then \(\psi_t(A) \subseteq \psi_t(B) \),
(iii) for every \(A \subseteq X \) \(\psi_t(A) - A \in \mathcal{J} \).

In fact, if \((U_n)_{n \in \mathbb{N}} \) is a basis of \(X \) and \(A_n = \{ x \in \psi_t(A) : U(x) = U_n \} \) then
\[A_n - A \subseteq U_n - A \in \mathcal{J} \quad \text{and} \quad \psi_t(A) - A = \bigcup_{n \in \mathbb{N}} A_n - A \in \mathcal{J}. \]

We shall use the following simple facts.

Fact 0. For every function \(f : X \to \mathbb{R} \) we have
\[\limsup_{t \to x} f(t) = -\liminf_{t \to x} (-f)(t). \]

Fact 1. If functions \(f, g : X \to \mathbb{R} \) are bounded then

a) \[\limsup_{t \to x} f(t) + \limsup_{t \to x} g(t) \geq \limsup_{t \to x} (f + g)(t) \geq \limsup_{t \to x} f(t) + \liminf_{t \to x} g(t), \]

b) \[\liminf_{t \to x} f(t) + \liminf_{t \to x} g(t) \leq \liminf_{t \to x} (f + g)(t) \leq \liminf_{t \to x} f(t) + \limsup_{t \to x} g(t). \]

Proof. a) Assume that \(\limsup_{t \to x} f(t) = a \) and \(\limsup_{t \to x} g(t) = b \). Then
\[x \notin d_t\left(\left\{ t : f(t) > a + \frac{\varepsilon}{2} \right\}\right) \cup d_t\left(\left\{ t : g(t) > b + \frac{\varepsilon}{2} \right\}\right) \quad \text{for all} \ \varepsilon > 0. \]
Hence \(x \notin d_t(\{ t : f(t) + g(t) > a + b + \varepsilon \}) \) for all \(\varepsilon > 0 \) and
\[\limsup_{t \to x} (f + g)(t) \leq a + b. \]
\[I\limsup_{t \to x} f(t) = I\limsup_{t \to x} [(f + g)(t) - g(t)] \leq I\limsup_{t \to x} (f + g)(t) + I\limsup_{t \to x} (-g)(t) = I\limsup_{t \to x} (f + g)(t) - I\liminf_{t \to x} g(t). \]

Hence \(I\limsup_{t \to x} f(t) + I\liminf_{t \to x} g(t) \leq I\limsup_{t \to x} (f + g)(t) \).

The case (b) is similar.

Fact 2. If \(\sum_{n \in \mathbb{N}} f_n(t) \) is uniformly convergent in some neighbourhood \(U \) of \(x \) then

\[I\limsup_{t \to x} \sum_{n \in \mathbb{N}} f_n(t) \leq \sum_{n \in \mathbb{N}} I\limsup_{t \to x} f_n(t) \]

and

\[I\liminf_{t \to x} \sum_{n \in \mathbb{N}} f_n(t) \geq \sum_{n \in \mathbb{N}} I\liminf_{t \to x} f_n(t). \]

This fact follows from Fact 1.

Lemma 0. If \(D \subseteq X \) is a \(G_6 \) set then there exists \(E \subseteq X \) such that \(E \) is a \(G_6 \) set, \(D \subseteq E \), \(E - D \in \mathcal{F} \), \(E = \bigcap \{ G_n \mid G_n \text{ are open}, G_{n+1} \subseteq G_n \text{ and } E = \bigcap \psi_1(G_n) \}. \)

Proof. Assume that \(D = \bigcap \psi_1(H_n) \), \(H_n \) is open and \(H_{n+1} \subseteq H_n \). Then \(\psi_1(H_{n+1}) \subseteq \psi_1(H_n) \), \(\psi_1(H_n) \) is open and \(\psi_1(H_n) - H_n \in \mathcal{F} \). We define \(E \) as follows:

\[E = \bigcap \psi_1(H_n). \]

Then \(\psi_1(\psi_1(H_n)) = \psi_1(H_n) \) and \(E - D = \bigcap \psi_1(H_n) - \bigcap \psi_1(H_n) \subseteq \bigcup (\psi_1(H_n) - H_n) \).

Remark. If \(\mathcal{F} \) is the ideal of the sets of first category then \(\psi_1(A) = A \) means that \(A \) is a regular open set i.e. \(A = \psi_1(A) \) iff \(\text{Int Cl } A = A \).

Proof. If \(A = \psi_1(A) \) then \(A \) is open, so \(A \subseteq \text{Int Cl } A \). If \(x \in \text{Int Cl } A \) then there exists a neighbourhood \(U \) of \(x \) such that \(U \subseteq \text{Cl } A \) Since \(A \) is open and dense in \(U \), \(A \) is residual in \(U \) and \(U - A \in \mathcal{F} \). Hence \(x \in \psi_1(A) = A \).

If \(\text{Int Cl } A = A \) then \(A \) is open and \(A \subseteq \psi_1(A) \). If \(x \in \psi_1(A) \) then there exists a neighbourhood \(U \) of \(x \) such that \(U - A \in \mathcal{F} \). Then \(U \subseteq \text{Cl } A \) and \(x \in \text{Int Cl } A = A \).

I.

Fact 0. \(C(f) \) is a \(G_6 \) set.

It is the well known fact (cf. [9]).
Fact 1. $T_1(f) \cup T_1(f) \in \mathscr{J}$.

Proof. Let $(U_n)_{n \in \mathbb{N}}$ (resp. $(V_n)_{n \in \mathbb{N}}$) be a countable basis of X (resp. R). If $x \in T_1(f)$ then $f(x) > \liminf_{t \rightarrow x} f(t)$. Thus there exist $n(x), m(x) \in \mathbb{N}$ such that $x \in U_{n(x)}, f(x) \in V_{m(x)}$ and $U_{n(x)} \cap f^{-1} * V_{m(x)} \in \mathscr{J}$. Let $A(n, m) = \{ x \in T_1(f) : n(x) = n \text{ and } m(x) = m \}$. Then for every $x \in A(n, m)$ we have $A(n, m) \subseteq U_{n(x)} \cap f^{-1} * V_{m(x)} \in \mathscr{J}$. Hence $T_1(f) = \bigcup_{n, m \in \mathbb{N}} A(n, m) \in \mathscr{J}$. Similarly, $T_1(f) \in \mathscr{J}$. (Z. Grande in [1] proved this fact for $X = R$ and the ideal of all sets of the first category.)

Fact 2. There exists a G_δ set D such that $C_1(f) = D - (T_1(f) \cup T_1(f))$.

Proof. We define D as follows:

$$D = \{ x \in X : \liminf_{t \rightarrow x} f(t) = \limsup_{t \rightarrow x} f(t) \}.$$

It is clear that $C_1(f) = D - (T_1(f) \cup T_1(f))$. We shall prove that $X - D$ is a F_σ set.

$$X - D = \{ x \in X : \liminf_{t \rightarrow x} f(t) < \limsup_{t \rightarrow x} f(t) \}.$$

Let $A(p, q) = \{ x \in X : \liminf_{t \rightarrow x} f(t) \leq p \text{ and } \limsup_{t \rightarrow x} f(t) \geq q \}$. For each $p, q \in Q$ the set $A(p, q)$ is closed. Indeed, if $x_n \rightarrow x$ and $\{ x_n : n \in \mathbb{N} \} \subseteq A(p, q)$ then $\liminf_{t \rightarrow x} f(t) \leq p$ and $\limsup_{t \rightarrow x} f(t) \geq q$.

Since $X - D = \bigcup_{p, q \in Q} A(p, q)$, $X - D$ is a F_σ set.

Fact 3. $C_1(f) - C(f) \subseteq \text{Cl} (T_1(f) \cup T_1(f))$.

Proof. Assume that $x \in C_1(f)$ and there exists a neighbourhood U of x such that $U \cap (T_1(f) \cup T_1(f)) = \emptyset$ i.e. for each $t \in U$

$$\liminf_{s \rightarrow t} f(s) \leq f(t) \leq \limsup_{s \rightarrow t} f(t) \quad \text{and}$$

$$\liminf_{t \rightarrow x} f(t) = f(x) = \limsup_{t \rightarrow x} f(t).$$

Notice that:

(i) $\liminf_{t \rightarrow x} f(t) \leq \liminf_{s \rightarrow t} f(s)$ and

\[300\]
\((ii) \ I\text{-}\lim \sup_{t \to x} f(t) \geq \lim \sup_{t \to x} \left(I\text{-}\lim \sup_{t \to l} f(s) \right) \).

In fact, let \(x_n \to x \) such that

\[
\lim_{n \to \infty} \left(I\text{-}\lim \inf_{s \to x_n} f(s) \right) = \lim \inf_{t \to x} \left(I\text{-}\lim \inf_{t \to l} f(s) \right) = g.
\]

Suppose that \(I\text{-}\lim \inf_{t \to x} f(t) > g \). Then for some \(\epsilon > 0 \) \(I\text{-}\lim \inf_{t \to x} f(t) > g + \epsilon \) i.e. there exists a neighbourhood \(U \) of \(x \) such that \(\{ t \in U : f(t) < g + \epsilon \} \in \mathcal{J} \). Since there exists \(k \in \mathbb{N} \) such that for every \(n > k \) \(x_n \in U \) then for \(n > k \) \(I\text{-}\lim \inf_{s \to x_n} f(s) \geq g + \epsilon \). Hence

\[
\lim_{n \to \infty} \left(I\text{-}\lim \inf_{s \to x_n} f(s) \right) \geq g + \epsilon \quad \text{— a contradiction.}
\]

The same arguments work in the case (ii).

Thus

\[
I\text{-}\lim \inf_{t \to x} f(t) \leq \lim \inf_{t \to x} \left(I\text{-}\lim \inf_{t \to l} f(s) \right) \leq \lim \inf_{t \to x} f(t) \leq \lim \sup_{t \to x} f(t) \leq \lim \sup_{t \to x} \left(I\text{-}\lim \sup_{s \to t} f(s) \right) = I\text{-}\lim \sup_{t \to x} f(t) = f(x).
\]

Hence \(\lim \inf_{t \to x} f(t) = \lim \sup_{t \to x} f(t) = f(x) \) and \(x \in \mathcal{C}(f) \).

Corollary.

(a) \(\text{Int} \ C_i(f) \subseteq \mathcal{C}(f) \),

(b) If \(f \) is \(I \)-continuous then \(f \) is continuous.

II.

Let \(\mathcal{B} \) denotes the family of Borel sets on \(X \). We say that \(\mathcal{J} \) is a Borel ideal on \(X \) iff for every \(A \in \mathcal{J} \) there exists \(B \in \mathcal{J} \cap \mathcal{B} \) such that \(A \subseteq B \). (The collection of all countable subsets of \(X \), the family of all first category subsets of \(X \) and the collection of all measure zero subsets of \(R^n \) are Borel ideals.)

In this and next parts of this paper we assume that \(\mathcal{J} \) is a Borel ideal and for every open non-void subset \(G \subseteq X \) card \(G \) is continuum.

Lemma 1. There exists a partition \(A, B \) of \(X \) such that for every \(x \in X \) and every closed set \(F \subseteq X \) if \(x \in d_t(F) \) then \(x \in d_t(F \cap A) \) and \(x \in d_t(F \cap B) \).

The construction of \(A \) and \(B \) is very similar to the construction of Bernstein’s set (cf. [3], [6], see proof of Lemma 2).

Proposition 0. If \(D \) is a \(G_\delta \) set then, there exists a function \(g : X \to R \) such that \(C(g) = C_i(g) = D \).
Proof. Let $X = A \cup B$, $A \cap B = \emptyset$, where A and B are defined in Lemma 1. Assume that $X - D = \bigcup_{n \in N} F_n$, where $F_n \subseteq F_{n+1}$ and F_n are closed. Let $(a_n)_{n \in N}$ be a sequence of positive real numbers such that $\sum_{n \in N} a_n = 1$ and $a_n > 2 \sum_{k > n} a_k$.

For every $n \in N$, we define the function $g_n : X \to \mathbb{R}$:

$$g_n(x) = \begin{cases} a_n & \text{for } x \in F_n \cap A, \\ -a_n & \text{for } x \in F_n \cap B, \\ 0 & \text{for } x \in X - F_n. \end{cases}$$

Then

(a) $C_i(g_n) = C(g_n) = X - F_n$,

(b) $\liminf_{t \to x} g_n(t) \geq -a_n$ and $\limsup_{t \to x} g_n(t) \leq a_n$ for all $x \in F_n$.

Let us define $g : X \to \mathbb{R}$ as follows:

$$g(x) = \sum_{n \in N} g_n(x).$$

The uniform convergence of this series implies the continuity of g on D. If $x \notin D$ then there exists $n \in N$ such that $x \in F_n$. Let $n(x) = \min \{ n \in N : x \in F_n \}$. Then, if $x \in \psi_l(F_n)$ so $g(x) = \sum_{k \geq n(x)} a_k$

$$\limsup_{t \to x} g(t) \geq \limsup_{t \to x} g_n(x(t)) + \sum_{k \geq n(x)} \liminf_{t \to x} g_k(t) \geq a_{n(x)} - \sum_{k \geq n(x)} a_k > 0 \text{ and }$$

$$\liminf_{t \to x} g(t) \leq \liminf_{t \to x} g_n(x(t)) + \sum_{k \geq n(x)} \limsup_{t \to x} g_k(t) \leq -a_{n(x)} + \sum_{k \geq n(x)} a_k < 0.$$

Hence $x \notin \{ x \in X : \liminf_{t \to x} g(t) = \limsup_{t \to x} g(t) \}$. If $x \in A \cap F_n - \psi_l(F_n)$ then $g(x) = \sum_{k > n(x)} a_k \geq I \limsup_{t \to x} g(t)$. Similarly, if $x \in B \cap F_n - \psi_l(F_n)$ then $g(x) < I \liminf_{t \to x} g(t)$.

Proposition 1. If D is a G_δ set and $I \in \mathfrak{I}$ then there exists a function $f : X \to \mathbb{R}$ such that $C_i(f) = D - I$.

Proof. Let $g : X \to \mathbb{R}$ be the function which is defined in Proposition 0. We define $f : X \to \mathbb{R}$ as follows:

$$f(x) = \begin{cases} g(x) + 1 & \text{for } x \in I \cap D, \\ g(x) & \text{for } x \in X - (I \cap D). \end{cases}$$

It is easy to show that f satisfies the above conditions.
Proposition 2. Assume that B, D are G_δ subsets of X and $B \subseteq D$. Then there exists $I \in \mathcal{I}$ and there exists a function $f: X \to \mathbb{R}$ such that $C(f) = B$ and $G(f) = D - I$.

Proof. Let $g: X \to (-1, 1)$ be a function which is defined in the proposition 0 i.e. $g|D = 0$ and $C(g) = C(f) = D$.

Let $B = \bigcap_{n \in \mathbb{N}} G_n$, $X - B = \bigcup_{n \in \mathbb{N}} F_n$, $F_n = X - G_n$, $F_n \subseteq F_{n+1}$ and F_n are closed. For $x \in X - B$ let us define $n(x) = \min \{ n : x \in F_n \}$. We define inductively the sequence $(I_n)_{n \in \mathbb{N}}$ of subsets of X such that:

- (i) $I_n \subseteq F_n$,
- (ii) $I_n \subseteq I_{n+1}$,
- (iii) I_n is dense in $F_n - (T_i(g) \cup T_i'(g))$,
- (iv) I_n is countable.

Let (a_n) be a sequence of positive real numbers such that $\sum_{n \in \mathbb{N}} a_n = 1$. For each n we define the function $f_n: X \to \mathbb{R}$ as follows:

$$f_n(x) = \begin{cases} a_n(g(x) + 3) & \text{for } x \in I_n, \\ a_n g(x) & \text{for } x \notin I_n. \end{cases}$$

Then $C(f_n) = D - \text{Cl}(I_n) = D - F_n$.

Let us put $f(x) = \sum_{n \in \mathbb{N}} f_n(x)$.

Since $\{ x : f(x) \neq f_0(x) \} = \bigcup_{n \in \mathbb{N}} I_n \in \mathcal{I}$, I-lim sup $f(t) = I$-lim sup $g(t)$ and I-lim inf $f(t) = I$-lim inf $g(t)$ for all $x \in X$. Hence $T_i(g) \subseteq T_0(f)$ and $T_i'(g) \subseteq T_0'(f)$.

(a) If $x \in I \cap D$ then there exists n such that $x \in I_n$. Let $m(x) = \min \{ n \in \mathbb{N} : x \in I_n \}$. Then

$$f(x) = g(x) + 3 \sum_{n > m(x)} a_n = 3 \sum_{n > m(x)} a_n > 0 = I$$-lim sup $f(t)$.

Hence $I \cap D \subseteq X - C(f)$.

(b) If $x \in D - I$ then $f(x) = g(x) = I$-lim sup $f(t) = I$-lim inf $f(t)$. Thus $D - I \subseteq C(f)$.

(c) If $x \notin D$ and $x \notin T_i(g) \cup T_i'(g)$ then I-lim sup $f(t) = I$-lim sup $g(t) > I$-lim inf $f(t)$. Hence $C(f) = D - I$. 303
Assume that $x \in B$. The uniform convergence of $\sum_{n=1}^{\infty} f_n$ implies the continuity of f at x.

If $x \in D - B$ then $x \in F_{n(x)}$ and $x \in \bigcap_{k < n(x)} G_k$. The following two cases may occur:

(a) There exists a sequence (x_k) in $I_{n(x)} - \{x\}$ such that $\lim_{k \to \infty} x_k = x$. Then for each $k \in N$

$$f(x_k) \geq g(x_k) + 3 \sum_{m \supseteq n(x)} a_m.$$

Thus

$$\limsup_{t \to x} f(t) \geq \lim_{k \to \infty} f(x_k) \geq 3 \sum_{m \supseteq n(x)} a_m.$$

Let (y_k) be a sequence of points in $X - I_{n(x)}$ such that $\lim y_k = x$. Then $f(y_k) \leq g(y_k) + 3 \sum_{m \supseteq n(x)} a_m$. Hence $\liminf_{t \to x} f(t) \leq \lim_{k \to \infty} f(y_k) \leq 3 \sum_{m \supseteq n(x)} a_m$. Thus $x \notin C(f)$.

(b) Assume that the point (a) do not hold. Then $x \in I_{n(x)}$ and there exists a neighbourhood U of x such that $U - \{x\} \subseteq G_{n(x)}$. Then $f(x) = g(x) + 3 \sum_{m \supseteq n(x)} a_m$ and $\limsup_{t \to x} f(t) \leq 3 \sum_{m \supseteq n(x)} a_m$, hence $x \notin C(f)$. Thus $C(f) = B$ and $C_l(f) = D - I$.

Question 0. Assume that B, D are G_δ subsets of X, $I \in \mathcal{J}$, $B \subseteq D - I$ and $D - B \subseteq \text{Cl} I$. Is there a function f: $X \to \mathbb{R}$ such that $C(f) = B$ and $C_l(f) = D - I$?

III.

We say that an ideal $\mathcal{I} \subseteq P(X)$ is uniform iff $\{A \subseteq X: \text{card } A < 2^\alpha\} \subseteq \mathcal{I}$. Notice that if CH or Martin's Axiom are assumed then the ideal $\mathcal{I} \subseteq P(X)$ of all sets of first category and $\mathcal{I} \subseteq P(R^n)$ of all measure zero subsets of R^n are uniform (cf. [10]).

Lemma 2. Assume furthermore that an ideal \mathcal{I} is uniform. Let $(A_n)_{n \in N}$ be a sequence of subsets of X. Then there exists a partition $(K_n)_{n \in N}$ of X such that

$$\forall x \in X \forall m \in N \quad [x \in d_l(A_m) \Rightarrow \exists n \in N \quad x \in d_l(A_m \cap K_n)].$$

Proof. The construction of K_n is very similar to the construction of Bernstein's set (cf. [3], [6]).

Let a sequence $(G_n)_{n \in N}$ be a countable basis of X. For every $n \in N$ let (H_n) $(\xi < 2^\omega)$ be an enumeration of the family $\{A \subseteq X: \exists I \in \mathcal{I} \cap \mathcal{B} A = G_n - I\}$ (\mathcal{B} denotes the family of all Borel sets of X). It is possible for card $\mathcal{B} = 2^\omega$. Since \mathcal{I} is uniform and $G_n \notin \mathcal{I}$, card $H_n = 2^{<\omega}$. Notice that if $G_n \cap A_m \notin \mathcal{I}$ then $H_n \cap A_m \notin \mathcal{I}$.

304
We define
\[H_m^n = \begin{cases} \quad \text{iff } G_n \cap A_m \in \mathcal{I}, \\ H_n^k \cap A_m \quad \text{iff } G_n \cap A_m \notin \mathcal{I}. \end{cases} \]

Let \((H_n^k) (\xi < 2^{\omega_0})\) be an enumeration of all sets \(H_m^n, m, n \in \mathbb{N}, \xi < 2^{\omega_0}\) and \((r_n)\) an enumeration of \(X\).

We shall construct inductively a sequence \((x_\xi, n)\) of the type \(2^{\omega_0} \cdot \omega_0\)

\[x_{n0} = \min \{ x_\xi: x_\xi \in H_n - \{ x_{yk}: k < \omega_0, \gamma < \eta \} \}, \]

\[x_{nn} = \min \{ x_\xi: x_\xi \in H_n - \{ x_{yk}: \gamma < \eta \lor (\gamma = \eta & k < n) \} \}. \]

This construction is possible since \(\text{card } H_n = 2^{\omega_0}\).

Let us define sets \(K_n\) as follows:

\[K_n = \begin{cases} \{ x_m : \eta < 2^{\omega_0} \} & \text{for } n > 0, \\ X - \bigcup_{n \in \mathbb{N} - \{0\}} K_n & \text{for } n = 0. \end{cases} \]

The family \(\{K_n\}\) satisfies the above condition. Indeed, if \(x \in d_i(A_m)\) then \(G_k \cap A_m \in \mathcal{I}\) for some \(k\). If \(G_k \cap A_m \cap K_n \in \mathcal{I}\), then there exists \(B \in \mathcal{B} \cap \mathcal{I}\) such that \(B \subseteq G_k\) and \(G_k \cap A_m \cap K_n \subseteq B\). This is impossible since the set \(H_n^k = (G_k - B) \cap A_m\) satisfies the condition \(H_n^k \cap K_n \neq \emptyset\).

Theorem. Let us assume that \(\mathcal{I}\) is a uniform ideal on \(X\). Let \(A, A_1, B_1, C, C_1\) are subsets of \(X\) such that

(i) \(C \cup C_1 \in \mathcal{I}\),
(ii) \(B_1 = A \cap A_1\),
(iii) \(C \subseteq A - B_1, \quad C_1 \subseteq A_1 - B_1\),
(iv) there exists \(D \subseteq X\) such that \(D\) is a \(G_\delta\) set and \(B_1 = D - (C \cup C_1)\),
(v) the sets \(A - B_1, A_1 - B_1\) do not contain subsets of the form \(U - I\), where \(U\) is open and non-empty and \(I \in \mathcal{I}\),
(vi) \(E - D\) is a \(F_\sigma\) set (where \(E\) is defined in Lemma 0).

Then

(x) there exists a function \(f: X \rightarrow R\) such that

\[G_1(f) = B_1, \quad S_1(f) = A, \quad S_1(f) = A_1, \quad \bar{c}_1(f) = C, \text{ and } T_1(f) = C_1. \]

If we assume furthermore that \(B\) is a subset of \(X\) such that

(vii) \(B \subseteq B_1, B\) is a \(G_\delta\) set, \(B_1 - B \subseteq \text{Cl} (C \cup C_1)\) and
(viii) \(B \cap \text{Cl} (C \cup C_1) = \emptyset\) then \(C(f) = B\).
Proof. The set $R - E$ is a F_{σ} set i.e. $R - E = \bigcup_{n \in \mathbb{N}} F_n$, F_n are closed and $F_n \subseteq F_{n+1}$.

By lemma 2 there exists a partition $(K_n)_{n \in \mathbb{N}}$ of X such that:

0. $\forall x \in X \ \forall n \in \mathbb{N} \ x \in d_i(K_n)$,
1. $\forall x \in X \ [x \in d_i([- (A \cup A_i)] \cup B_i) \Rightarrow \forall n \in \mathbb{N} \ x \in d_i((X - (A \cup A_i)] \cup B_i) \cap K_n)]$,
2. $\forall x \in X \ \forall m \in \mathbb{N} \ [x \in d_i(F_m - A) \Rightarrow \forall n \in \mathbb{N} \ x \in d_i(F_m \cap K_n - A)]$,
3. $\forall x \in X \ \forall m \in \mathbb{N} \ [x \in d_i(F_m - A_i) \Rightarrow \forall n \in \mathbb{N} \ x \in d_i(F_m \cap K_n - A_i)]$.

I. In the first step we shall construct a function $g: X \rightarrow R$ such that

$I\lim_{t \rightarrow x} g(t) = -1$ and $I\lim_{t \rightarrow x} g(t) = 1$ for all $a \in X$

The function g is defined as follows:

$$g(x) = (-1)^n \frac{2n}{2n+1} \quad \text{for } x \in K_n.$$

It is easy to show that g satisfies the above conditions.

II. In the next step we shall construct a function $h: X \rightarrow R$ such that $C_i(h) = T_i(h) = T_i(h) = \emptyset$, $S_i(h) = A - B_i$ and $S_i(h) = A_1 - B_i$. Let

$$h(x) = \begin{cases}
I\lim_{t \rightarrow x} g(t) = -1 & \text{for } x \in A_1 - B_i, \\
I\lim_{t \rightarrow x} g(t) = 1 & \text{for } x \in A - B_i, \\
g(x) & \text{for } x \in [X - (A \cup A_i)] \cup B_i.
\end{cases}$$

The following two cases may occur:

(a) $x \in d_i(A_i - B_i) \cap d_i(A - B_i)$,
(b) since (v) holds, if (a) do not hold then $x \in d_i([- (A \cup A_i)] \cup B_i)$. Hence

$I\lim_{t \rightarrow x} h(t) = I\lim_{t \rightarrow x} g(t) = -1$, $I\lim_{t \rightarrow x} h(t) = I\lim_{t \rightarrow x} g(t) = 1$ and the function h has the above properties.

III. Let for $x \in X - E$, $n(x) = \min \{n \in \mathbb{N} : x \in F_n\}$. We define a following function $k: X \rightarrow R$

$$k(x) = \begin{cases} 2^{-n(x)}h(x) & \text{for } x \in X - E, \\
0 & \text{for } x \in E.
\end{cases}$$

The following cases may occur:

(a) Let $x \in E$. Then k is continuous at x. In fact, if $x_n \xrightarrow{\text{a}} x$ then

$\forall m \in \mathbb{N} \ \exists l \in \mathbb{N} \ \forall l > k \ (x_i \in G_m)$ i.e.
∀m ∈ N ⇒ k ∈ N ∀l > k \left| k(x_l)\right| < 2^{-m}. Thus k(x_n) \xrightarrow{n \to \infty} 0 = k(x) and x ∈ C(k).

(b) Let x ∈ E. Since the assumption (v) holds, x ∈ d_1(X - (A - B_1)) and x ∈ d_1(X - (A_1 - B_1)). Let
\[K = \{ n ∈ N: x ∈ d_1(F_n - (A - B_1))\}, \quad L = \{ n ∈ N: x ∈ d_1(F_n - (A_1 - B_1))\}, \]
\[n_0 = \begin{cases} \min K & \text{if } K \neq \emptyset, \\ \infty & \text{if } K = \emptyset, \end{cases} \quad m_0 = \begin{cases} \min L & \text{if } L \neq \emptyset, \\ \infty & \text{if } L = \emptyset, \end{cases} \]
Notice that n_0 ∈ N or m_0 ∈ N. Indeed, if for all n ∈ N x ∉ d_1(F_n - (A - B_1)) and x ∉ d_1(F_n - (A_1 - B_1)) then for each n the set F_n is I-small at point x. Then x ∈ \bigcap_{n ∈ N} \psi_t(X - F_n) = E — a contradiction. If n_0 ∈ N and m_0 ∈ N then
\[I\lim_{t \to x} \sup k(t) = 2^{-m_0} I\lim_{t \to x} \inf k(t) = 2^{-n_0}. \]
Assume that n_0 ∈ N and m_0 = ∞. Hence
\[I\lim_{t \to x} \sup k(t) = 2^{-m_0} I\lim_{t \to x} \inf k(t) = 2^{-n_0}. \]
Similarly, if m_0 ∈ N and n_0 = ∞ then I\lim_{t \to x} \sup k(t) = 2^{-m_0} and I\lim_{t \to x} \inf k(t) = -2^{-n_0}. Since the sets F_{m_0}, F_{n_0} are closed, x ∈ F_{m_0} ∩ F_{n_0}. Therefore n(x) ≤ \min (n_0, m_0).

If x ∈ A - B_1 then k(x) = 2^{-n_0} \geq I\lim_{t \to x} \sup k(t). So A - E ⊆ S_I(k) - C_I(k).

If x ∈ A_1 - B_1 then k(x) ≤ I\lim_{t \to x} \inf k(t). Hence A_1 - E ⊆ S^I_I(k) - C_I(k).

If x ∈ X - (A ∪ A_1) then k(x) ≠ I\lim_{t \to x} \sup k(t), k(x) ≠ I\lim_{t \to x} \inf k(t) and
\[I\lim_{t \to x} \sup k(t) \neq I\lim_{t \to x} \inf k(t). \]
Thus \[X - (A ∪ A_1) - E \subseteq [X - (S_I(k) ∪ S^I_I(k))] ∪ T_I(k) ∪ T^I_I(k). \]

IV. In the fourth step we define a function I: X → R such that C_I(l) = E, T_I(l) = T^I_I(l) = ∅, S_I(l) = A ∪ E and S^I_I(l) = A_1 ∪ E.
Let us define \(l \) as follows:

\[
l(x) = \begin{cases}
 \liminf_{t \to x} k(t) & \text{for } x \in (A - B_i) \cap T_i(k), \\
 \limsup_{t \to x} k(t) & \text{for } x \in (A_1 - B_i) \cap T_i(k), \\
 \frac{1}{2} \left(\liminf_{t \to x} k(t) + \limsup_{t \to x} k(t) \right) & \text{for } x \in [T_i(k) \cup T_i(k)] - (A \cup A_1), \\
 k(x) & \text{elsewhere.}
\end{cases}
\]

Since \(\{ x \in X : l(x) \neq k(x) \} \in \mathcal{F} \), for each \(x \in X \)

\[
I\liminf_{t \to x} l(t) = I\liminf_{t \to x} k(t) \text{ and } I\limsup_{t \to x} l(t) = I\limsup_{t \to x} k(t).
\]

It is clear that \(l \) satisfies the above conditions.

V. Since \(E - D \) is a \(F_a \) set and \(E - D \in \mathcal{F} \), there exists a sequence of closed sets \((H_n)_{n \in \mathbb{N}}\) such that \(E - D = \bigcup_{n \in \mathbb{N}} H_n \), \(H_n \subseteq H_{n+1} \) and \(H_n \in \mathcal{F} \). Let \((a_n)_{n \in \mathbb{N}}\) be a sequence of positive real numbers such that \(\sum_{n \in \mathbb{N}} a_n = 1 \) and \(a_n \geq 2 \sum_{l \geq n+1} a_l \). For every \(n \in \mathbb{N} \) there exists a function \(m_n : X \to (-a_n, a_n) \) such that:

1. \(\forall x \in H_n \liminf_{t \to x} m_n(t) = \limsup_{t \to x} m_n(t) = a_n \),
2. \(\forall x \in H_n m_n(x) = 0 \).

We shall define the function \(m_n \) as follows. There exists a sequence \((w_k)\) of natural numbers such that \(w_{k+1} > w_k \) and the sets \(U_k = \{ x \in X : w_k^{-1} > \text{dist} (x, H_n) > w_{k+1}^{-1} \} \) are open and non-empty.

Let

\[
m_n(x) = \begin{cases}
 a_n & \text{for } x \in \text{Cl } U_{k}, \\
 -a_n & \text{for } x \in \text{Cl } U_{k+2}.
\end{cases}
\]

By Tietze- Urysohn Theorem we shall extend \(m_n \) to the function \(m \) continuous on \(X - H_n \).

We define a function \(m : X \to \mathbb{R} \) such that \(S_i(m) = S_i'(m) = C_i(m) = X - \bigcup_{n \in \mathbb{N}} H_n \) and \(T_i(m) = T_i'(m) = 0 \).

Let \(m(x) = \sum_{n \in \mathbb{N}} m_n(x) \).

The verification that \(m \) has the above properties is very similar to the verification that the adequate properties possess the function \(g \) which is defined in Proposition 0.
Let $j : X \to \mathbb{R}$ be the following function:

$$
 j(x) = \begin{cases}
 \liminf_{t \to x} m(t) & \text{for } x \in A \cap \bigcup_{n \in \mathbb{N}} H_n, \\
 \limsup_{t \to x} m(t) & \text{for } x \in A \cap \bigcup_{n \in \mathbb{N}} H_n, \\
 m(x) & \text{elsewhere.}
 \end{cases}
$$

Since $\{x \in X : j(x) \neq m(x)\} \in \mathcal{F}$, for each $x \in X$ we have

$$
 \liminf_{t \to x} j(t) = \liminf_{t \to x} m(t) \quad \text{and} \quad \limsup_{t \to x} j(t) = \limsup_{t \to x} m(t).
$$

Hence $C_i(j) = X - \bigcup_{n \in \mathbb{N}} H_n$, $S_i(j) = \left(X - \bigcup_{n \in \mathbb{N}} H_n \right) \cup \left(A \cap \bigcup_{n \in \mathbb{N}} H_n \right)$,

$$
 S'_i(j) = \left(X - \bigcup_{n \in \mathbb{N}} H_n \right) \cup \left(A \cap \bigcup_{n \in \mathbb{N}} H_n \right) \quad \text{and} \quad T_i(j) = T'_i(j) = \emptyset.
$$

VI. The final step consists in the construction of a function $f : X \to \mathbb{R}$ such that $S_i(f) = A$, $S'_i(f) = A_1$, $C_i(f) = B_1$, $T_i(f) = C$ and $T'_i(f) = C_1$. Let us define a function f as follows:

$$
 f(x) = \begin{cases}
 3 & \text{for } x \in C, \\
 -3 & \text{for } x \in C_1, \\
 j(x) + l(x) & \text{for } x \notin C \cup C_1.
 \end{cases}
$$

(a) It is clear that $C \subseteq T_i(f)$ and $C_1 \subseteq T'_i(f)$.

(b) Assume that $x \in X - \left(\bigcup_{n \in \mathbb{N}} H_n \cup C \cup C_1 \right)$. Since the function j is continuous at x,

$$
 \liminf_{t \to x} f(t) = \liminf_{t \to x} l(t) + j(x) \quad \text{and} \quad \limsup_{t \to x} f(t) = \limsup_{t \to x} l(t) + j(x).
$$

Hence, if $x \notin \bigcup_{n \in \mathbb{N}} H_n \cup C \cup C_1$ then

1. $x \in C_i(f)$ iff $x \in C_i(l)$,
2. $x \in S_i(f)$ iff $x \in S_i(l)$,
3. $x \in S'_i(f)$ iff $x \in S'_i(l)$.

Similarly, if $x \in \bigcup_{n \in \mathbb{N}} H_n - (C \cup C_1)$ then

1. $x \in S_i(f)$ iff $x \in S_i(j)$ and
2. $x \in S'_i(f)$ iff $x \in S'_i(j)$.

Thus, the function f has the following property:
\[C_i(f) = [C_i(l) - (C \cup C_i)] - \bigcup_{n \in N} H_n = [E - (C \cup C_i)] - (E - D) = D - (C \cup C_i) = B_i, \]
\[S_i(f) = \left[S_i(l) - \bigcup_{n \in N} H_n \right] \cup \left[S_i(j) \cap \bigcup_{n \in N} H_n \right] \cup C = A, \]
\[S_i(f) = \left[S_i(l) - \bigcup_{n \in N} H_n \right] \cup \left[S_i(j) \cap \bigcup_{n \in N} H_n \right] \cup C = A_i, \quad T_i(f) = C \quad \text{and} \quad T_i(f) = C_i. \]

Remark. (MA) If \(X = R \) and \(\mathcal{I} \) is the ideal of all sets of the first category then the conditions (i)—(v) and (x) are equivalent (see [5]).

Questions. 1. Let us assume that for \(A, A_1, B_1, C, C_1 \subseteq X \) the conditions (i)—(v) and (vii) hold. Does then the statement (x) hold?

2. Let us assume that for \(A, A_1, B, B_1, C, C_1 \subseteq X \) the conditions (i)—(v) and (vii) hold. Is there a function \(f : X \to R \) such that

\[C(f) = B, \quad C_i(f) = B_i, \quad S_i(f) = A, \quad S_i(f) = A_i, \quad T_i(f) = C \quad \text{and} \quad T_i(f) = C_i? \]

IV.

In this part we shall consider the following question: is the condition (v) from Theorem essential?

Let \(\mathcal{N} \) denotes the ideal of all sets of the first category in \(X \).

Proposition 3. If \(\mathcal{I} \) is a \(\sigma \)-ideal and \(\mathcal{I} \subseteq \mathcal{N} \) or \(\mathcal{N} \subseteq \mathcal{I} \) then for every function \(f : X \to R \) the set \(S_i(f) - C_i(f) \) do not contain subsets of the form \(G - I \) where \(G \) is non-empty and open and \(I \in \mathcal{I} \).

Proof. Assume that \(U \) is an open and non-empty subset of \(X \), \(I \in \mathcal{I} \) and \(U - I \subseteq S_i(f) \). Then \(I \text{-lim sup } f(t) \leq f(x) \) for all \(x \in U - I \). Hence for each \(y > f(x) \) there exists a neighbourhood \(V \) of \(x \) such that \(\{ t \in V : f(t) \geq y \} \in \mathcal{I} \). Let \((p_n, q_n) \) be a sequence of all open, non-empty intervals such that \(p_n, q_n \in Q \). Then for each \(n \in N \) there exist a \(F_o \) subset \(A_n \subseteq U \) and \(J_n \in \mathcal{I} \) such that

\[(f|U)^{-1} \ast (p_n, q_n) = A_n \triangle J_n. \]

Let \(J = I \cup \bigcup_{n \in N} J_n \) and \(B = U - J \). Then \(f|B \) belongs to the first class of Baire. Since \(J \in \mathcal{I} \), \(B \notin \mathcal{I} \). If \(\mathcal{I} \subseteq \mathcal{N} \) then \(J \notin \mathcal{N} \) and \(B \notin \mathcal{N} \). Similarly if \(\mathcal{N} \subseteq \mathcal{I} \) then \(B \notin \mathcal{N} \). By the Baire Theorem the set of all points at which \(f|B \) not continuous is of the first category in \(B \). (cf. [9]) Thus there exists a point \(x \in U \cap C_i(f|U) = U \cap C_i(f) \).

Proposition 4. Let \(X = R \) and \(\mathcal{I} \) be the ideal of all measure zero subsets of \(X \). Then there exists a function \(f : R \to R \) such that

\[S_i(f) = R \quad \text{and} \quad C_i(f) = \emptyset. \]
Proof. Assume that A and B is a partition of R such that A is a set of the first
category and $B \in \mathcal{Y}$. (cf. [6]). It is possible to assume that A, is a F_α set, $A = \bigcup_{n \in \mathbb{N}} F_n$,the sets F_n are pairwise disjoint, closed and nowhere dense (see [8]). Notice that
infinite many of F_n have a positive measure. In fact, suppose that there exists $m \in \mathbb{N}$
such that $F_n \in \mathcal{I}$ for $n > m$ Then the set $F = \bigcup_{m \leq k} F_k$ is closed, nowhere dense and
$R - F \in \mathcal{I}$ — a contradiction. Hence it is possible to assume that $F_n \notin \mathcal{I}$ for each
$n \in \mathbb{N}$.

Let us define a function $f: \mathbb{R} \to \mathbb{R}$:

$$f(x) = \begin{cases} n^{-1} & \text{for } x \in F_n, \\ 2 & \text{for } x \in B. \end{cases}$$

Then f satisfies the conditions of this proposition.

If $x \in B$ then $x \in T_1(f) \subseteq S_1(f)$.

If $x \in F_n$ and (x_k) is a sequence in A then almost all terms of (x_k) belong to $\bigcup_{k \leq m} F_k$.

Thus \(\limsup_{k \to \infty} (x_k) \leq n^{-1}\) and I-\(\limsup_{t \to x} f(t) \leq f(x)\). Since for each $m \in \mathbb{N}$ the set
$\bigcup_{k \leq m} F_k$ is nowhere dense, in every neighbourhood U of x there exist an open,
non-empty subset $V \subseteq \mathbb{R} - \bigcup_{k \leq m} F_k$. Thus I-\(\liminf_{t \to x} f(t) \leq m^{-1}\) for all $m \in \mathbb{N}$ and
consequently, I-\(\liminf_{t \to x} f(t) = 0\). Hence $C_1(f) = \emptyset$ and $S_1(f) = \mathbb{R}$.

For every $A \subseteq \mathbb{X}$ we define $\text{Int}_I A$ as follows:

$$\text{Int}_I A = \{ x \in A : \exists V(x \in V, V \text{ is open and } V - A \in \mathcal{Y}) \}.$$

Proposition 5. For every subset A of \mathbb{X} there exists a function $f: \mathbb{X} \to \mathbb{R}$ such
that $S_I(f) = A$.

Proof. Let $B = \text{Int}_I A$. By Lemma 0 there exists an open set G and $I \in \mathcal{I}$ such
that $B = G - I$ and $G = \psi_I(G)$.

Let $(K_n)_{n \in \mathbb{N}}$ be a partition of the set $\mathbb{X} - G$ such that for each $x \in \mathbb{X}$ if $x \in d_I(\mathbb{X} - G)$
then $x \in d_I(K_n - G)$.

We define f as follows:

$$f(x) = \begin{cases} 1 & \text{for } x \in A, \\ (-1)^n \frac{n}{n + 1} & \text{for } x \in K_n - A, \\ -1 & \text{for } x \in I - A. \end{cases}$$

For this function $S_I(f) = A$.

311
If \(x \in A \) then \(x \in d_f(X - G) \) or \(x \in I \). Indeed, suppose that \(x \notin A \) and \(x \notin I \). Then \(x \notin B \) and \(x \notin G \). Since \(\psi_f(G) = G \), \(x \in d_f(X - G) \).

If \(x \in I - A \) then \(x \in S_t(f) \subseteq X - S_t(f) \).

If \(x \in d_f(X - G) \) then \(f(x) \leq \limsup_{t \to x} f(t) \). Thus \(A = S_t(f) \).

REFERENCES

Received November 26, 1984

Department of Mathematics
WSP Bydgoszcz
ul. Chodkiewicza 30
85-064 Bydgoszcz
POLAND

О ТОЧКАХ I-НЕПРЕРЫВНОСТИ И I-ПОЛУНЕПРЕРЫВНОСТИ

Tomasz Natkaniec

Резюме

Пусть \((X, \mathcal{F})\) — полское пространство и \(\mathcal{I} \subseteq 2^X\) — есть \(\sigma\)-идеал. I-топологией на \(X\) будем называть семейство \((A - B: A \in \mathcal{I}, B \in \mathcal{I})\). В работе исследованы связи между множествами точек непрерывности, точек I-непрерывности и точек I-полунепрерывности вещественной функции \(f: X \rightarrow R\). В частности, рассмотрен случай, когда \(X = R\) и \(\mathcal{I}\) есть идеал всех множеств с мерой Лебега равной нулю. В случае, когда \(\mathcal{I}\) является идеалом множеств первой категории, обобщены результаты З. Гранде.

312