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REPEATED REGRESSION EXPERIMENT
AND ESTIMATION OF VARIANCE
COMPONENTS

LUBOMIR KUBACEK

Introduction

In the regression model Y =Xf + £ the covariance matrix of the vector ¢ (i.e.
the covariance matrix of the random vector Y) is considered in the form
X=vW,+...+v,V..; v, ..., v,, are variance components.

The aim is to estimate the components v,, ..., v, on the basis of the (k + 1)-tuple
stochastically independent realizations of a normally distributed vector Y~
N.(XB, ), when the matrix X and the symmetric matrices V,, ..., V,, are known.
The vector B is a nuisance parameter. (Procedure for estimating the vector f from
the results of a repeated regression experiment see in [2].)

' Repeated realizations of the vector Y or, which is the same, the realization of the
(k + 1)-tuple stochastically independent random vectors Y, ..., Y., with the same

normal distribution N,(Xg, v,V, +... +v,V..) generate a realization of a random
k+1 k+1

matrix kS= S (Y, = Y)(Y, - V)'(fr: W/(k+1D]S v,.) with the Wishart distribu-
i=1 i=1

tion kS ~ W, (k, X). Thus not only the vectors Y, ..., Y., but the vector Y and the
matrix S as well are at our disposal for estimating the components v, ..., V... The
last two random quantities are stochastically independent (in detail see [1]).

Procedures for estimating the components v, ..., v., based on the realization of
the vector Y (i.e. based on the realization of the vector Y as well) are described in
detail in [6]. A natural question arising in the case of repeated expcriments is how
the knowledge of the realization of the matrix S contributes to estimating the
components vy, ..., V.

1. Symbols and auxiliary statements

Let (o, (., ..)) be a Hilbert space of symmetric n X n matrices, (., ..) denotes
the inner product given by (A, B) =Tr (AB), A, Be &/ [7]; here Tr (C) denotes
the trace of the matrix C.
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A function which is to be estimated from the realizations of the vector Y and
from the realization of the matrix S, respectively, is denoted by the symbol g(.)
and we assume the linearity of it, i.e. g(v)=4'v, v=(vi, ..., V), AeR"
(R™ means the m-dimensional Euclidean space). The symbol v+ denotes a set
of the space ®™ in which the vector v is located; a closed sphere with a positive
radius included into the set v+ is assumed. The estimator of the function
g(.):vx— R' based on the realization of the matrix S is considered in the form
7,(S)=(A,S) =Tr (AS), Ac oA, 1,(S)e A ={(A,S):Aec A}.

E,({A,S)) denotes the mean value of the random quantity (A,S). The

subspace of the space o generated by symmetric matrices Vi, ..., V,, € o is denoted
by €.

Definition 1.1. The function g(.):v«— R' is d-estimable if there exists a ma-
trix A€ o with the property: Y{vevs} E,[Tr (AS)]=24"v=g(v).

Lemma 1. 1. The class of all s-estimable functions is
4= {g(.): _q(v)=2v,- Tr (AV)), vevs, A€ .Qd}.

Proof is obvious.
Lemma 1.2. The projection of the matrix Ae f on the subspace € is P(A) -

= Zp,V,-; the vector p=(p,, ..., p»)’ is a solution of the consistent system of
i=1

linear equations Kp = (Tr (AV,, ..., Tr (AV,.))’; {K}..; — the (i, j)-th element of
the matrix K is {K}; ;=Tr (V.V,), i, j=1, ..., m. The matrix P(A) does not depend
on the choice of the solution p.

Proof: The properties of a projection operator imply V{i = 1, ..., m}

V{AG%}<A’ V,) = <A’ P(V,)) = <P(A)7 V,) = 2”i<vi~ v'> ?
m j=1

> {K}.j% € M(K); {K}.; is the j-th column of the matrix K and .#(K) is the column
i=1

space of it. Thus the system Kp = (Tr (AV)), ..., Tr (AV,,))’ is consistent for each
matrix A € . The following m + 1 relations have to be valid simultaneously for the

matrix P(A):(A—P(A), V;)=0, i=1, ..., m and P(A) = ip,.v,.esg, which
immediately implies the second part of the statement. Let p, a‘r:c]l p: be different
solutions of the system Kp = (Tr(AV,), ..., Tr (AV,))’. Then <i{p.},V,
- g{Pz}/Vn Vf> = {K}i.p—{K};.p.=0, i=1, ..., m Z;l_lld thus

2. {pP};V;— El {P:};V; € €" (orthogonal complement of the subspace €). At the
i= j=
same time 21 {p};Vi=> {P.};V; € € and thus >, {p.};V,=> {p-};V,;.

1= j=1 i=1 i=1
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Lemma 1.3. Let Z~ N, (0, X), R(X) (the rank of the matrix £)=r<n, r>0
and J be an n X r matrix with the property £=JJ’. Then there exists a random
vector U~ N,(0, 1) (I denotes the identity matrix) for which P{Z=JU} =1.

Proof. Let us consider a random vector U=J"Z (J~ denotes the g-inversion of
the matrix J (see [5])), J"J =1. For the covariance matrix of the vector Z—JU we
have E[(Z —JU)(Z—JU)’]=0. This and E(Z—JU) = 0 imply the validity of the
statement.

Lemma 1.4. Let A,Be o ; then cov [Tr (AS), Tr (BS)]=(2/k) Tr (AXBX)=

m m

(2/k)D. S, v, Tr (AV,BV)).

[ A |

Proof. From the definition of the Wishart matrix kS (see [1]) it follows that

k
kS= Y Z.Z., where Z,, ..., Z, are stochastically independent, normal and equally
a 1

distributed random vectors, Z, ~N,.<0, X = EV,V,), a=1, .., k.
[

In the first step X=1 is assumed. Then cov[Tr (AZZ)), Tr(BZZ.))]
= E{[Z!AZ,—-Tr A)][Z;BZ; - Tr (B)} = E(Z.AZ.Z;BZ;)— Tr (A) Tr (B). For
a# 3 we obtain zero. Let Q be an orthogonal n X n matrix with the property
QBQ’ =diag (d,1, ..., d..) (i.e. a diagonal matrix with an indicated diagonal) = D. If
U.=QZ,, then obviously U, ~N, (0, I) and for the quantity E(Z.AZ.Z.BZ,) we

obtain E(Z,AZ.Z.Z,BZ.) = E(U/QAQ'U,U'DU,) = E(U:QAQ'U(,Z{U,,}Z,d,,).
71

{Oforiij

As  E({U.}:{U.}) 1fori=j

and E({U.})})=3, we have

E(U.QAQ'U, S {U.}3d,;) = 2 Tr (QAQ'D) + Tr (QAQ’) Tr (D) = 2 Tr (AB) +
a 1

Tr (A) Tr (B).

In the second step X #1 is assumed and the matrix X is expressed in the form
T=JJ’, where J is an nXr matrix, r=R(Z). With respect to Lemma 1.3
(U.=J Z,,Z,=JU,) and to the result of the firs step we obtain: E(Z,AZ,Z.BZ.)
= EWJAJUUJBIU,) = 2Tr(JAW'BJ) + Tr(J'AJ) Tr(J’'BJ)
= 2 Tr (AXAX) + Tr (AX) Tr (BX). The completion of the proof is now elemen-
tary.

Lemma 1.5. The statistic Tr (AS), A€ « estimates its mean value with
a minimal dispersion in the class of estimators s iff cov [Tr (AS), Tr (BS)] =0 for
all B e o with the property E,[Tr (BS)] =0, v e vx.

Proof. It is a consequence of Theorem 5.3 in [3].

Lemma 1.6. The class of all unbiased estimators in the class s§ which estimate
the function g(v)=0, vevx,is {Tr (BS):Be €*}.
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Proof. Let Be €*. Then E,[Tr(BS)] = Y v Tr(BV,)=0 because of the

assumption Tr (BV:)=0, i=1, ..., m. Let vice versa E,[Tr (BS)] =0, v € v«. Then
v/(Tr (BV)), ..., Tr (BV,.))’ =0, v € v+ and since the closed sphere with a positive
radius is included into the set v«, we have Tr (BV,)=0,i=1, ..., m. ThusBe €*.

Lemma 1.7. If Z~N,(u, X) and A, Be o, then the random variables Z'AZ,
Z'BZ are stochastically independent iff XAXBX =0.
Proof. See [5] Theorem 9.4.1.

Lemma 1.8. Let Z~ N, (0, X) and Pe s{. A necessary and sufficient condition
for Z'PZ to be chi-square distributed with r degrees of freedom is ZPXPX =XPX
and r = R(ZP).

Proof. See [5] Theorem 9.2.1.

2. Unbiased estimability of a linear function
of the variance components

Theorem 2.1. The function g(v)=A'v, v € v, is d-estimable if A € M(K), where
{K},',,' = Tr (V,-V,-), i, ]= 1, ceey M.
Proof. Let g(.) be «f-estimable, i.e. there exists a matrix Ae of with the

property V{vev«}E[Tr (AS)] = > v Tr(AV,) = Y vA. Since the set v
i=1 i=1

includes the closed sphere with a positive radius, A =(Tr (AV,), ..., Tr (AV,,))".
With respect to Lemma 1.2 4 € #((K).
Let g(v)=24'v, vevx and A € M(K). An arbitrary solution of the system Kp = A

is considered. The matrix P(A)=Y,{p};V; from Lemma 1.2 is a projection of
i=1
some matrix A € of for which 4 =(Tr (AV,), ..., Tr (AV,,))". It implies E,[Tr (AS)]
= Ev,— Tr (AV)) = Ev,}w =g(v), ve vx. Thus the function g(.) is &/-estimable.
i=1 i=1

Corollary. Every linear function g(v) = A'v, v € v, unbiasedly estimable on the
base of the realization of the vector Y;, j=1, ..., k + 1 (i.e. on the base of the vector
Y) is unbiasedly estimable on the base of the realization of the matrix S as well.

Proof. The function g(v)=A4'v, v € vx,is unbiasedly estimable on the basis of
the realization of the vector Y iff A e #(K,), where {K,}; ;=Tr (V:NV;), N=
1-X(X'X) X’ (see [8] and [6], respectively). Thus it is sufficient to show the
inclusion ((K,) = #(K). For verification we substitute for the matrix A from
Lemma 1.2 A=3(V,N+NV))e o, j=1, ..., m; the j-th column of the matrix K, is
(Tr (AV)), ..., Tr (AV..))’, which is obviously an element of the space (K).

1 10 01 .
Example 2.1. Let Y,~~Nz((1>ﬁ, E=0f(0 1>+C12(1 0))’ lci|<ot, j=
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., k +1 (=3). From the realization of the vector Y, neither the component o}

nor the component c,, can be estimated because of (1, 0)' ¢ #(K,) = M(_i _i),
k+1

(0, 1)" ¢ M(K,). From the matrix kS= D (Y.—Y)(Y;—Y)' it is nevertheless
i—1
possible to estimate the arbitrary linear function g(o?, ¢i2) = 4,0} + ¢, because
(2 0N,
of M) =7 3) =

The example shows how important the repetition of experiments can be, e.g., in
the case of estimating the variance components of a stationary random process.

3. Natural estimation and y-estimation

Let the matrices Vi, i=1,..., m be positive semidefinite and v,>0, i=
1, ..., m.Then for each matrix V; there exists an n X R(V;) matrix J; which satisfies
the condition V; =J,;J;. With respect to Lemma 1.3 the vector Z,, a =1, ..., k can
be expressed in the form Z,=J\U,+...+J.,U,n, where U,~
N.(0, v1)(r,=R(V))), a= ., k;j=1, ..., m and the random vectors U,;, a =1,

L k;j=1,...,m are stochastlcally mdependent.

When the realizations of the vectors U,;, a=1, ..., k; j=1, ..., m are known,
then the natural estimator of the component v;, i=1, ..., m,is the statistic ¥, =

k
(l/k)E ULU./r, i=1, ..., m. The estimators v; are unbiased with a minimal
a |

dispersion. Therefore their linear combination is again an unbiased estimator of its
own mean value with a minimal dispersion.
The natural estimator of the function g(v)=A4'v, v€v«, is thus the statistic

v—(1/k)§_‘, U.AU,, where u'—(ua,, oy Uln),

A= |21, o, ., o |,
r
o, M., .. o
r2
0. o0, ;D
i Tm "

and |, is the r; X r; identity matrix.
k
Let T denote the matrix defined by kT= 2 U.U;; then kT has the Wishart

distribution and the natural estimator of the functxon g(.) can be expressed in the
form 4'v="Tr (AT). The difference between the estimators Tr (AS) and Tr (AT),
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respectively, can be expressed in the form Tr (AS) — Tr (AT) = Tr [(J'AJ— A)T],
where J is an n X E ¥ métrix for whichd=(@,, .., J.),Jdd’' =V, +...+V,, =V(itis

i=1

sufficient to take into account that JTJ' =8).

Definition 3.1. The minimum norm unbiased estimator (MINUE) of the fun-
ction g(v)=24"v, vevx, is a statistic 7,(S) =Tr (AS), A€ o, where the matrix A
minimizes the Euclidean norm of the quantity J’AJ — A and satisfies the conditions
Tr (AV)) =4, i=1, ..., m.

Theorem 3.1. Let the matrix V=V, +...+V, be regular. The MINUE of
function g(v)=4'v, vevx, Ae M(K) is Tr (Z %V~ 'V,V7'S), where the vector
i=1

#=(%, ..., %) is a solution of the linear system Mx = A. The (i, j)-th element of
the matrix M is {M}, ;=Tr (V,V'V,V"), i,j=1, ..., m. Further M(K)= 4((M).

Proof. The square of the Euclidean norm of J'AJ—A is [[J'AJ—A|?
= Tr[(J'AJ—A)WJ'AJ—A)] = Tr (AVAV) — 2 Tr (AJ'AJ) + Tr (A%). As the
matrix A has to satisfy m conditions Tr (AV;) = A, i=1, ..., m there holds

Tr (AJ'AY) = D (A/r) Tr (LJIAJ) = DAl = Tr(A?. Thus |[J'AI—A|?
i=1 i=1

= Tr (AVAV) — Tr (A?). The matrix A minimizing the quantity Tr (AVAV) and
satisfying the given conditions can be determined by the method of the Lagrange
undetermined multipliers. The Lagrange auxiliary function is @ (A) =Tr (AVAV)

- ZEui[Tr (AV;) — A4;], where %, i=1, ..., m, are the Lagrange multipliers
(3D(A)/5A =)4VAV—4 S %V, — [2 diag (VAV)—2 S x diag (v,)] -0
i=1 } i=1

QVAV'_—' E }(;V; .
iz

(The symbol diag (C) denotes a diagonal matrix, which diagonal is identical
with the diagonal of the matrix C.) For each symmetric matrix D satisfying
the conditions Tr(DV,)=0, i=1,...,m there is Tr[(A+D)V(A+D)V]

= Tr (AVAV)+Tr (DVDV) because of Tr(DVAV) = Tr (Dz x,V,)
i=1
= > % Tr (DV:)=0. Further Tr (DVDV) = Tr (J'DJJ’DJ)=0 and thus the matrix
i=1

A= E %V~ V,V~' where %, i =1, ..., m are solutions of the equations Tr (AV,) =
i=1
Ai, i=1, ..., m, minimizes the quantity Tr (AVAV) and satisfies the given condi-
tions. The system of the conditions Tr (AV;)=A;, i=1, ..., m can be obviously
written in the form Mx = A, which proves the first part of the statement.
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The validity of #((K)= (M) can be proved by means of Lemma 1.2. For the
i-th column of the matrix M, (M}, = (Tr (V,V"'V.V ), ..., Tr (V,.V"'V,V"))’ the
matrix A is chosen from Lemma 1.2 in the form A=V~'V,V~', which immediately
implies {M}.; = (Tr (V\V)), ..., Tr (V..V:))’ the matrix A=J'V.,J is chosen and the
fact is taken into account that the (i, j)-th element of the matrix M is {M}; ;
= Tr(V\V'V\V') = Tr(J 'VJ' 'U'VJ’' ). The vector (Tr (AJ 'V,J'7Y), ...,
Tr (AJ 'V,.J’ ")) is then the i-th column of the matrix K and obviously an element
of M(M). Thus (M) = M(K).

Corollary. For each unbiasedly estimable function g(v) = A'v, v € v« there exists
the MINUE.

Remark 3.1. The MINUE is an analogy of the MINQUE [4], which is based
on the realization of the vector Y. MINQUE, however, does not exist for each
unbiasedly estimable function g(v)=24"v, vev«, 4 € M(K,).

In the following the values vy, ..., v., of components are assumed to be known at
such a level of accuracy that for a vector of a priori values ¥ =(y,, ..., ¥.)’ there is
ye{x:xeR", (x—v) (x—v)<p’} = 0(v, 0), 0>0. The value g is so small that

the matrix V™ =>"y,V, is regular in the neighbourhood 0(v, ¢) (obviously
i1
vV =%),
Definition 3.2. The MINUYE of a function g(v)=A4'v, vevx, Ae M(K) is
a statistic t,(S)="Tr (AS), A€ #, where the matrix A minimizes the Euclidean

norm of J" AJ™ — A and satisfies the conditions Tr (AV.)=24,,i=1, ..., m;J?¥
= (I, I0), IO = YV, i=1, ..., m and

A(Y)= &l'yll,l, 0, ooy 0
r
As
0 ) ‘Yzlrz, N 0
A'm
i 0, 0, ey r—y,,.l,m

m

Remark 3.2. When in the consideration preceding the definition 3.1 the

matrix J{” =V/yJ, is substituted for J; and the vector U =(1/Vy)U,, for the

vector U, the natural estimator of the function g(.) can be written in the form A'v
k

= (1/K) D U A(y)UY =Tr (APTD); kT = 2 UPUY’. Analogously the
« 1

a=1

difference between the estimators Ts (AS) and Tr (A’ T®) can be expressed as
Tr (AS) — Tr (A(”)T(")) = Tr [(J(”)’AJ(”) _ A(Y))TY)].

Theorem 3.2. The MINUYE of the function g(v)=A'v, vevx,is the statistic
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7,(S) = Tr (E xVO'VVD'S), where V' = y,V,+...+v.,V.. and the vector
i=1

%x=(n, ..., %)’ is a solution of the equation Mx = 4 ; the (i, j)-th element of the
matrix M@ js (M™}, ; = Tr (VV®'VVP™), i, j=1, ..., m. The matrix M has
the property M(M®) = M (K).

The proof is analogous to the proof of Theorem 3.1.

Corollary. If y=cv®, ce(0, ©), v\” e vx, then the MINUYE is a locally best
estimator of the function g(v)=A4'v, vevx, at the point v=v©.

Proof. Regarding Lemma 1.4 we have @D[Tr (AS)] = (2/k) Tr (AXAX). If
E=V* and y=cv®, then the minimization of the quantity Tr (AV?’AV™)
= ¢’P[Tr (AS)]k/2 by a suitable choice of the matrix A satisfying the conditions

Tr (AV)) = A, i=1, ..., m is equivalent to a determination of a locally best
estimator.

Remark 3.3. For an arbitrary but fixed realization of the matrix S the function
f(Wis ooy V) =Tr (Z ;{,-V(Y)"V,-V”"‘S), ye 0(v"”, o), is continuous at the point
j=1

v®. That is why the MINU¥E in a sufficient small neighbourhood of the point v
is unsubstantially deviated from the locally best estimator.

Remark 3.4. The matrix M from Theorem 3.2 is related to the Fisher

information matrix F(v) = E(-3%In f<S,EV,—V,->/8v dv’), where f(S,X) =
i=1

n -1
K2 n-“‘"f“{n r[% (k+1- j)]} det () exp [—12‘ Tr (2‘15)] [det (£)]"“".

i=1

By means of 9X7'(t)/3t=—X""(¢)[3X(¢)/3t]£7'(t) and 3 In [det (X(t))]/at
= Tr [E7'(¢) 0X(t)/3t], respectively, we can easily obtain
3 In f(S, E)/avi=(k/2) Tr (E'V:E™'S) — (k/2) Tr (V,iE™),
8 In f(S, £)/av, av; = —(k/2) Tr (E"'V,E"'V,E'S + £ 'V,E 'V, E"'S) +
+(k/2) Tr (VE'V,E™).
Thus {F(v)}:.;=(k/2) Tr (E"'V,.E7'V;) = (k/2){M™}, ;. If y =, then the vector
of the Lagrange multipliers # from Theorem 3.2 is # =(k/2)F~'(v)A and for the
dispersion of the estimator 7,(S) = Tr (z uiV‘”’_'V,-V(V’_IS> with respect to
i=1

Lemma 1.4 there holds @[r,($)] = (2/k) Tr (Exiz—'v,-z-'zzx,-z-‘v,-z“z)
i=1 i=1
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= (2/k)*»x'F(v)x = A'F~'(v)A. Thus the dispersion of the MINUVE is equal to the
Rao—Cramér lower bound at the point v.

Theorem 3.3. If the variance components are eigenvalues of the covariance
matrix, then each of the components is s{-estimable and for each component v;,
i=1, ..., m there exists in the class & a uniformly best estimator ¥; with the same
distribution as that of the random variable vix’(kr,)/(kr.), where x*(kr.) is a random
variable with a chi-square distribution with kr; degrees of freedom and for i+ j
these estimators are stochastically independent. The dispersions of the estimators ¥;
are equal to the Rao-Cramér lower bound.

Proof. With respect to our assumption X=v,V,+... +v,,V,,, where V,, i=
1, ..., m are projection matrices and for i# j there holds V;V; = 0. The matrix K
from Theorem 2.1 is K=diag [Tr (V,), ..., Tr (V.,)], where Tr (V:) = R(V:))>0
and therefore all components are sf-estimable.

Let ¥, =Tr(V:S)/Tr (V:). Then E,(v:)=vi, v € v+, and with respect to Lemma 1.4
for Aje &* we have cov [Tr (V:S)/Tr (V:), Tr (AS)] = (2vi/k) Tr (V:Ao)/
/Tr (Vi); Ace ' = Tr (ViA))=0. Thus with respect to Lemmas 1.5 and 1.6,
respectively, it can be seen that the statistic Tr (SV:)/Tr (V;) estimates its mean
value v, with a minimal dispersion at each point v of the set vx.

The assumption ks~wn(k,2vivi) implies 9 = Tr(V,S)/Tr (V) =
i=1

[1/(kr)] D, Z:V.Z,. Regarding Lemma 1.8 the random variable Z.V.Z, has the
a=1

same distribution as the random variable vix’(r;). For a# B the random variables
ZV Z, and Z V.Z; are stochastically independent. This fact and the additivity of the
chi-square distribution imply that ¥, is a random variable with the identical
distribution as that of the random variable v.x’(kr,)/(kr.).

For i#j XV,XV;X = 0. Thus, regarding Lemma 1.7, ¥; and ¥; are stochastically
independent.

In our case the Fisher information matrix F(v) is F(v) = (k/2) diag[(1/
V) Tr(Vy), ..., (1/v2)Tr (V)] and thus {F'(v)}.: = (2/k)vi/Tr (V). With
respect to Lemma 1.4 @[Tr (V.S)/Tr (V)] = (2/k)v3/Tr (Vi) = {F~'(v)}:.., which
proves the last part of the statement.

Remark 3.5. If Tr(V;) = R(V.))=r=2, then V, = Sf,f;, where fie R",
i=1

fif=1,j=1,...,r and for j¥1f;fi=0, j,l=1, ..., r.. In this case it can be easily
verified that the estimators v’ =Tr (£f,S) and V(" = Tr (ffS) are stochastically
independent and they have the same dispersion D(¥¢") = D(¢{"") = (2/k)vi.
Combining these estimators we obtain (1/r)(¥{" +... + $¢) = Tr (V.S)/Tr (V).
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4. Comparison of estimators based on the repeated realizations
of the vector Y with estimators based on the realization
of the matrix S

In the case of a repetion of the regression experiment Y ~ N, (X, E v;V;) three

=1
following situations can occur in estimating the function g(v)=A4'v, vevx:
1.AeM(Ky), 2. A ¢ M(Ky) & AeM(K) and 3. A ¢ M(K) (matrices K, and K,
respectively, are mentioned in Theorem 2.1 and in its corollary).

The last situation is not interesting because the function g(.) is not estimable.
The second situation results in the necessity to repeat the experiment in order to be
able to estimate the function g(.). The first situation is interesting because of the
possibility to compare the estimator based on the realization of the vector Y with
the estimator based on the realization of the matrix S.

This comparison is made only for the neighbourhood of the point ¥ = v ; similarly
as in Part 3 the covariance matrix X of stochastically independent, normal and
equally distributed random vectors Y, ..., Yi., is assumed regular.

The Fisher information matrix of the vector Y;, the (k + 1)-tuple of the vectors
Y., ..., Yis1 and the vector Y for the parameter (B8’, v') are denoted sequentially
F.(B, v), F2(B, v) and Fs(B, v). The Fisher information matrix of the matrix S is
denoted F.(v). Analogously to the remark 3.4 we obtain

FB V)= | X (i_vv)x 0 | ; FB v)=(k+ DF(B, v);
0, % M® |

F:(B,v)= | (k+ l)X’(g v.-V,-)_lx, 0 1 s Fa(v)=(k/2)M™,
0, Mo |

where M is the matrix mentioned in Theorem 3.2.

The values 24'M® "4, [2/(k + 1)]A'M® "4, 2A’M™ "4 and (2/k)A’M™ "4 give
the Rao—Cramér lower bound for estimators based on the realization of the vector
Y, on the relalization of the (k + 1)-tuple vectors Yj, ..., Y., on the realization of
the vector Y and on the realization of the matrix S, respectively. In the last case we
already know that in the sufficient small neighbourhood of the point v the
dispersion of the MINUYE deviates unsubstantially from the corresponding lower
bound.

The MINQUE based on the realization of the vector Y and respecting a priori
the (approximate) value @ of the vector v from the sufficient small neighbourhood
of the point v is Iv=Y'AsY (see (7.1) in [4]), where the matrix Ax € &f minizes
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the quantity Tr (AE aV:A Za,-V,-) and satisfies the conditions Tr (AxV;)=A,,
i=1 =1

i=1, ..., m (unbiasedness) and X’Ax=0 (invariance of the MINIQUE on the
translation of the parameter $).

The dispersion of the MINIQUE at the point @ =v does not attain the
Rao—Cramér lower bound in general; thus D(Y'A«Y) = 2A'M®'A >
Q2/K)A'MY ‘A = D(1,(S)).

As the estimators YiA«Yy, ..., Yi.iAxY,,, are stochastically independent and
have the same dispersion, we can combine them and obtain an estimator with the
dispersion D(Y'A«Y)/(k+1) = (k/(k +1))D(7,(S)).

The estimator Y’'AxY(k +1) of the function g(v)=A4'v, ve v« has the same
dispersion as the estimator YA Y;, but the first of them is stochastically indepen-
dent on the estimator t,(S).

Thus if in the actual situation it is possible to obtain a realization of the matrix S
from the results of a repeated regression experiment, we use it for estimating the
function g(v)=4'v, i.e. the estimator 7,(S)=Tr (AS) is to be used. This can be
combined with the estimator Y’(A) Y(k + 1). The combination of estimators in this
case has to be weighted, of course.
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NMOBTOPEHHUE PET'PECCUOHHOI'O 3KCIIEPUMEHTA U OLIEHKA
KOMITOHEHT KOBAPUALIMOHHOW MATPULIbI

Lubomir Kubacéek

PcsoMme

[MpeanoxeHa HecMeuleHHash OLeHKa MUHUMaNbHOU HOpMbI (MINUE) KOMIOHCHT v, ...,

pMauMOHHOﬁ MaTpuUbI cnyqaﬁuoro BCKTOPbI
Y~N,Xg.2=v\V,+...+v.V..).

OCHOBAHHAA Ha pECaJin3alMu MAaTpHUbI
S

S=(1/k) 3 (Y. - Y)Y, - Y).

Cpashuaetcs MINUE ¢ oueHKoN. OCHOBAaHHO# Ha peanu3aunmu CIy4anHoOro BeKTopa
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