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ON DETERMINING SETS FOR CERTAIN 
GENERALIZATIONS OF CONTINUITY 

JOZEF DOBOS 

Introduction 

Let X, Y be sets. Let Fx Y be a class of functions/: X-*> Y. A set D c X is 
called a determining set for PV Y if each two members of Fx Y which agree on this 
set must agree on all of X. Denote by Q) (Fx Y) the family of all determining sets 
SoxFx%Y. 

For the basic properties of determining sets see [1]. A survey of results of 
determining sets for derivatives is in [2]. 

The purpose of this paper is to investigate determining sets for certain classes 
of functions (quasi-continuous functions and somewhat continuous functions). 
We show that from this point of view is sufficient to research for each such class 
its subclass of characteristic functions of sets, and on this account we give a 
complete description of determining sets for each such class. 

Let X, Y be two topological spaces. The function / : X -> Y is said to be 
quasi-continuous at the point x0eX if for each neighbourhood U(x0) of the 
point A0(inX) and each neighbourhood V(f(x0)) of the point f(x0) (in Y) there 
exists a nonempty open set U a U(x0) such that/((7) c V(f(x0)). The function 
/ i s said to be quasi-continuous on A'if it is quasi-continuous at each point xeX. 
(See [5] and [12].) 

The function / : X -• Y is said to be somewhat continuous if for each set 
V cz Yopen in Ysuch that/_1(V) ^ 0 there exists a nonempty open set U cz X 
so that U czf~\V). (See [4].) 

In the sequel Qx Y and Sx Y denote the sets of all functions/: X -> Y which 
are quasi-continuous on X and somewhat continuous, respectively. 

Let e, / e Y, e 7-= t. If A be a subset of X, then the characteristic function of 
A is the function fa'-.X^ Y, 

^ , rw v x _ \e f o r x e X - ^ , 
UfAHx)-j, foTxeAm 

Denote by TCX\Y the class of all characteristic functions of the form ;£•': X-> Y. 
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We assume throughout this paper that the set Y has at least two elements. 

1. Preliminaries 

1.1. Definition. Let A be a subset of a topological space X. The set A is regular 
open if A = In tCIA (see [11]). 

1.2. R e m a r k s . 1. Observe that for each open subset G of a topological 
space X we have CI G = CI Int CI G. 

2. If A, B are regular open subsets of X, then A n B is regular open. 
3. If II is an open subset of"X, then Int CI II is regular open. 

1.3. Definition. Let A be a subset of a topological space X. The set A is 
semi-open if there exists an open set G in X such that G cz A cz CI G (see [7]). 

1.4. Lemma. The set A cz X is semi-open if and only if A cz CI Int A (see [7]). 

1.5. Lemma. Let A be a semi-open subset of X. I/Tnt A cz B czCl A, then B is 
semi-open (see [7]). 

1.6. Lemma. Let S be an open subset of X. Then S is regular open if and only 
if X — S is semi-open. 

1.7. Definition. A functionf: X-> Y is said to be semi-continuous iff \V) is 
a semi-open set (in X) for every open subset V of Y. (See [7].) 

1.8. Lemma. A function f: X -* Y is semi-continuous if and only if f is quasi-
-continuous on X. (See [8].) 

1.9. Definition. A space X is said to be hyper connected if every nonempty open 
set is dense in X. (See [9].) 

1.10. Lemma. Let X, Y be topological spaces. Then X is hyperconnected if and 
only if each somewhat continuous function f: X —• Y is constant on X. (See [3].) 

1.11. Definition. A space X is called a Urysohn space if for every pair of distinct 
points x and y in X there exist open sets U and V such that xe [/, ye V, and 
CI Un C I V - P . 

1.12. Definition. A topological space X is said to be extremally disconnected if 
the closure of every open set in X is open in X. (See [10].) 

2. Determining sets for the class of quasi-continuous 
functions 

The following theorem shows that @(QXY) = ^(^x!rnQX,Y) and gives a 
characterization of the family Q(QXY)-
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2.1. Theorem. Let Xbe a topological and Y a Urysohn space. Let e,teY,e^t. 
Let A be a nonempty subset of X. Then the following statements are equivalent: 

(1) Ae2(QXtY), 

(2) Ae@(jfi:YnQXtY)9 

(3) for each L cz K cz X, $ ^ K — L cz X - A, some of the following sets is not 
semi-open: K, L, X — K, X — L. 

Proof. That (1) implies (2) is obvious. 
(2) => (3): Deny. Suppose that there exist sets L cz K cz X, tyj^K-LczX-A, 
such that the sets K, L, X - K, X - L, are semi-open. P u t / = fa1 and g = )fc'. 
It is not difficult to verify t h a t / g are semi-continuous functions which agree on 
the set A such t h a t / # g. Thus A$@(jfx'tYn QX,Y). 
(3) => (1): By contradiction. Suppose that there exist functions/ geQXY,f^ g, 
such thatf(.x) = g(x) for each xeA. Choose aeX such that 

(4) f(a) # g(a). 

First we shall prove that for each nonempty open set G in X we have 

(5) if G is regular open, then AnGj^ty. 

Deny. Suppose that G a X - A. Putting in (3) K = G, L = 0, we obtain that 
X — G is not semi-open. Therefore by Lemma 1.6 the set G is not regular open. 
Choose [/and Vopen neighbourhoods of the points/(a) andg(a), respectively, 
such that 

(6) C l £ / n C l V = 0 . 

Put 

W = Int CI Int f~\U) n Int CI Int g~\V). 

We shall prove that 

(7) W = 0. 

Let WGW. Let H be a neighbourhood of the point f(w). Since / is quasi-
continuous at the point w, there exists a nonempty open set S cz W such that 
f(S) cz H. Snce S is nonempty, open, and S cz CI lntf~\U), we obtain 
Sn Int f~\U) 7*- P. Choose a point s in this intersection. Then f(s)eH,f(s)e U, 
hence H nU ^ 0. This shows that each neighbourhood of/(w) intersects U, i.e. 
f(w) e CI U. Analogously, we have g(w) e CI V. By (6) we obtain f(w) # g(w), 
hence weX — A. This shows that W cz X — A. Since the set Wis regular open, 
by (5) we have W = 0. 
Now, we shall prove that 
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(8) aeC\ \ntf~\U). 

Since f is semi-continuous, the setf_l(U) is semi-open. Then by 1.4 we have 
aGf-^LOczClIntf^LV). 

Analogously, we obtain 

(9) aeCl In tg - ' (V ) . 

Put 

E= IntCl \ntf-\U). 

Now, we shall prove that 

(10) a±E. 

By contradiction. Suppose that aeE. By (9) we have that each neighbourhood 
of a intersects the set \nt g\V), hence 0 ^ En Int g~\V) a W. This is contrary 
to (7). 
Putting in (3) K = EKJ {a}, L = K, we obtain that some of the following sets is 
not semi-open: Ku{a}, K, X — (Ev{a})> X — E. The proof will be complete 
when we show that this is not true. The set E is open. By (8) we have 

(11) aGClIntf-1(U) = C l £ , 

hence E a EKJ {a} a C\ E. Thus the set Eu {a} is semi-open. Since E is regular 
open, by (10) and 1.6 the set X— E is semi-open. Put 

Z = I n t ( X - K ) . 

By (11) we obtain aeCl E = X— Z, hence Z a X — {a}. 
Since by 1.2 we have Z a (X - E)n(X - {a}) = X - (EKJ {a}) cz X - E = 
= CI(X - CI Int f~\U)) = C\(X-C\E) = C\ Z, the set X- (Eu {a}) is semi-
open. 
The proof is complete. 

2.2. Theorem. Let X be a Trspace, which has at least two elements. Let Y be 
a Urysohn space. Let there exists for each accumulation point aeX a regular open 
set A a X such that aeC\A -A. Then 3)(QX^ Y) = {X}. 

Proof . Let aeX. We shall prove that the set X— {a} is not determining 
for the class Qx Y. Suppose that a is an accumulation point of X (the opposite 
case is trivial). By the assumption there exists a regular open set A a X such that 
aeC\ A - A. Choosey te Ysuch tha te ^ t. Put f= ^{a},g = / / . T h e n / ? - g 
and / (x ) = g(x) for each xeX — {a}. It is not difficult to verify (by 1.4 and 1.6) 
t h a t / geQXY. Thus X- {a}^(Qx^. 
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2.3. Theorem. Let X be a first countable Hausdorff space. Let Y be a Urysohn 
space. Then@(Q^Y) = {X}. 

Proof. By 2.2. Let aeX be an accumulation point of the set X. It is not 
difficult to verify that there exists a countable base {Un}*_, at the point a such 
that for each positive integer n we have 

(12) Un+]czUn, 

(13) \nt(Un-Un + ])*q. 

For each positive integer n put Zn = \nt(Un — Un+]). Put 
GO 

B = ( J Z2k, A = Int CI B. 
k = I 

Since B is open, by 1.2 the set A is regular open. It is easy to prove that 

(14) Z2n_]czX-B(n=\,2, 3, ...). 

We shall prove that 

(15) aeClA. 

Let U be a neighbourhood of a. Let k be a positive integer such that U2k cz U. 
By (13) we have ty ̂  Z2ka Z2k nU2k cz BnU. This shows that each neighbour
hood of a intersects the set B, i.e. aeCl B = CI A. 
We shall prove that 

(16) a£A. 

By contradiction. Suppose that aeA. Then A is a neighbourhood of a. Thus 
there exists a positive integer m such that £/2m cz A. By (13) we have 
0 # Z2m + j cz U2m cz A. By (14) we obtain Z2m + ] cz X — _?, hence 
-̂ 2m +1 <= -4 - B <= CI £. Then 0 ?- Z2w + , cz Int (CI £ - B) = 0, a contradiction. 
By (15) and (16) we obtain aeCIA - A. 
The proof is complete. 

2.4. Lemma. Let X be an extremally disconnected space and Y a regular space. 
If a function f: X -+ Y is quasi-continuous on X, then it is continuous on X. (See 
[6; Theorem 2] and [10; Theorem 3.2].) 

The following example shows that the assumption "first countable" in Theo
rem 2.3 cannot be omitted. 

2.5. Example . Let X be the Cech-Stone compactification of the set of all 
positive integer numbers. Let Ybe the real line with the Euclidean topology. Let 
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A be a dense subset of X such that A -_£ A'. By 2.4 the set A is determining for 
the class QXY. Thus ®(QA,y) ?- {X}. 

The following example shows that the assumption ktHausdorff space" in 
Theorem 2.3 cannot be replaced by the assumption "T,-space". 

2.6. E x a m p l e . Let X be an infinite countable set with the cofinite topol
ogy. Let Ybe the set of all real numbers with the Euclidean topology. Let ae X. 
Since Xis hyperconnected, by 1.10 the set {a} is determining for the class Qx y. 
Thus ®(Q^ y ) T-{X}. 

3. Determining sets for the class of somewhat continuous functions 

The following theorem shows that 3(SX Y) = Q(tf'XYc\ Sx Y) and gives a 
characterization of the family $(SX Y). 

3.1. Theorem. Let X be a topological and Y a Urysohn space. Let e, t e Y, e ^ t. 
Let A be a nonempty subset of X. Then the following statements are equivalent: 

(i) Ae3)(Sx,Y\ 

(ii) Ae9tfx:YnSXtY)9 

(iii) for each L c z K c i X , 0 ^ K — L c z X — A, some of the following assertions 
holds: 

(18) IntK=ty, 

(19) L is dense in X, 

(20) Int L = $ and L ?- 0, 

(21) K is dense in X and K # X. 

P roof . That (i) implies (ii) is obvious. 
(ii) => (iii): Deny. Suppose that there exist L a K a X such that 

9*K-LcX-A9 

Int K # 0, 
L is not dense in X, 

Int L = 0 implies L = 0, 
K is dense in X implies K = X. 

Put f = JCK a n d g = JCL- It i s n ° t difficult to verify that / g are somewhat 
continuous functions which agree on the set A such that fi^g. Thus 

Ai2(j&lYnSx,Y)-
(iii) => (i): By contradiction. Suppose that (iii) holds and there exist two different 
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functionsf, geSx Y which agree on the set A. Choose a, beX such that 

(22) f(a) = g(a) and f(b) * g(b). 

First we shall prove that for each nonempty open set G cz X we have 

(23) if G cz X — A, then G is dense in X. 

Let G be a nonempty open subset of X such that G cz X — A. Putting in (iii) 
K = G and L = 0, we obtain that G is dense in X. 
Now, we shall prove that for each nonempty open subset E in X we have 

(24) EczCl {b} implies En A ^ 0. 

By contradiction. Suppose that there exists a nonempty open subset is of X such 
that K cz Cl{b} and En A =ty. Let D be an open neighbourhood off(a) in Y. 
Sincefe S^ y, we have In t f -^D ) ^ 0. By (23) the set E is dense in X, therefore 
0 ^ £ n In t f -^D ) cz Cl{b}n Inf f-^D) . Thus be\ntf~\D). Hence f(b)eD. 
This shows that the point f(b) lies in every neighbourhood of f(a). Thus 
f(a) =f(b). Analogously, we obtain g(a) = g(b). This is contrary to (22). Choose 
U and Vopen neighbourhoods of the pointsf(b) and g(b), respectively, such that 

(25) CI Un CI V=(l). 

Since f g e Sx r , we have 

(26) \ntf-\U)^(/i^\ntg-\V). 

Put 

W= Intf-^LOnlntg-'tV). 

It is easy to prove that 

(27) WczX-A. 

Now, we shall prove that 

(28) W = 0. 

By contradiction. Suppose that W ^ 0. Let H be an open neighbourhood of the 
point f(a). Since feSXY, we have \ntf~\H) ^ 0. By (27) and (23) the set Wis 
dense in X, therefore we obtain 0 7-- fVn Int f~\H) af~\UnH). Thus we have 
U n H 7-= p. This shows that each neighbourhood off(a) intersects the set U, i.e. 

f(a)eCl U. Analogously, we obtain g(a)e CI V. Then by (25) we have 
f(a) T«- g(a). This is contrary to (22). 
In the following we distinguish three cases, 
a.) Suppose that Int f~\U) - Cl{b} = 0 = \ntg~\V) - Cl{b}. Since the point 
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b lies in every nonempty open subset of CI {A}, by (26) we obtain be\ntf~\U) 
and be\ntg-\V). This is contrary to (28). This shows that the case a.) is not 
true. 
b.) Suppose that \ntf~\U) - Cl{b} =* 0. Putting in (iii) K = \ntf~\U)v{b}, 
L = Intf~\U) - {b}, we obtain that 

(29) Intf~\U) u {b} is dense in X. 

Then by (28) we have (3 # (\ntf~\U)u{b})n \ntg~\V) = {b} n Int g~\V). 
Thus 

(30) be\ntg-\V). 

We distinguish two cases. First, suppose that \ntg~\V) — C\{b} = 0. Then by 
(26) and (24) we have Int g~\V) n A ^ 0. Choose a point z in this intersection. 
Then f(z) =g(z)e V. Hence f~\V) ?- 0. Since feSXY, we have \ntf~\V) 7- 0. 
Then by (29) we obtain 0 # (\ntf~\U) u{b})n \ntf~\V) cz f~\U) nf~\V), 
which contradicts (25). Now, suppose that Int g~\V) — C\{b} ^ 0. Analogously 
as for (30) we obtain bef~\U). Thus be W. This is contrary to (28). This shows 
that the case b.) is not true. 
c.) Suppose that Int g~\V) — C\{b} 7- 0. Analogously as for b.) we obtain that 
the case c.) is not true. 
The proof is complete. 

The following theorem is obvious. 

3.2. Theorem. Let X be a Hausdorff space and Y a Urysohn space. Then 

@(SX,Y) = {X}. 

Example 2.6 shows that the assumption "Hausdorfr space" in Theorem 3.2 
cannot be replaced by the assumption "Tj-space". 

Question. Can the assumption "Urysohn space" in Theorems 2.1 and 3.1 be 
replaced by the assumption "Hausdorff space"? 

The author is very much indebted to Professor T. Salat for many helpful 
remarks and suggestions offered during the preparation of this paper. 
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ОБ ОПРЕДЕЛЯЮЩИХ МНОЖЕСТВАХ ДЛЯ НЕКОТОРЫХ ОБОБЩЕНИЙ 

НЕПРЕРЫВНОСТИ 

1огеГ ОоЬо8 

Резюме 

В настоящей работе изучаем системы определяющих множеств для классов квазине
прерывных функций и немножно-непрерывных функций. Показываем, что с точки зрения 
систем определяющих множеств для этих классов функций достаточно исследовать только 
их подклассы, элементамм которых являются характеристические функции множеств, а на 
основании этого даем характеризацию этих систем. 
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