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PAIRS OF MULTILATTICES DEFINED
ON THE SAME SET

OLGA KLAUCOVA

1. Preliminaries

Specific pairs of lattices defined on the same set were investigated by J. Jakubik
and M. Kolibiar [2, 3, 5]. In the present paper we shall investigate some
properties of pairs of distributive multilattices analogous to those that have been
dealt with in papers [2, 3, 5].

A multilattice [1] is a poset M in which the conditions (i) and its dual (ii) are
satisfied: (i) If a, b, h e M and a =h, b =h, then there exists v € M such that (a)
v=h, a=v, b=v, and (b) zeM, z=v, a=z, b=z implies z=v. (avb).
designates the set of all elements v € M satisfying (i) ; the symbol (a A b), has a dual
meaning. We denote avb =|J(avb)., anb=J(arb)., where h(d) runs over
the set of all upper (lower) bounds of the set {a,b}. Let A and B be nonvoid
subsets of M ; then we define AvB=J(avb), AAB=|J(anb), where ac A
and b € B. Throughout the paper we denote avb =x, resp. avP=x (anb=x,
resp. anP=x) if a, b, x e M, P is a nonvoid subset of M and avb = {x}, resp.
avP={x} (anb={x}, resp. anP={x}). If a, b, c,deM, avb=x,cvd=y
and x =y, then we write also avb =cvd (and analogously for aAb, cAd).

A multilattice M is distributive [1] iff for every a, b, b’, d, h € M satisfying the
conditions d=a, b, b'=h, (avb), = (avb')y=h, (anb). = (aAnb')a=d we
have b=b'.

Multilattices-M; and M, are said to be isomorphic [6] (denoted as M, ~ M) if
there exists a bijection f of M, onto M, satisfying: x =y iff f(x)=f(y) (x,y € M,).

Let M be a cardinal product of two posets M;, M,. M is a multilattice iff M; and
M, are multilattices [6]. M is a distributive multilattice iff M, and M, are
distributive multilattices [6].

Suppose that a multilattice M has a least element O and a greatest element e. By
a complement [1] of an element a in the multilattice M we mean an element a’ € M
such that ana’=0,ava’'=e. Leta, beM, a=<b. The interval {(a, b) is the set
{xeM: a=x=b}.

We need the following results:
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Lemma A ([4, Lemma 11]). Let M be a distributive multilattice, a, b € M,
ueanb,veavb; then there exists an isomorphism m of (u,v) onto (a,v) X
(b, v) and an isomorphism n of {a,v) X (b,v) onto (u,v) such that m(x)=
((avx),, (bvx),) foreachx e {(u, v), n(x,, x) — (x;Ax,).foreachx,e{a, v) and
each x,e (b, v).

Obviously n is an inverse of m and conversely.

Let M be a multilattice. A subset {a, b, u, v} of M is called a quadruple 1f
ueanb,veavb and we denote it (a, b, u, v).

Lemma B ([4, Lemma 13]). Let M be a distributive multilattice, a, b, c, d, e,
feM.Let(c,b,a,d),(e,d,c,f)andaecenb (feevb);thenfeevb (acenb).

2. Properties of pairs of multilattices

Let M=(A; v, A) be a distributive multilattice with a least element O and
a greatest element e, defined on the set A. Suppose that A possesses elements ¢, ¢’
such that ¢’ is a complement of ¢ in M. The partial order in M will be denoted by
=.Leta, be A. Since M has the least element and the greatest element it follows
that avb, aAb are nonempty sets.

Lemma 1. Let a, b,ceA, av(bvc)=x. Then xe(avb)vc.

Proof. Let a, b, ceA, av(bvc)=x. Obviously there exist elements
ye(avb)vc,zeav(bvc)suchthaty=x and z=y. Since z =x,we have x = y.

In a dual way we obtain

Lemma 1'. Leta, b, ce A, an(bac)=x. Then xe(arb)Ac.

Lemma 2. Let ac A. Then avt, avt', ant, ant' are one-element sets.
Proof. Clearly (avt).=avt, (avt').=avt' and hence according to Lem-

ma A, avt and avt' are one-element sets. The dual assertion can be proved
analogously.

Let a, be A. Put

(1) aub=(avb)a[(avt)a(bvt)],

2) anb=(@avb)a[(avt')an(bvt')].
Lemma 3. Leta, beA. If aub=>b, then avt=bvtand avt'=bvt'.
Proof. Leta, be A, aub=b, reavb. Denote avt=v, bvt=w, rvt=u,

avt'=v',bvt'=w’, rvt’'=u’ (see Lemma 2). Obviously v=u, w=u, v'=u’,
w'=u’. From aub=>b by Lemma 1’ we get
3) b=ra(vaw)e(raw)av.

From (3) it follows that b =v, consequently w=wv, hence av¢t=b vt. From this
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and from (3) we get beraw. From u=rvt we obtain that u ervw and have
a quadruple (r, w, b, u). Since tvt'=e, tat’=0 by Lemma A, we have
vAav'=a, wAw'=b, uau'=r. Because (u, u’, r, e) is also a quadruple and
ecu'vw by Lemma B we have b eu’' Aw. Hence (u’, w, b, e) is a quadruple.
Since w'vw=e=u'vw and (w'Aw),=b=(u'Aw), we have u’'=w’ by the
distributivity of M. Consequently v'=w’, hence avt'=bvt'.

Lemma 4. If avt=bvtand avt'=bvt', then aub=>b.
Proof. Leta, beA, avt=v,bvt=w,avt'=v',bvt'=w', w=v, v'=Ew'
and reavb. By Lemma A we have

4) (0,e)~(t,e) x(t', e),

where a— (v, v'), b>(w,w'), r>(u,u’'), u=rvt, u’'=rvt’. According to the
isomorphism (4) we get uevvw=v, u'ev’'vw’'=w’, hence u=v, u'=w’,
consequently avb =r. Thus we obtain

(5) aub=(avb)a[(avi)a(bvt)]=raw.
Further by (4) we get

(w,wHA(w,e)=(aw,w're)=(w,w’).
From this and from (5) it follows that aub =b5b.

Lemma 5. Let a, be A. We define a relation R on A as follows: aRb iff
aub =b. The relation R is a partial order on the set A.
Proof. Let ae A, v=avt; then

ava=(ava)Al[(avt)a(avt)]|=anrv=a.
Hence aRa holds and R is reflexive.
Let a, b e A and aRb, bRa. Consequently
b=aub=(avb)a[(avt)a(bvit)]=(bva)a[(bat)a(avt)]=bua=a.

Therefore R is antisymmetric.

Leta, b,ce A and aRb, bRc. Using Lemma 3 we getavt=bvt,avt'=bvt’,
bvt=cvt,bvt'=cvt', hence avt=cvt, avt'=cvt'. From this by Lemma 4
we have auc =c, hence aRc and the relation R is transitive.

Next we denote the relation R by c.

From Lemma A, Lemma 3 and Lemma 4 it follows:

Lemma 6. The poset (A, <) is isomorphic to the direct product of the intervals
(t,e)”, (t',e), where (t,e)” is the interval dual to (t,e).

Corollary. The poset (A, c) is a distributive multilattice with the greatest
element t and the least element t'.
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Lemma 7. Let M=(A; v, A), N=(A ; U, n) be multilattices defined on the
same set. Suppose that M is distributive with a greatest element e and a least
element O. Let M,=(A,; v, A), M,=(A:; v, A) be multilattices. Let ¢ be an
isomorphism of both M onto M, X M, and N onto My X M, (M7 is the multilattice
dual to M,). Then the multilattice operations of the multilattice N are given by (1)
and (2).

Proof. Consider the isomorphisms

- M->M, XM, @:N->-M; XM,

and denote @(0) =(0,, 0,), p(e)=(e,, &,). Evidently O,(0,, (O, O,)) is a least
element of M,(M,, M, X M,) and e,(e., (e, €,)) is a greatest element of M,(M,,
M, X M,). Denote s =@~ '(O, e;) and s’ =@ '(es, O,). Obviously (e,, O,) is the
least element of M7 XM, and (O,, e,) is the greatest element of M; X M,,
consequently s(s') is the greatest (least) element of N. From

@(svs')=(0,, ex)v(er, 0;)=(0;1ve,, e;v0;)= (e, e2) = @(e),
(p(S /\S')= (01, ez)/\(el, 02)= (OlAel, e2/\02)= (Ol’ 02)= ‘P(O)

it follows that s, s’ are complementary elements of M. Let a, be A and
(p(a)= (al, aZ), (p(b)= (bh bz). Then

@((avb)a[(avs)abvs)])=((avb)A[(a:vO,)A(b,vO,)],
(a:vby)A[(azve)A(baver)])=((a;vby)A(aAby),
(a;vbr)ae))=(a;Ab,, a;vb,)=@(aub),

hence
aub=(avb)a[(avs)a(bvs)].
Analogously we get anb=(avb)A[(avs')Aa(bvs')].
Corollary. The multilattice operations of the multilattice (A, <) from Corollary
of Lemma 6 are given by (1) and (2).

Lemma 8. The greatest element e and the least element O in the multilattice (A ;
v, A) are complementary elements in the multilattice (A ; U, N). .
Proof. We have

evO =(evO)A[(evi)A(Ovi)]=en(ent)=t,

and similarly enO =1¢'.
From Lemma A, Lemma 6, Corollary of Lemma 6, Lemma 7, Corollary of
Lemma 7 we now get

Theorem. Let M = (A ; v, A) be a distributive multilattice with a greatest and
a least element. There is a one-one correspondence between couples (t,t') of
complementary elements in M and multilattices N= (A ; u, n) such that there
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exist multilattices M, and M, and isomorphisms ¢: M—>M,XM,, ¢: N5
M7 X M, such that the following diagram commutes

i
M — N
of 5o v
M] xMz—'—)MT xMz

where i(x)=x for any xeM and j(a, b)=(a, b) for each element (a,b) of
M; X M,. Given a couple (t, t') the corresponding operations U and N are given
by (1) and (2). Given a multilattice N the corresponding couple (t,t') consists of
the greatest and the least element of N. Moreover the multilattices N are
distributive.
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NMAPA MYJIbTHUCTPYKTYP OIIPEOEJIEHHBIX HA OOUHAKOBOM MHOXECTBE

L}
O. Knayyosa

Pe3oMme

Nycte M=(A; v, A) — RUCTpUOYTHBHAsA MYJILTHCTPYKTYpPa C HAWOGONBIIMM M HAWMEHbLLIMM
aneMeHToM. ITycTh CylecTBYIOT aneMeHTHI ¢, t' € M, Tak, 4TO t' SBIAETCA JONMOJHEHHeM K t. [lns
KaXJoro a, b € A Mbl onpenenumM MHOXECTBA

1) avb=(avb)a[(avt)a(bvt)], anb=(avb)a[(avt’)a(bvt')].
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B nemme S onpenensieTcs OTHOLIEHUE a = b, eciu a Ub = b pns kaxporo a, b € A u nokasviBaercs,
410 (A ; ©) fABNAETCS YACTHYHO YNOPSANOYEHHbIM MHOXECTBOM. Jlanee OKa3bIBAETCS YTBEPXKICHHE :
CYIIECTBYET B3aUMHO OJHO3HAYHOE COOTBETCTBHE MEXNY Napam (Z,t') U MynbTHCTPYKTypamu N =
(A ; U, N) Tak, 4TO CYWECTBYIOT MYILTHUCTPYKTYpbl M, M, u usomopdusmsl ¢ : MM, XM,, y:
N— M7 X M,. lauxo# nape (¢, t') COOTBETCTBYIOT ONEPALMH U M N ONpeAeeHHbIe paBeHcTBaMH (1).
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