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Math. Slovaca 37, 1987, No. 4, 357—362 

A NOTE ON NORMAL AND POWER BASES 

JURAJ KOSTRA 

Let K/Q be a normal field of algebraic numbers of prime degree p over the 
field of rational numbers Q with the Galois group 

G(K/Q) = {\9g9g\...9g
p-'}. 

In this paper we show: Let {e, e*, ..., e?~l} be an integral normal basis of K 
over Q. Let / be a prime and Qt be the field of /-adic numbers. If 8 is a unit of 
the field K and if Qi(e)/Ql is a non-trivial extension, then 

{ 1 , 8 , 82, . . . , 8 ' - 1 } 

is an integral basis of the field Q/(e) over Q{. By an example we show that an 
analogous statement does not hold for the field extension K/Q. 

We shall need the following proposition. 

Proposition 1. [3, p. 243] Let K/Q and G = G(K/Q) be as in the introduction. 
. Let I be a prime and <£ any prime ideal lying over (I) in the field K Then the 
corresponding extension K^/Qi of the l-adic field is normal and there is a canonical 
embedding of its Galois group G(K^/Q/) into G. The index of G(K#/Qj) in G 
equals the number of prime ideals lying above (I) in K (This makes sense provided 
we identify G(K^>/Q/) with its image in G). 

Lemma 1. Let K/Q9 G = G(K/Q) and{z9 z
g
9 ..., z

gP~!} be as in the introduction. 
Let I be a prime such that Q/(e) is a non-trivial extension of the field of l-adic 
numbers Qh then {e, e*, ..., &gP~ } is an integral normal basis of Q((E) over Q{. 
Moreover, there is a unique prime ideal ££ lying over (I) in K. 

Proof. According to Proposition 1, for all prime / the extension Kc£/Ql9 

where ££ is a prime ideal of K lying over (/), is normal and there is a canonical 
embedding of G(K^/Q/) into G such that the index of G(K#/Qi) in G is equal to 
the number of prime ideals lying over (/) in K. Using the fact that the extension 
Qi(z)/Qi is non-trivial and that [K:Q] =p9 where p is a prime, we have that 
- ^ = Qi(z) and [K2>: Q] = p. From the above it follows that there is a unique 
prime ideal S£ lying over (/) in K. Clearly {1, 8, ..., zp~x} is a basis of the field 
Qz(e) over Qt. The elements of this basis can be obtained as linear combinations 
with integral rational coefficiens of the elements 8, e*, ..., egP~\ Hence {e, e*, ..., 
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..., egP~'} is a normal basis of the field Qi(e) over Qt. The field K^ = Q((e) is the 
completion of K with respect to the valuation belonging to the unique prime 
ideal J£? lying over (/) in K. Each element x of the ring of integers ZK of the field 
K^ is the limit of a sequence {xn} of integers of the field K. Hence 

x = lim xn = lim (aK„e + ... + apne
gP~l) 

n -* x « -» oo 

where a, „, 1 ̂  / ^ p are integral rational numbers. According to [4, p. 555] the 
sequence {xn} is fundamental in K if and only if for all /, 1 ̂  / ^ p, the sequences 
{a, „} are fundamental in Qt and therefore 

x = a, 8 + a2e
g + ... + ape

gP 

where a,eZ/, where Z/ is the ring of integral /-adic numbers. From this we get 
that {e, eg, ..., egP"1} is an integral normal basis of the field Qt(e) over Qt. 

Theorem 1. Let K/Q, G = G(K/Q) and{e, eg,..., egP~ } be as in the introduction. 
Let e be a unit of the field K Then for each prime I for which Qi(e)/Qi is a 
non-trivial extension, the power basis {1,8, ..., ep ~ l} is an integral basis of the field 
Qz(e) over Q{. 

To prove Theorem 1 we shall need Proposition 2 [2, p. 445]. First we recall 
some concepts. 

Under an inessential divisor m(e) of the discriminant d(e) of the basis 
{1, 8, ..., ep~1} we shall understand the fraction d(e)/d(K), where d(K) is the 
discriminant of the field K. By mt(e) we shall denote /', where / is the maximal 
integer such that V\m(e). 

In the theorem we suppose that the extension Qi(e)/Q{ is non-trivial. By 
Lemma 1, there is a unique ideal JSf lying over (/) in K. Hence 

*'f=P 
where e is the index of ramification of (/) in Kand/= [R#: Rj\ where R^, resp. 
Rh are the fields of residue classes of the local field Qi(e), resp. Q{. Because p is 
prime, there are two cases: 

(A) (I) = J?p 

(B) (I) = if. 

By Z/ we denote a ring of integral /-adic numbers and by T\<? a prime element 
belonging to j£? in K. 

The following proposition is a modification of Hasse's theorem [2, p. 445] for 
our situation. 

Proposition 2. In the case (A) for an integral element P from K the relation 
/M/(P) = 1 holds if and only if 
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p = x + Wee mod S£2 

where xeZh x ^ 0 mod S£. 
In the case (B) for an integral element P from K the relation m;(P) = 1 holds 

if and only if (3 is a representant of a primitive element from the residue class 
extension R^/R(. 

Proof of Theorem 1. To prove Theorem 1 means to show m/(e) = 1 for all 
prime / such that Qi(z)/Qi is a non-trivial extension. 

(A) Let (/) = S£p. The proof is given by contradiction. Suppose, that 
m/(e) # 1. By Proposition 2 it does not hold that 

E = x + n ^ mod JS?2 

where xeZh x ^ 0 mod JSf. Since 8 is a unit, e # 0 mod <£ and R^ = /?,, we 
can suppose that for xeZ{ 

implies 

By Lemma 1 we have 

є = x mod JS? 

є = x mod Jžf2. 

\~ce = a,8 + a2e* + ... + aps
gP \ 

where for 1 ̂  i ^ /?, a;eZ/. Hence 

p 

n<? = ~~] atx mod J£?2 

/ = i 

From n ^ = 0 mod JSf we get 

/> 
Y, citx mod <£. 

i= 1 

Both at and x belong to Z7 and (/) = JS?P, hence the last congruence holds also 
mod if2. From this we get 11^ = 0 mod JS?2, which contradicts the fact that 11^ 
is a prime element belonging to JSf. Therefore in the case (A) we have m/(e) = 1. 

(B) Let (/) = JSf. By Proposition 2 it is sufficient to prove that 8 is a represen­
tative of a primitive element of the extension R^/R{. That means that ~4R{ 

where 8 is the residue class belonging to 8. Clearly 8 e Rt if and only if 8*' e Rt for 
all i. Let d be a primitive element of extension R^/Rh The element a is its 
representative in the ring ZKc of integral numbers of K#. Then due to Lem­
ma 1 there holds 

a = aj8 + a2z
g + ••• + a

P'gP~X 

where aieZl (for Q ^ i ^ p), hence 

a = a,8 + a2z
g + ... + ap~

gP~\ 
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where di~\Rlfor 1 ̂  / ^ p, hence 8<£ Rh We have m,(e) = 1. Theorem 1 is proved. 
The following example shows that if the assumptions of Theorem 1 are 

satisfied, the power basis {1,8, ..., ep ~ !} need not be the integral basis of the field 
K over Q. 

Example. Let L = Q(£>) where £ is a primitive root of degree 653 of 1. Since 
653 is a prime we get that G = G(L/Q) is a cyclic group and [L:Q] = 652. Let 
G0 be a subgroup of G generated by the automorphism 

Since 

1494=1 mod 653 (1) 

and 4 is the least natural number m for which 

149" = 1 mod 653 
holds, we get that the order of the group G0 is 4. 

Now we define a field K and an integral normal basis of the field K over Q, 
which satisfied the assumptions of Theorem 1. Let K be the subfield of L 
invariant with respect to G0. Let H = G(K/Q). We have the following situation: 

0<=Kc=L, G = G(L/Q\ G0 = G(L/K), H = G(K/Q) 

where H ~ G/G0, [L: Q] = 652, [L: K] = 4, [K: Q] = [L: Q]/[L: K] = 163. Note 
that 163 is a prime. 

Let h be a generating automorphism of the group H. Put 

8 = £ + 5"9 + £«2 + £*» 

We first show that e, e\ ..., 8*162 is an integral normal basis of the field K 
over Q. For simplicity let us denote 

8,- = Eh . 

There holds 

e* = £ + $* + ^ 2 + ^ > = 5* + ^ 2 + ^ 3 + $ = 8, 

where g is the generating automorphism of the group G0. Hence eeK. 
The linear independence of el5 e2, ..., e163 over Q follows from the linear 

independence of £, £2, ..., £652 over Q. 
Now we shall compute the discriminant of the basis el9 e2, ..., e163. 

d(є,, є2, ..., є l63) = det 

TrKIQ(г]) TrKIQ(г,г2)... Trкe(в,eia) 
Trкip(e2et)... TrKQ(z2гш) 

TrKIQ(eiaЄi)... TrKQ(г]a) 
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Using the relation TrK/Q(x) = (i/[L: %]) TrL/Q(x) it can be easily proved that 

TrK,Q($) = 649 for 1 ̂ / < 163 
and 

TrK/Q(^j) = - 4 for i *j, 1 < ij ^ 163. 

Hence d(e,, 82, ..., e163) = def C/rc163(649, - 4 , ..., - 4 ) = 653162. According to 
[3, Corollary 3, p. 262] we get that el5 e2, ..., 8163 is an integral basis and hence 
an integral normal basis of the field K over Q. 

We next show that e, are units. Let P be a primitive root of 1 of a prime degree 
p and letf^x) = xp~ l + xp~2 + ... + 1 be the corresponding caclotomic poly­
nomial. Then -VG(P)/e(l + p) = f ( - 1) = 1. Hence, we have that 

8 = $ + c;149 + c;652 + ĉ 504 = $(1 + ^ ,48) (1 + ^503) 

where all factors on the right hand are units of the field L and therefore 
e,, G2, ..., 8163 are units of the field K. 

We showed that the assumptions of Theorem 1 are fulfilled. Finally we show 
that 1,8, ..., 8162 is not an integral basis of the field K over Q. 

From (1), according to [1, Lemma 1.4, p. 139], we get that the polynomial 
f(x) = (x — 8,)(x — 82)... (x — 8163) is completely reducible mod 149 and hence 
it has a multiple root mod 149. That means that the discriminant 

d(f(x)) = d(\,e, ...,8162) = 0 mod 149. 

This proves that 1, 8, ..., e162 is not an integral basis of the field K over Q. 
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ЗАМЕТКА О НОРМАЛЬНЫХ И СТЕПЕННЫХ БАЗИСАХ 

1ига] Коз 1га 

Резюме 

В статье доказано, что если ^-нормальное поле алгебраических чисел, имеющее степень 
/?, кде р-простое число, 6 = 8,, е2, ..., гр — целый нормальный базис поля К над полем 
рациональных чисел 2 И 8 является единицей поля К, то степенный базис 1, е, ..., ЕР ' 
является целым базисом поля 2Де) н аД полем /-адичных чисел ^ ь для всех /, для которых это 
расширение нетривиально. 
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