Mathematica Slovaca

Juraj Kostra
A note on normal and power bases

Mathematica Slovaca, Vol. 37 (1987), No. 4, 357--362

Persistent URL: http://dml.cz/dmlcz/128828

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1987

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz


http://dml.cz/dmlcz/128828
http://project.dml.cz

Math. Slovaca 37, 1987, No. 4, 357—362

A NOTE ON NORMAL AND POWER BASES
JURAJ KOSTRA

Let K/Q be a normal field of algebraic numbers of prime degree p over the
field of rational numbers Q with the Galois group

GKIQ)={l,8 8% ...8"" '}

In this paper we show: Let {g, €5, ..., €'} be an integral normal basis of K
over Q. Let / be a prime and Q, be the field of /-adic numbers. If € is a unit of
the field K and if Q,(€)/Q, is a non-trivial extension, then

{l,e,€, ...,e7 "}

‘is an integral basis of the field Q,(€) over Q,. By an example we show that an
analogous statement does not hold for the field extension K/Q.
We shall need the following proposition.

Proposition 1. {3, p. 243] Let K/Q and G = G(K/Q) be as in the introduction.
.Let | be a prime and & any prime ideal lying over (l) in the field K. Then the
corresponding extension K, |Q, of the l-adic field is normal and there is a canonical
embedding of its Galois group G(K,/Q)) into G. The index of G(K,/Q) in G
equals the number of prime ideals lying above () in K. (This makes sense provided
we identify G(K,/Q)) with its image in G).

Lemma 1. Let K/Q, G = G(K/Q) and {g, €, ..., "'} be as in the introduction.
Let | be a prime such that Q,(€) is a non-trivial extension of the field of l-adic
numbers Q,, then {g, €, ..., €'} is an integral normal basis of Q,(€) over Q,.
Moreover, there is a unique prime ideal ¥ lying over (l) in K.

Proof. According to Proposition 1, for all prime / the extension K,/Q,,
where & is a prime ideal of K lying over (/), is normal and there is a canonical
embedding of G(K,/Q)) into G such that the index of G(K,/Q)) in G is equal to
the number of prime ideals lying over (/) in K. Using the fact that the extension
Q,()/Q, is non-trivial and that [K: Q] = p, where p is a prime, we have that
K, = Q,(¢) and [K,: Q] = p. From the above it follows that there is a unique
prime ideal % lying over (/) in K. Clearly {1, ¢, ..., €~ '} is a basis of the field
0,(e) over Q,. The elements of this basis can be obtained as linear combinations
with integral rational coefficiens of the elements ¢, €5, ..., €&~ '. Hence {e, €, ...,
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..., €'} is a normal basis of the field Q,(¢) over Q,. The field K, = Q,(g) is the
completion of K with respect to the valuation belonging to the unique prime
ideal # lying over (/) in K. Each element x of the ring of integers Z , of the field
K, is the limit of a sequence {x,} of integers of the field K. Hence
x = lim x, = lim (a, ,¢ + ... + ap‘,,ag"‘l)

where a; ,, | < i< p are integral rational numbers. According to [4, p. 555] the
sequence {x,} is fundamental in K if and only if for all i, 1 < i < p, the sequences
{a; ,} are fundamental in Q, and therefore

—1
X=ae+ ae¥+ ... + a,e”

where g;€ Z,, where Z, is the ring of integral /-adic numbers. From this we get
that {g, €%, ..., ¢’ '} is an integral normal basis of the field Q,(¢) over Q,.

Theorem 1. Let K/Q, G = G(K/Q) and {e, €, ..., €~ '} be as in the introduction.
Let € be a unit of the field K. Then for each prime | for which Q,(€)/Q, is a
non-trivial extension, the power basis {1, €, ..., € ~ '} is an integral basis of the field
Q,(g) over Q,.

To prove Theorem 1 we shall need Proposition 2 [2, p. 445]. First we recall

some concepts.
Under an inessential divisor m(g) of the discriminant d(g) of the basis

{1, &, ..., &'} we shall understand the fraction d(€)/d(K), where d(K) is the
discriminant of the field K. By m,(g) we shall denote /', where ¢ is the maximal
integer such that /'|m(g).

In the theorem we suppose that the extension Q,(g)/Q, is non-trivial. By
Lemma 1, there is a unique ideal % lying over (/) in K. Hence

e.f: p
where e is the index of ramification of (/) in K and f = [R,: R] where R, resp.
R,, are the fields of residue classes of the local field Q,(€), resp. Q,. Because p is
prime, there are two cases:
(4) =2
(B) =2
By Z, we denote a ring of integral /-adic numbers and by IT, a prime element

belonging to £ in K.
The following proposition is a modification of Hasse’s theorem [2, p. 445] for

our situation.

Proposition 2. In the case (4) for an integral element B from K the relation
m,(B) = 1 holds if and only if
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B=x+1, mod L

where xe Z,, x # 0 mod &.

In the case (B) for an integral element B from K the relation m,(B) = 1 holds
if and only if B is a representant of a primitive element from the residue class
extension R, /R,.

Proof of Theorem 1. To prove Theorem 1 means to show m,(€) = 1 for all
prime / such that Q,(¢)/Q, is a non-trivial extension.

(A) Let () = £?. The proof is given by contradiction. Suppose, that
my(g) # 1. By Proposition 2 it does not hold that

E=x+1Il, mod £?

where xe Z,, x # 0 mod %. Since ¢ is a unit, € # 0 mod ¥ and R, = R;, we
can suppose that for xe Z,

e=x mod ¥
implies

e=x mod ¥
By Lemma 1 we have

-1
Ny =ae+ae+ ... +a,,

where for 1 < i< p, a,eZ,. Hence

P
My,= ) ax mod £*

i=1

From I1, = 0 mod & we get

i a;x mod &.

i=1
Both g; and x belong to Z, and (/) = #”, hence the last congruence holds also
mod #*. From this we get [T, = 0 mod %7, which contradicts the fact that IT,
is a prime element belonging to .. Therefore in the case (4) we have m,(g) = 1.

(B) Let (/) = &. By Proposition 2 it is sufficient to prove that € is a represen-
tative of a primitive element of the extension R, /R,. That means that ¢ R,
where £ is the residue class belonging to €. Clearly & € R, if and only if & € R, for
all i. Let a@ be a primitive element of extension R, /R,. The element a is its
representative in the ring Z, , of integral numbers of K. Then due to Lem-
ma | there holds
a=a¢e+ae+...+ae’

where g;€ Z, (for Q < i < p), hence
- - - - - - —op—1
0=a&+ ae+..+a8
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where g;e R, for 1 < i < p, hence £¢ R,. We have m,(€) = 1. Theorem 1 is proved.
The following example shows that if the assumptions of Theorem 1 are
satisfied, the power basis {1, ¢, ..., &” ~ '} need not be the integral basis of the field

K over Q.

Example. Let L = Q(§) where £ is a primitive root of degree 653 of 1. Since
653 is a prime we get that G = G(L/Q) is a cyclic group and [L: Q] = 652. Let
G, be a subgroup of G generated by the automorphism

g g,

149 =1 mod 653 (1)

Since

and 4 is the least natural number m for which

149" =1 mod 653

holds, we get that the order of the group G, is 4.

Now we define a field K and an integral normal basis of the field X over Q,
which satisfied the assumptions of Theorem 1. Let K be the subfield of L
invariant with respect to G,. Let H = G(K/Q). We have the following situation:

QcKcL, G=GL/Q), G,=G(L/K), H=GK/Q)

where H ~ G/G,, [L: Q] = 652,[L:K] =4, [K:Q] =[L:Q]/[L: K] = 163. Note
that 163 is a prime.
Let / be a generating automorphism of the group H. Put

€ = é + 5.149 + éssz + &504‘

We first show that €, €', ..., e is an integral normal basis of the field K

over Q. For simplicity let us denote
g =¢" .
There holds

F=EHEHE )=+ +E + =g,

where g is the generating automorphism of the group G,. Hence e K.
The linear independence of ¢, €,, ..., €; over Q follows from the linear

independence of &, £, ..., £% over Q.
Now we shall compute the discriminant of the basis €, €,, ..., €.

TrK/Q(a%) Trio(e18)) ... Trio(€,€3)
d(8|, €y, ouny 8l63) = det TrK/,Q(SZEl) -“ TrKQ(Elel()J) .

Trip(€16381) - Try o(€le3)
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Using the relation Try,(x) = (1/[L:K]) Tryp(x) it can be easily proved that

Try,p(e)) = 649 for 1 <i< 163
and

Trxo(ee) = —4  fori#j, 1 <i,j<163.

Hence d(g,, €,, ..., €1s3) = det circ,s;(649, —4, ..., —4) = 653'2. According to
[3, Corollary 3, p. 262] we get that €, €,, ..., €, is an integral basis and hence
an integral normal basis of the field K over Q.

We next show that €; are units. Let B be a primitive root of 1 of a prime degree
pandletf,(x) = x"~'+ x"~24+ ... 4 1 be the corresponding caclotomic poly-
nomial. Then Ny (1 + B) = f(—1) = 1. Hence, we have that

€= é + &]49 + 5652 + &504 — é(l + &MS)(I + &503)

where all factors on the right hand are units of the field L and therefore
€, &, ..., €43 are units of the field K.

We showed that the assumptions of Theorem 1 are fulfilled. Finally we show
that 1, ¢, ..., €' is not an integral basis of the field K over Q.

From (1), according to [1, Lemma 1.4, p. 139], we get that the polynomial
f(x) =(x —g)(x — &) ... (x — €¢3) is completely reducible mod 149 and hence
it has a multiple root mod 149. That means that the discriminant

d(f(x)) =d(l, ¢, ..., ") =0 mod 149.
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This proves that 1, g, ..., €'° is not an integral basis of the field K over Q.
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3AMETKA O HOPMAIJIBHBIX WU CTEINEHHBIX BA3UCAX
Juraj Kostra

Pe3rome

B ctaTthe noka3zaHo, uTo ecau K-HOpMasbHOE noJie anrebpandeckux 4nucesl, UMelollee CTeNneHb
P» K€ p-POCTOE 4HUCIO, € = €|, &, ..., §, — LEJbIA HOPMaNbHbIA 6a3uc nons K Haa mosem
palMOHAIbHBIX Yuces Q M € siBjseTcs eauHuued moas K, To crenenusiii Gasuc 1, €, ..., & '

SIBISICTCS LebIM 6a3ucoM nouis Q,(€) Haa nojeM /-aXu4HbIX yncea Q,, 1u1s BCex /, 1St KOTOPbIX 3TO
pacuIpeHue HeTPUBHAJIBLHO.
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