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ON PARTIALLY ORDERED GROUPS
OF LOCALLY FINITE LENGTH

BOZENA CERNAKOVA

All partially ordered groups considered in this note are assumed to be abelian;
the group operation is written additively. A partially ordered set is said to be of
locally finite length if all its bounded chains are finite.

Each partially ordered set of locally finite length is a multilattice (Benado [2]).

Let a be a cardinal, a =2. We denote by %, the class of all partially ordered
groups G such that
(i) the partially ordered set (G, =) is directed, of locally finite length and all

saturated chains from a to b are of the same length foreverya, be G,a<b;
(i) the set X of all elements of G covering the zero element of G has the
cardinality a.

The structure of partially ordered groups G belonging to %, will be investigated
in this note. All partially ordered groups of the class ¢, will be constructively
described (cf. Thm. 3.5). It will be proved that for each cardinal @ =2 there exists
an infinite set of non-isomorphic partially ordered groups belonging to %...

1. Preliminaries

-

We recall some basic notions which will be applied in the sequel.

Let P be a partially ordered set and let x, y be elements of P. Each nonempty
subset of P is partially ordered by the induced partial order. We denote by U(x, y)
the set of all upper bounds of the set {x, y} in P. Further let xv y be the set of all
minimal elements of the partially ordered set U(x, y). The set xAy is defined
dually.

The partially ordered set P is said to be a multilattice if it satisfies the following
condition (M1) and the condition (M1') dual to (M1):

(Ml) Whenever xe P, y e P and z € U(x, y), then there is z;,exvy such that
Z] =Z.

If G is a partially ordered group such that the corresponding partially ordered set
(G, =) is a directed multilattice, then G is said to be a multilattice group
(m-group). m-groups (introduced by Benado [1]) were thoroughly investigated
by McAlister ([4], [5]).
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For the basic definitions concerning partially ordered groups cf. Fuchs [3].

Let (G, +, =) be a partially ordered group. If no misunderstanding is likely to
arise, we write G instead of (G, +, =). However, if we wish to emphasize that the
relation = is not taken into account, then we sometimes denote the group (G, +)
by GW.

G is said to be trivially ordered if no distinct elements of G are comparable.

The condition mentioned in (i) above concerning saturated chains from a to b is
related to modularity and distributivity; let us recall these notions.

Benado [2] has defined the notion of modular and distributive multilattices as
follows:

A multilattice M is called modular if for every a, b, c, u, v e M satisfying the
conditions u=b=c=v,veavb, ueanc we have b=c.

A multilattice M is called distributive if for every a, b, c, u, v € M satisfying the
conditions ueaAb, ueanc, veavb, veavc we have b =c.

The following definition of a distributive multilattice group is due to McAlister
[4].

A multilattice group G is said to be distributive if for any a, b, c € G, the
relations (avb) n (avv)#0, (aab) n (anc)+0 together imply b =c.

It is evident that both definitions of distributivity are equivalent in multilattices
and that distributivity implies modularity.

For elements a, b of a multilattice M we write a <b (b covers a) if a>b and if
there does not exist any element ¢ € M such that a <c <b. The meaningof a a>b
- is defined dually.

Let M be a multilattice of locally finite length a, be M, a=b. Let C be a chain
in M such that b is the greatest element of C and a is the least element of C; then
C is said to be a chain from a to b. If card C = n, then we say that the length of the
chain Cis n.Let C={ao, ay, ...,a,},a0<a;<a,<...<a,; then the chain C is said
to be saturated.

1.1. Lemma. Let G+ {0} be a directed multilattice group of locally finite length
and let X be the set of all elements of G covering O. Then the set X generates the
group G,

Proof. Let g € G, g# 0.Then there exists h € G with h > g, h > 0. Further there
are elements ay, a,, ..., a,€ G and by, b,, b,, ..., b, € G such that

O=ap<a1<a<..<a,=h;
g=b0<b|<b2<...<b,,.=h.

Puta,—a;.y=xi(i=1,2,...,n),b;—b;-y=y; (j=1,2,...,m). Then all x; and all y;
belong to X and we have

q=h_(h’q)=(X|+xZ++x,,)—(y1+y2++ym)

Hence X generates G,
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In [2] (Theoreme 4.5) the following assertion is proved:

Let M be a modular multilattice of locally finite length, a, b € M. Then all
saturated chains from a to b are of the same length.

Hence if G is a directed group such that the partially ordered set (G, =) is of
locally finite length and is distributive, G fulfils (i). The converse fails to hold (cf.
the example given in § 4 below).

Let G be a partially ordered group and let {G;};c; be a system of convex
subgroups of G (all G; are partially ordered by the induced partial order). Assume
that

(a) the group G is a (discrete) direct product of groups G{" (iel);

(b) if iy, ..., I, are distinct elements of I, 0# g, € G, (k=1, ..., n), then from
g1+ ...+¢9.=0 it follows that g,=0, ..., g, =0.

Under these assumptions the partially ordered group G is said to be a direct sum
of partially ordered groups G; (i € I) and we express this fact by writing G =X, ,G..

If {H;};e; is any system of partially ordered groups, then there is a partially
ordered group H =23, ;Hj such that Hj is isomorphic to H; for each jeJ.

The following assertion is easy to verify.

1.2. Lemma. Let G and G; (i€I) be partially ordered groups, G = E-E,G-‘-

Then G is a multilattice group if and only if all G; are multilattice groups.

Let H be a convex subgroup of a partially ordered group G. The partially
ordered factor group G/H is the grou G"/H®" which is partially ordered as
follows: for x + He G/H we put x + H>H if there is x, € x + H with x, >0.

2. Homomorphisms s and s’ with s(X)=s'(X) =1

Let a be a cardinal, ¢ =2 and let 4, be as in the introduction. Let G € 4,.. The
set of all elements of G which cover 0 is denoted by X.
For every xe X and every ae G, 0<x implies a <a+ x. Hence we obtain

immediately

2.1. Lemma. Letx,, ..., X,, Y1, ..., Ym€ X and let B1, ..., Bus Y+ ..., Ym be positive
integers. Assume that Bixi+...+Bx.=y,yi+ ...+ YmYm. lhen B+ ... +B,=
Yit+ ...t Ym.

2.2. Lemma. Let x, ..., x, € X and let B,, ..., B, be nonzero integers. Assume
that Bix,;+...+B.x,=0. Then B,+...+8,=0. If Bix;+...+B.x,>0, then
Bi+...+B,>0.

Proof. Without loss of generality we can assume that there is a positive integer
k with 1=k=nsuchthat §;>0fori=1,2,....,kand §;i<Ofori=k+1,..., n.If
k =n, then the assertion of the lemma obviously holds. Let k <n. We have

ﬂw\’l +... +kak ;_Bk+le+l ... —ﬂnxn >0,
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and hence in view of 2.1

ﬁ1+~-~+ﬁk§‘ﬂk+1—...—ﬁn.

If Bix;+ ...+ B.x. >0, then in the above part of the proof the relation = can be
replaced by >.

From 2.2 we infer that the following corollaries 2.3 and 2.4 are valid:

2.3. Corollary. Let xy, ..., X, Y1, ..., ym€ X and let a,, ..., a,, By, ..., Bn be
integers. If ayx;+ ...+ ax, <Biyi+ ...+ Buym. then a4+ ...+ 1, <P+ ...+ B,

2.4. Corollary. Let x,, «;, y;, B; (i=1, ..., n; j=1, ..., m) be as in 2.3. If
axi+ .+ ax, =By + ...+ Buym, then ay+ ...+, =B+ ...+ ..

Let 0#geG. From 1.1 it follows that there are elements x,, ..., x, € X and
integers o, ..., @, such that a,x, + ... + a,x, = g. Define the mapping s: G— Z by
the rule s(g)=u,+ ...+ «,. In view of 2.4 the integer s(g) is uniquely determined
by g.

Then 2.3 can be expressed by

91, 9:€ G, 9:< g, > s(9:1)<s(g,). (2.3.1)

Therefore s is a homomorphism of the partially ordered group G onto Z.

2.5. Lemma. If 0<g € G, then there are x,, ..., x,€ Xsuchthatg=x,+ ... + x,.

Proof. Let 0<g e G. There are elements ay, ..., a, € G such that 0=a,<a, <
a,<...<a,=g.For each positive integer { with 1 =i=n we have a, —a,_, € X. Put
a—a;,=x; (i=1,...,n). Then g=x,+ ... + x,.

Let Z be the additive group of all integers with the natural linear order and let
D, be the direct sum of a copies of Z. Then D, € 4..

Let us denote by F, the free abelian group with the set X of free generators. If f
is a nonzero element of F,, then there are (uniquely determined) distinct elements
X1, ..., X, € X and uniquely determined nonzero integers «, ..., a, such that
f=ax;+ ...+ a.x,. Hence F, is isomorphic to (D,)". If we put f>0 whenever
«;>0 for i=1, ..., n, then we obtain a partially ordered group F, isomorphic to
D.. Hence F,e€ %4.,.

Let f be as above. Consider the mapping ¢: F,— G defined by ¢(0)=0 and
@(f) =g, where the relation

g=axt+ ...+ a.x,

holds in G.

Therefore by 2.5 we have f>0 iff @(f)>0 and ¢ is an epimorphism of F.,
onto G.
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Consider the mapping s': F,— Z defined by the rule s'(f)=a, + ... + a, where
feF., f=a;x;,+...+ a,x,. Then s’ is a homomorphism of F, onto Z and the

following diagram is commutative.

F > -7

G

We remark that s'(x;)=s(x;)=1 for each x;e X. Denote Hz=Ker ¢. H=
Ker s’. Let 0# f e H, then s'(f) =0, hence the elements f and 0 are incomparable.
Therefore the partial order on H is trivial. By using 2.2 for F, we infer that Hg is
also trivially ordered in F..

We obtain

2.6. Proposition. Let G € 4,. Then
(a) G is isomorphic to F./Hg.
(b) If x,, x, are distinct elements of X, then x,— x, ¢ Hg.
(c) Hg is a subgroup of H.

3. Subgroups of Ker s’

Let s’ and H be as in section 2. In the present section we describe all groups
which belong to %,. In view of 2.6 it suffices to investigate partially ordered groups
having the form F./K, where K is a convex subgroup of F, which satisfies the
following conditions :

(b’) If xy, x, are distinct elements of X, then x, — x, ¢ K.
(¢") K is a subgroup of H.
We shall show that under the mentioned conditions F./K belongs to ¥,.
Let fe F., fie F+ K. Then f,=f+ k for some k € K, thus s'(f,) = s'(f). Define
the mapping s”: F./K— Z by putting s"(f + K)=s'(f).
The partially ordered group F; belongs to ¥, hence the results from §2 can be

applied to F, (if s is replaced by s').
3.1. Lemma. Let A,, A,e F//K, A;<A,. Then s"(A,)<s"(A,).
Proof. There are fiEAi (1: 1,2) such that f|<fz. In view of 2.3.1, S’(f|)<

s'(f,). Hence s"(A,) <s"(A,).
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3.2. Corollary. F./K is a partially ordered group of locally finite length.
Let y be the natural homomorphism of Fonto Fi/K (i.e., y(f) = f + K for each
feF.). The following diagram is commutative.

’ s'

Let f;, foe F.. It is easy to verify that the following assertions are true:

() If fy<f,, then fi<f, iff s'(fi)+1=5s"(f2).
(ii) If fy<fs, then fi+ K<f,+K in F/K iff
s"(fi+ K)+1=5"(f,+ K)
(i) fi<f, iff fi+ K<f+K.

From (i)—(iii) we obtain immediately:
(iv) If fi<f,, then fi<f, iff i+ A<f,+ A.

3.3. Lemma. Let X' be the set of all elements of F,,/K covering K. Then card
X' =a.

Proof. Let A€ X'. In view of (iv) there is a € A such that 0 <a. Hence a € X,
A =x+ K for some x e X. Conversely, let x € X. Then we have s"(x + K)=1.
From 3.1 we infer that there does not exist any C e F,/K with K< C<x + K. Thus
x+KeX' If xy, x,€ X, x,# x,, then by (b’) we have x,— x, ¢ K, x, + K# x,+ K.
Therefore card X' =card X = «a.

Since all bounded saturated chains with the same endpoints in F, are finite and
have the same length, from (iv) we infer that F'/K also satisfies this condition.
Since F,is directed, F./K is directed as well. Then from 3.2 and 3.3 we obtain

3.4. Theorem. Let K be a subgroup of F| satisfying the conditions (b') and
(¢'). Then F//K belongs to §,.
From 3.4 and 2.6 we infer:

3.5. Theorem. Let G be a partially ordered group. Then the following condi-
tions are equivalent:

(i) Ge4..

(ii) G is isomorphic to F./K where K is a subgroup of F. which satisfies the
conditions (b') and (c’).
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4. Nonisomorphic types of partially ordered groups in ¥4,

Now we intend to show that for each cardinal « =2 the class 4§, contains an
infinite number of nonisomorphic partially ordered groups.

First let a=2 and let F; be the free abelian group generated by elements
X1, X, € X, x; # x,. Let N be the set of all positive integers. For each n € N, n >1 let
us form the set K, ={fe F;: f=np x,—np x,,p € Z}. Then K, is a subgroup of F,
and satisfies the conditions (b’) and (c’). In view of 3.4 we obtain B, = F;k, € 4.
for each ne N, n>1.

It is easy to varify that B, is directly indecomposable for each n>1.

We show that the partially ordered groups B, and B, are not isomorphic
whenever n,me N, n#m.

The coset of B, (B,) containing an element f € F; will be denoted by f(f*).

Assume that n <m and that there exists an isomorphism @ of B, onto B,.. Then
{%,, X} is the set of all elements of B, covering 0, and {x%, x%} is the set of all

elements of B, covering 0* (cf. the proof of 3.3). Hence either @(x;)=x%,
@(x2)=x3% or (p(;;) =x%, @(x;)=x*. Further we have n(x,—x;)=n(x,—x,)=
(nx,—nx;)=0=K,. Hence ¢[n(x;—x;)]=0*=K,. We shall prove that
@[n(x:— x2)] # 0* holds true, a contradiction. In fact, in the case @(x')=x%,
o) =x5 we get @[n(x—x)] = n[@(x) - @) = nlxi — x3]= (nx, — nx;)*
#0*. The case @(x,)= x%, @(x,) = x% is analogous.

We conclude that B, and B,. are not isomorphic and so for a =2 there exists an
infinite number of nonisomorphic partially ordered groups belonging to %,.

Let a >2 be a cardinal and let § be a cardinal such that a = + 2. Let M be a set,
card M =pf. For each ie M let Z; be the additive group of all integers with the

natural linear order. Let A = zieMZi be the direct sum of partially ordered groups

Z;.

An element a € A satisfies the relation a >0 if and only if there is i € M such that
a(i)=1 and a(j) =0 for each je M, j+ i. Therefore the cardinality of the set of all
elements from A covering the element 0 is equal to f.

Let us form the direct product D;,=A X B,,ne N, n>1. Since A € Gg, B, € %,
we obtain D€ ¥%,.

Finally, we want to show that if m, ne N, m# n, then the partially ordered
groups D, and D,, are not isomorphic. If D, and D,, are isomorphic, then from
D,=AXB, and D,=A X B, and from the fact that B,, B,, Z; are directly
indecomposable we would infer (by using the well-known theorem of Simbireva
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[6], cf. also [3], Chap. II, Thm 8) that the partially ordered groups B, and B,, are
isomorphic, which is a contradiction.

As an example, in Fig. 1 there is given the diagram of the partially ordered group
B, = F3/K;.

Fig. 1

We conclude by giving an example of a partially ordered group G € %; which fails
to be distributive. Let G be the set of all pairs (x, y) with x e Z, y € {0, 1, 2}, with
the operation + defined coordinate-wise (for the second coordinate we apply the

addition mod 3). We put (x, y) =0 iff either x =y =0 0or x>0. Then G € 4; and G
is not distributive.
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O YACTUYHO YIMOPAIOYEHHBIX I'PYTINAX JJOKAJIbHO KOHEYHOU [UIMHBI
Bozena Cerndkova
Pesiome
B paGoTe uccnenyercs cTpoeHue abeseBOM 4acTM4HO ynopsinoudeHHoit rpymnsl (G. +. =). ais

KOTOPOH BbINONHeHbI creaytowue ycnosusa : (i) (G, =) — HanpaBineHHOe MHOXECTBO, (ii) ecnu a, b e G
M a <b, Torna Bce HAChILEHHbIE LieTIbl COEAUHAIOLINE 3TIEMEHThI d H b KOHE4YHbI ¥ OTHHAKOBOW 1JIHHBI.
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