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Math. Slovaca 36,1986, No. 2,119—127 

ON PARTIALLY ORDERED GROUPS 
OF LOCALLY FINITE LENGTH 

BOZENA CERNAKOVA 

All partially ordered groups considered in this note are assumed to be abelian; 
the group operation is written additively. A partially ordered set is said to be of 
locally finite length if all its bounded chains are finite. 

Each partially ordered set of locally finite length is a multilattice (Benado [2]). 
Let a be a cardinal, a ^2. We denote by %t the class of all partially ordered 

groups G such that 
(i) the partially ordered set (G, ^ ) is directed, of locally finite length and all 

saturated chains from a to b are of the same length for every a, b eG,a<b ; 
(ii) the set X of all elements of G covering the zero element of G has the 

cardinality a. 
The structure of partially ordered groups G belonging to %t will be investigated 

in this note. All partially ordered groups of the class %t will be constructively 
described (cf. Thm. 3.5). It will be proved that for each cardinal a S 2 there exists 
an infinite set of non-isomorphic partially ordered groups belonging to %t. 

1. Preliminaries 

We recall some basic notions which will be applied in the sequel. 
Let P be a partially ordered set and let x, y be elements of P. Each nonempty 

subset of P is partially ordered by the induced partial order. We denote by U(x, y) 
the set of all upper bounds of the set {JC, y} in P. Further let x vy be the set of all 
minimal elements of the partially ordered set U(x, y). The set xAy is defined 
dually. 

The partially ordered set P is said to be a multilattice if it satisfies the following 
condition (Ml ) and the condition ( M l ' ) dual to ( M l ) : 

(Ml ) Whenever xeP, y eP and z e U(x, y), then there is Z\ exvy such that 
Z\^Z. 

If G is a partially ordered group such that the corresponding partially ordered set 
(G, ^ ) is a directed multilattice, then G is said to be a multilattice group 
(m-group). m-groups (introduced by B e n a d o [1]) were thoroughly investigated 
by McAl i s t e r ([4], [5]). 
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For the basic definitions concerning partially ordered groups cf. Fuchs [3]. 
Let (G, + , _i) be a partially ordered group. If no misunderstanding is likely to 

arise, we write G instead of (G, + , __). However, if we wish to emphasize that the 
relation _i is not taken into account, then we sometimes denote the group (G, + ) 
by G(1). 

G is said to be trivially ordered if no distinct elements of G are comparable. 
The condition mentioned in (i) above concerning saturated chains from a to b is 

related to modularity and distributivity; let us recall these notions. 
B e n a d o [2] has defined the notion of modular and distributive multilattices as 

follows: 
A multilattice M is called modular if for every a, b, c, u, v eM satisfying the 

conditions w__fr __c__v, v eavb, ueaAC we have b = c. 
A multilattice M is called distributive if for every a, b, c, u, v eM satisfying the 

conditions ueaAb, ueaAC, veavb, veavc we have b = c. 
The following definition of a distributive multilattice group is due to McAl i s t e r 

[4]-
A multilattice group G is said to be distributive if for any a, b, ceG, the 

relations (avb) n (avv)=f=0, (aAb) n (aAC)±0 together imply b = c. 
It is evident that both definitions of distributivity are equivalent in multilattices 

and that distributivity implies modularity. 
For elements a, b of a multilattice M we write a<b (b covers a) if a > b and if 

there does not exist any element ceM such that a<c<b. The meaning of a a >b 
is defined dually. 

Let M be a multilattice of locally finite length a, b eM, a^b. Let C be a chain 
in M such that b is the greatest element of C and a is the least element of C; then 
C is said to be a chain from a to b. If card C= n, then we say that the length of the 
chain C is n. Let C= {a0,au ..., an), a0<ax <a2< ... <an; then the chain C is said 
to be saturated. 

1.1. Lemma. Let Gi= {0} be a directed multilattice group of locally finite length 
and let X be the set of all elements of G covering O. Then the set X generates the 
group G(1). 

Proof. Let g e G , g ^ 0 . T h e n there exists he G with h >g, h > 0 . Further there 
are elements a0, ax, .., <*n e G and b0, bx, b2, ..., bneG such that 

0 = a0 < ax < a2< ... < an = h ; 

g = b0<bx<b2<...<bm = h. 

Put ai-al.x = Xi (i= 1,2,..., n), bj-bi-x=yj (j = 1,2,..., m). Then all x, and all y, 
belong to X and we have 

g = h-(h-g) = (xl + x2+... + xH)-(yl + y2+... + ym). 

Hence X generates G<*>. 
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In [2] (Theoreme 4.5) the following assertion is proved: 
Let M be a modular multilattice of locally finite length, a,beM. Then all 

saturated chains from a to b are of the same length. 
Hence if G is a directed group such that the partially ordered set (G, ^ ) is of 

locally finite length and is distributive, G fulfils (i). The converse fails to hold (cf. 
the example given in § 4 below). 

Let G be a partially ordered group and let {G(}ieI be a system of convex 
subgroups of G (all G, are partially ordered by the induced partial order). Assume 
that 

(a) the group G(1) is a (discrete) direct product of groups GJ1} (iel); 
(b) if /,, ..., in are distinct elements of J, 0J=gkeGik (k = l, ..., n), then from 

gx + ... + gn^0 it follows that gx^0, ..., gn^0. 
Under these assumptions the partially ordered group G is said to be a direct sum 

of partially ordered groups G, (i e I) and we express this fact by writing G = 2 / e/G,. 
If {Hj}jeJ is any system of partially ordered groups, then there is a partially 

ordered group H=yLje}H) such that H- is isomorphic to H7 for each jeJ. 
The following assertion is easy to verify. 

1.2. Lemma. Let G and G, (iel) be partially ordered groups, G = V G(. 

Then G is a multilattice group if and only if all G{ are multilattice groups. 
Let H be a convex subgroup of a partially ordered group G. The partially 

ordered factor group GIH is the grou G(1)/H(1) which is partially ordered as 
follows: for x + HeG/H we put x + H>H if there is xxex + H with x,>0. 

2. Homomorphisms s and s' with s (X) = s' (X) = 1 

Let a be a cardinal, a i=2 and let %x be as in the introduction. Let Ge%t. The 
set of all elements of G which cover 0 is denoted by X. 

For every xeX and every aeG, 0<x implies a<a+x. Hence we obtain 
immediately 

2.1. Lemma. Letxx, ..., xn, yx, ..., ym eXand let ft ft,, y. ym be positive 
integers. Assume that ftx, + ... + Pnxn = y,y, + ... + ymym. Ihen ft + ... + ft, = 
yi + . . . + ym. 

2.2. Lemma. Let xx, ..., xne X and let ft, ..., ft, be nonzero integers. Assume 
that pxxx + ... + pnxn^0. Then fix + ... + pn^0. If pxxx + ... + pnxn >0, then 
px + ... + pn>o. 

Proof. Without loss of generality we can assume that there is a positive integer 
k with l = k = M such that ft > 0 f o r / = 1,2 k and ft^<0 for / = k + 1, ..., n. If 
k = n, then the assertion of the lemma obviously holds. Let k<n. We have 

ftx, + ... + pkxk^-pk + lXk + i - .. - ft,*,, > 0 , 
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and hence in view of 2.1 

|31 + ... + / 3 f c g - / 5 k + 1 - . . . - j 3 _ . 

If /3iJCi + ... + /3„jcn>0, then in the above part of the proof the relation i_ can be 
replaced by > . 

From 2.2 we infer that the following corollaries 2.3 and 2.4 are valid: 
2.3. Corollary. Let xu ..., xn, yu ..., ymeX and let au ..., an, fiu ..., /3m be 

integers. If a,jc,+ ... + a.,*,, </3,y, + ... + fimym, then a, + ... + am</?, + ... + fim. 
2.4. Corollary. Let JC,, a,, yh j3f (i = l, ..., n ; j=\, ..., m) be as in 2.3. If 

a,x , + ... + anxn = j3,yi + ... + j3mym, f/ien «, + ... + an = 0, + ... + /L . 
Let O^geG. From 1.1 it follows that there are elements JC,, ..., jcneX and 

integers a,, ..., an such that a,xi + ... + anxn = g. Define the mapping s: G-+Z by 
the rule s(g)= a, + ... + an. In view of 2.4 the integer s(g) is uniquely determined 
by g. 

Then 2.3 can be expressed by 

gu g2 e G, gx < g2 => s(gx)< s(g2). (2.3.1) 

Therefore s is a homomorphism of the partially ordered group G onto Z. 
2.5. Lemma. If 0<g e G, then there are xu ..., xn eXsuch that g = xx + ... + xn. 
Proof. Let 0 < g _ G. There are elements a0, ..., aneG such that 0 = a()<al < 

a2< ...<an = g. For each positive integer i with 1 __/_in we have a, - a,_i e X. Put 
ax - a-x-\ = JC, (i = 1, ..., n). Then g = xx + ... + xn. 

Let Z be the additive group of all integers with the natural linear order and let 
Da be the direct sum of a copies of Z . Then Da e ^fi. 

Let us denote by Fa the free abelian group with the set X of free generators. If / 
is a nonzero element of Fa, then there are (uniquely determined) distinct elements 
JC,, ..., xn e X and uniquely determined nonzero integers a , , . . . , a n such that 
/=a 1 j c 1 + ... + anjcn. Hence Fa is isomorphic to (Da)

(1). If we put / > 0 whenever 
r / ,>0 for / = 1, ..., n, then we obtain a partially ordered group F,' isomorphic to 
Da. Hence F\te%t. 

Let / be as above. Consider the mapping cp: Fa-+G defined by qp(0) = 0 and 
<p(f) = Gi where the relation 

g = a,jc, + ... + anjcn 

holds in G. 
Therefore by 2.5 we have / > 0 iff <p(f)>0 and cp is an epimorphism of F'u 

onto G. 
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Consider the mapping s': F'a-*Z defined by the rule s'(f) = ax + ... + an where 
feF'a, f = alxl + ... + anxn. Then s' is a homomorphism of F'a onto Z and the 
following diagram is commutative. 

We remark that s'(xl) = s(x,)= 1 for each x,eX. Denote HG = Ker (p, H = 
Ker s'. Let 0 ^ / e H , then s'(/) = 0, hence the elements/ and 0 are incomparable. 
Therefore the partial order on H is trivial. By using 2.2 for F'a we infer that HG is 
also trivially ordered in F'a. 

We obtain 

2.6. Proposition. Let Ge%. Then 

(a) G is isomorphic to FJHG. 
(b) If xx, x2 are distinct elements of X, then xx — x2 & HG. 
(c) HG is a subgroup of H 

3. Subgroups of Ker s' 

Let s' and H be as in section 2. In the present section we describe all groups 
which belong to %x. In view of 2.6 it suffices to investigate partially ordered groups 
having the form FJK, where K is a convex subgroup of F'a which satisfies the 
following conditions : 

(b') If JCI, x2 are distinct elements of X, then xx-x2£K. 
(c') K is a subgroup of H. 

We shall show that under the mentioned conditions FJK belongs to %t. 
Let feF'(„ fxeF+K. Then /, = / + k for some k e K, thus s'(fx) = s'(f). Define 

the mapping s": FJK-+Z by putting s"(f+K) = s'(f). 
The partially ordered group Fa belongs to %„ hence the results from §2 can be 

applied to F'a (if s is replaced by s'). 
3.1. Lemma. Let A„ A2eF'jK, AX<A2. Then s"(Ax)<s"(A2). 
Proof. There are / e A , (i = l,2) such that / , < / 2 . In view of 2.3.1, s'(/,)< 

s'(f2). Hence s"(Ax)<s"(A2). 
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3.2. Corollary. FJK is a partially ordered group of locally finite length. 
Let \p be the natural homomorphism of F«onto FJK (i.e., xp(f) = f + K for each 

feF'a). The following diagram is commutative. 

E7K 

Let fu f2eF'a. It is easy to verify that the following assertions are true: 

(i) IfU<f2, then / , < / 2 iff s'(f]) + \=s'(f2). 
(ii) If /, < / 2 , then fx + K<f2+K in FJK iff 

s"(fl + K) + \ = s"(f2 + K) 
(iii) / - < / 2 ifffx + K<f2+K. 

From (i)—(iii) we obtain immediately: 

(iv) I f / i < / 2 , thenf1<f2 iff f, +A <f2 +A. 

3.3. Lemma. Let X' be the set of ill elements ofFj'K covering K. Then card 
X' = a. 

Proof. Let A eX'. In view of (iv) there is a e A such that 0<a. Hence a e X , 
A = J C + K for some JCGX. Conversely, let xeX. Then we have s"(x + K)=\. 
From 3 A we infer that there does not exist any C e FJ K with K < C < JC + K. Thus 
x + KeX'. If xu x2eX, JC, + x2, then by (b') we have JCI - x2& K, JC, + K±x2 + K. 
Therefore card X' = card X = a. 

Since all bounded saturated chains with the same endpoints in F'a are finite and 
have the same length, from (iv) we infer that F7K also satisfies this condition. 
Since F'a is directed, FJK is directed as well. Then from 3.2 and 3.3 we obtain 

3.4. Theorem. Let K be a subgroup of F'u satisfying the conditions (b') and 
(cf). Then FJK belongs to %x. 

From 3.4 and 2.6 we infer: 
3.5. Theorem. Let G be a partially ordered group. Then the following condi­

tions are equivalent: 

(i) Ge%t. 
(ii) G is isomorphic to FJK where K is a subgroup of F'a which satisfies the 

conditions (b') and (c'). 

124 



4. Nonisomorphic types of partially ordered groups in % 

Now we intend to show that for each cardinal a=S2 the class ^a contains an 
infinite number of nonisomorphic partially ordered groups. 

First let a = 2 and let F2 be the free abelian group generated by elements 
JCI, JC2 6 X, JCI + JC2. Let N be the set of all positive integers. For each n e N, n > 1 let 
us form the set Kn = {/ e F 2 : f= np xx — np x2, p eZ). Then Kn is a subgroup of F'a 

and satisfies the conditions (b') and (cf). In view of 3.4 we obtain Bn = F2/Kn e %t 

for each neN, n>\. 
It is easy to varify that Bn is directly indecomposable for each n>\. 
We show that the partially ordered groups Bn and Bm are not isomorphic 

whenever n, meN, n+m. 
The coset of Bn (Bm) containing an element feF'2 will be denoted by / ( /*) . 
Assume that n < m and that there exists an isomorphism cp of Bn onto Bm . Then 

{ii, JC2} is the set of all elements of Bn covering 0, and {JC*, JC$} is the set of all 

elements of Bm covering 0* (cf. the proof of 3.3). Hence either q)(xx) = x\, 

qp(jc2) = jc* or <p(xx) = xi
2\, (p(x2) = x\. Further we have n(xx-x2) = n(xx-x2) = 

(nxx-nx2) = 0 = Kn. Hence cp[n(xx - JC 2 ) ] = 0 * = Km. We shall prove that 

q)[n(xx — JC2)]=£0* holds true, a contradiction. In fact, in the case (p(xl) = x*, 

cp(x2) = x?2 we get cp[n(xx-x2)] = n[cp(xl)-cp(x2)] = n[x\ - x\] = (nxx-nx2y 4= 

=£0*. The case cp(xx) = x%, (p(x2) = x*x is analogous. 
We conclude that Bn and Bm are not isomorphic and so for a = 2 there exists an 

infinite number of nonisomorphic partially ordered groups belonging to ^2 . 
Let a > 2 be a cardinal and let j3 be a cardinal such that a = (5 + 2. Let M be a set, 

card M = fi. For each ieM let Z, be the additive group of all integers with the 

natural linear order. Let A = V Z, be the direct sum of partially ordered groups 

Z,. 
An element a e A satisfies the relation a > 0 if and only if there is ieM such that 

a(i) = 1 and a(j) = 0 for each j eM, \+i. Therefore the cardinality of the set of all 
elements from A covering the element 0 is equal to j3. 

Let us form the direct product D'n = A x Bn, n e N, n > 1. Since AeGp, Bne %, 
we obtain D'ne%. 

Finally, we want to show that if m, neN, m+n, then the partially ordered 
groups D'n and D'm are not isomorphic. If D'n and D'm are isomorphic, then from 
D'n=AxBn and Dm=AxBm and from the fact that B„, Bm , Z, are directly 
indecomposable we would infer (by using the well-known theorem o fS imb i r eva 
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[6], cf. also [3], Chap. II, Thm 8) that the partially ordered groups Bn and Bm are 
isomorphic, which is a contradiction. 

As an example, in Fig. 1 there is given the diagram of the partially ordered group 
B3 = F'2/K3. 

Fig. 1 

We conclude by giving an example of a partially ordered group G e S 3 which fails 
to be distributive. Let G be the set of all pairs (JC, y) with jceZ, y e { 0 , 1,2}, with 
the operation + defined coordinate-wise (for the second coordinate we apply the 
addition mod 3). We put (JC, y) i_0 iff either jc = y = 0 o r x > 0 . Then G e % and G 
is not distributive. 
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O ЧACTИЧHO УПOPЯДOЧEHHЫX ГPУППAX ЛOKAЛЬHO KOHEЧHOИ ДЛИHЫ 

Božeпa Černáková 

Peзюмe 

B paбoтe иccлeдyeтcя cтpoeниe aбeлeвoй чacтичнo yпopядoчeннoй гpyппы (G. -f. ^ ) . для 
кoтopoй выпoлнeны cлeдyющиe ycлoвия: (i) (G, ^ ) — нaпpaвлeннoe мнoжecтвo, (ii) ecли a, b єG 
и a < b, тoгдa вce нacыщeнныe цeпы coeдиняющиe элeмeнты a и b кoнeчны и oдинaкoвoй длины. 
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