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A NOTE ON NONNEGATIVE MATRICES

MIROSLAV FIEDLER

1. Introduction. The main purpose of this note is to prove that the set of all
points the coordinates of which are eigenvalues of a nonnegative n by n matrix with
a given Perron root is closed.

2. Results. The reader is referred to the book [1] for the necessary definitions
and theorems. We shall prove first:

Theorem 1. Let A be a nonnegative matrix which has positive Perron root
P(A). Then there exists a diagonal matrix D with positive diagonal entries such
that the matrix DAD ™' =B = (b, ) satisfies

b.=p(A)

for all i, k.
Proof. Let us assume first that A is irreducible. By the Perron—Frobenius
theorem, there exist positive column vectors # = (%) and v =(v,) such that

Au=p(A)u,
ATv=p(A)v

AT being the transpose matrix to A. Define D = diag {d,}, where d, = v}?u;"">. It '
is easily seen that then B=DAD™' satisfies

(1) ' Bw=p(A)w,
(2) B'w=p(A)w
where w = (w;) with w, = u;”*v}’*. Without loss of generality, we can assume that

WiIZW,=...=W, .

Let i, k be two indices; if i =k, we have by (2),
P(A)Ywi =Zbyw,; Z byw, Z byw,
1

so that
(3) b.=p(A).
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If i>k, (1) yields
p(AYw,=Zbw, Zb,w, Zb,w,
and (3) is fulfilled as well. .
Let now A be reducible. As is well known [1], there exists a permutation matrix
P such that :

AIl AIZ . A]r

prapf 0 A= A

@ T
0 0 A,

where r>1 and A,,, A.., ..., A,, are square irreducible matrices of order at least
one. Let D,, /=1, ..., r be diagonal matrices such that no entry of the matrix

B, =D;A;D, I
exceeds the corresponding Perron root p(A,), i=1, ..., r. Let m be the maximum

of all the entries of all the matrices D,A, D', i<k. Define w=1 if m=p(A),
w=m/p(A)if m>p(A). Asp(A,;,)=p(A),i=1, ..., r,itiseasily checked that if

D,
(I)Dg

" 'D,

the matrix
B=DAD"'

has all entries less than or equal to p(A). The proof is complete.

Corollary. If A =(a,) is a nonnegative matrix with the Perron root p(A) then
for any indices k,, ..., k,, r=2,
5) iy Ohiy -+ Wi, =P (A) .

Proof. If p(A) =0, A is either of order one and there is nothing to prove, or A
is reducible and in the corresponding form (4) all matrices A, are zero matrices of
order one. It follows that all expressions on the left-hand sides of (5) are to zero.

Thus the assertion is true in this case.
If p(A)>0, there exists by Thm. 1 a diagonal matrix D with positive diagonal

entries such that DAD™' =B =(b,) satisfies
bu=p(A)
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for all 7, k. Since
Ay Wighs -+ Uiy = Oyiy Oy -+ buck, -
the estimate (5) follows.

Definition. Let p>0. We shall denote by N(p) the set of all nonnegative
matrices which have the Perron root p and whose entries do not exceed p.

Theorem 2. Let 3, (p) denote the set of all points (4,, A, ..., A._,) of a complex
(n — 1)-dimensional space C, _, such that there exists an n by n nonnegative matrix
A with the Perron root p and all the remaining eigenvalues A, A, ..., A,_,. Then
2.(p) is a closed set.

Remark. If (4,4, ...,4,.,)€Z,(p) and P is a permutation of the indices
1,...,n—1 then (Ap, Ap2, ..y Apu_ry) €2, (p) as well.

Proof. The theorem s true if p =0. Let thus p >0. Let {(A,;, A/, ..., V._1..)} be
a sequence of points in X, (p) which converges to' (A, 4,,..., 4,_,). By the definition
of 2, (p) and by Theorem 1, there exist matrices B, € N(p), i =1, 2, ... such that for
each 7, B, has the Peron root p and the remaining eigenvalues 4,;, 45, ..., 4,
N(p) being compact, there exists a subsequence {B,, } of {B,} which is convergent:

B,.—B.

As eigenvalues of a matrix depend continuously on its entries [2], it follows that
B which also belongs to N(p) has the Perron root p and all remaining eigenvalues
Ay Azy ooy Auey. Thus (44, 4, ..., A,_1) € 2,(p) and the proof is complete.
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3AMETKA 1O HEOTPUUATEJIbHbIM MATPULIAM
Mupocnas dupnep

Pe3ome

JToKa3bIBAETCS, YTO MHOXECTBO BCEX TOUEK /1-MEPHOTO KOMIIEKCHOTO MPOCTPAHCTBA, KOOPAUHATDI
KOTOPbIX SIBIISIIOTCA COOGCTBEHHBIM 3HAYEHHEM HEOTPHULATENBLHOM MATPULbI MOPSAAKA 72 C 3aAdHHBIM
kopHeM [leppoHa — 3aMKHYTO.
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