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HORIZONTAL STRUCTURES ON FIBRE MANIFOLDS
ANTON DEKRET

Libermann, [3], has defined a connection of the first order on a fibre space
E(B, F, &) as a global cross-section I': E—~J'E. In this paper we find some
properties of this structure. Our consideration are in the category C~. The standard
terminology and notations of the theory of jets are used throughout the paper, see
[2].

1. Let VTE denote the fibre bundle of vertical vectors on E(B, F, ). A tensor
field o: E— VTEX T*E will be said to be a v-field. Let X be a vector field on E.
Denote by Lx(0) the Lie derivative of o by X. Locally, let (x', y*), i=1,
n=dim B, a=1, ...,dim F, be local coordinates on E. Direct evaluation yields for
the wv-field o:(x, y)—(a(x, y)dx* + b5(x, y)dy’) X3y, and the vector field
X=a'(x, y)ox.+ b“(x, y)dy.:

M L) =-(a +b"dy")a ~ @0 +{(§”7 '+
s S Bt
+( a ,,+%§§ '+§22b’+b‘;§£y
o ) i@ S

.This immediately gives

Lemma 1. Let X be a vector field on E. Then the Lie derivative of every v-field
on E by X is a v-field on E if and only if X is projectable.

Let o be a v-field, hence o(u)e Hom(T,E, T,E,), nu=x. If o(u)|T,E, is
regular for any u € E, then o determines a horizontal distribution of the kernels of
o(u), i.e. a global cross-section E—J'E. Denote by x(E) the set of all such
v-fields on E that o(u)|T.E, =id|T,E, for any ueE. Let I'; be the set of all
cross-sections E— J'E. There is a one to one correspondence &: #(E)— I, where
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6(0) is a cross-section E— J'E determined by the horizontal distribution of the
kernels of o(u), ueE.

2. Definition 1. Let I': E— J'E be a cross-section. The pair (E, I') or the v-field

6~ '(I')="o will be called an H-structure or a tensor of the H-structure, respec-
tively.

Every 1 —jet I'(u) determines an element of Hom (T, B, T,E), nu = x. Thus we
get a cross-section I': E— TEQT*B. Locally, let (x', y“, y%) be local coordinates
on J'E. If I':(x', y*)—(x', y“. yi= —aj(x*, y"), then

‘o:(x, y)—(aj(x, y)dx' + dy*)®3y.,
I':(x, y)—dx'®dx; —ai(x, y)dx“ XDy, .
By direct evaluation we get

Lemma 2. Let X be a projectable vector field on E. Then L (I") is a global
cross-section E— VTEXQT*M and

(Lx"o)(u)=— (fo)(u)”* .

Let X be a projectable vector field on E and ' X be the first prolongation of X on
J'E. Let I'(E) be the set of all values of the cross-section I': E—J'E. By [1]

a projectable field X on E is conjugate with I' if I'x(X)(h)="'X(4). It is easy to
prove

Proposition 1. Let (E, I') be an H-structure. Let X be a projectable vector field
on E. Then X is conjugate with I if and only if Ly("0)=0.

Denote by Y the I'-lift of a vector field Y on B. Let Z,, Z,e T, B. Let Y, or Y,
be such a vector field on B that Y (x,)=Z, or Y,(x,) = Z,, respectively. Put

O(u)Z,, Z,)="o(u)([ Y, Y2l(u)).

It is easy to prove that @(u)(Z,, Z,) does not depend on the choice of the vector
fields Y,, Y, and that the mapping u+— ©(u) determines a glabal cross-section

©:E- VTEQA'T*B,

which will be said to be the curvature field of the H-structure.

Let I': E— J’E denote the first prolongation of I': E—J'E, see [4]. In local
coordinates, if

(', y sy, yi= —aj(x*, y)),
then
" i a i a a a a aaa~ aaa
@ r:(x,y )H(x,y ,yk=~ak,yk,-=a—y§af—axf>-
Kolaf, [4], introduced the difference tensor A (X) of an arbitrary semi-holonomic
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jet X. We recall that if # e J.E, Bh =u € E, then A(h)e T,E.XA*>T*B. Locally, if
h=(x', y*“. ¥, yi), then A(h) =y} ,dx' Adx*@3y..

In the case of the H-structure (B,I) we obtain a global cross-section
A(I'"): E-> VTEQA’T*B. By the direct evaluation in local coordinates we get

Proposition 2. Let (E, I') be an H-structure. Then
(3) O(u)=—A(I'")(u)

for any ue E.

By the relation (3) the curvature field @ of the H-structure (E, I') is the
curvature of the connection I" by Libermann [3]. Relation (3) also gives in the
comparison the curvature of the differential system I” by Prad nes [6].

Let X =a'dx; — ata*dy, be the I'-lift of a yector field X on M. Using (1) we have

‘ oy aa‘;_aak daj; o aa] Pk
4) Lu(0)=| S5~ 50k at+ 5% ot - S5 | war' @y,
It immediately yields that the mapping

X'—)Lx(rﬂ)

is a linear mapping of the modul D (M) of all vector fields on M to the modul of all
tensor fields E— VTEX) T*M. Moreover if the curvature field of (B, I') vanishes,
then the I'-lift X of X is conjugate with I

Let weJ'E, Bpw=u, nu=x. Denote by L(w) the element of T,EQRT*M
determined by w. Then L(w)— L(I'(u)) e T,E,XT*M and determines a 1-jet of
J(B, E,), which we will denote by w — I'(1) and call the developement of w into
E, by means of I

Let v € J’E, Bv = u. Then the tensor #(v)= A(v) A(I'' (u)) will be said to be
the torsion of the 2-jet v. Let &: B— J*E be a global section of J°E over B. Let
(E, I be an H-structure. Then the threetuple (E, I, ¥) will be called the
SH-space. The tensor

7(x) = A(S(x)) - A" (BS(x)))

will be said to be the torsion of the SH-space at x € B.

Remark. The second prolongation of the section S: B— E gives a holonomic
section $”: B—J?E and determines the SH-space (E, I', $”), the torsion of
which has the property

) . #(x)= O(S(x)).

3. Let us compare our consideration with the theory of connections. Let @& be
a Lie grupoid of the operators on a fibre bundle E(B, F, &). Let a, b be the
projections of @ and let 1, € @ denote the unit over x € B. Let us recall (see [5])
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that the connection (of the first order) on @ is a global cross-section
C: B— |J Q., where Q, denotes the set of all such elements 4 € J\)(a"'(x), b, B)

x€B
that gh=1,.
Let C be a connectionon @, C(x)=j,n.Letv e J.E, v =j.E. We recall that
(6) C'(x)(v)=jdn""(2)[&(2)]] e J'(B, E.)

is the developement of v into E, by means of C and analogously if we J’E,
w=j.E, then
(7) C''(x)(w)=C'(¥)jic " (2)(E(2))] € J(B, E.)
is the developement of w into E, by means of C.

Let ue E, nu=x, C(x)=/.n. Using the diffeomorphism 7(z): E,— E, put
(8) T(u)=jlz—n(z)(w)]eJ.E.

It is easy to see that the mapping u+— “I'(u) determines a global cross-section
“I': E- J'E. The H-structure (E, “T') will be said to be the representative of the

connection C on E.
Denote by U the domain of the local cross-section 7. We have a mapping f:

n~'(U)— E, determined by #— 1~ '(z)(h), wh = z. Let dC, be the differential of f
atuekE, tu=x.

Proposition 3. Let C be a connection on ®@. Then
9) dC,=“o(u), ueE,

where “o denotes the tensor of the H-structure (E, “T). '
Proof. Since BC(x)=1,, dC,|T,(E,)=id|T,(E,). Let Ye H,c T,(E), where
H, is the subspace determined by “I'(#). Then dC,(Y)=0O. It proves our

assertion.
Lemma 3. Let veJ.E, fv=u. Then
(10) - | L(C'(x)(w))=L(v) = L(T(u)).
Proof. It is easy to see that L(v)— L(“I'(«))=“o(u)L(v) and that dC,

L(v)=L(C'(x)(v)). Then the relation (9) completes our proof.
Using Lemma 3 the following assertion can be proved by direct evaluation in

local coordinates.
Proposition 4. Let we J°E, Bw=u, nu=x. Then
(11) T(w)=AC""'(x)(w).

Let P(B, G, p) be a principal fibre bundle and let E(B, F, &) be a fibre bundle
associated with P. Let ¢ = PP~ be the grupoid associated with P. Let us recall that
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@ =(PxP)|G, (hg, hg)~(h, h,); if 3 =(h,, h,) € @, then ad = ph,, b} =ph,;
if &, =(h,, h,) and &, = (4, A,), then the composition 1, is defined if and only if
h,=h, and %,¢,=(h,, h,). Let us also recall that &=PP~"' is a grupoid of
operators on E(B, F, r). Let C be a connection on @ and let I: P—J'P be the
representative of C on P. It is known that I'(hg) = I'(h)g (i.e. I"is a connection on
P). Hence the tensor "o of the H-structure (P, I') is equivariant, i.e. if Ye T,P is
generated by Ye ¥ (¥ denotes the Lie algebra of G) and "o(X)=Y, then

‘0((R,)xX)=Ad g~'(Y). Let heP, p(h)=x. Denote by 4 the map P.—G,
h(q)=h(hg)=g. Let @ be the canonical form of the connection I. Then
@(h)e $QTEP and

(12) @(h)=h+"o(h).

Let € be the curvature form of the connection I" on P, denote by Q(4) the element
of YQA°T*M determined by Q at he P, ph=x.

Proposition 5. Let O be the curvature field of the H-structure (P, I') determined
by the connection I" on P. Let 2 be the curvature form of I'. Then

(13) hx@(h)= — Q(h).

Proof. Let X, Y be the I'-lifts of vector fields X, Y on B. Using (12), the
definitions of £ and @ yield

Qh)(X, V)= - (X, V(1) = - h"a(h)[X, Y=
= — h+O(h)(X, Y)- QED.

Denote by (E, I') the H-structure, which is the representative of the connection
C on E. Every heP, ph=x, determines a mapping A:P—a '(x)c ¢,
h(q)=(q, h). Analogously denote by #: a™'(x)— E the map #— #(u), ueckE,.
Therefore i/: P—E is a fibre morphism from P to E. Let (ih) :J'P—J'E
denote the prolongation of the map #A. It is easy to see that the diagram

uh

(14) P > E
rl, .l
J'P J'E

is commutative. Let (&z4)* denote the differential of @4 at 4 e P. Using (14) we
obtain

Proposition 6. Let "G or "o be the tensor field of the (E,I), or (P,I),
respectively. Then

(15) (dh)«"a(h)(X)="6(ah)+(X), X e T,(P).
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Prqposition T.LetheP,, uekE,. Let O be the curvature field of the H-structure
(E, I'). Then

(16) O(u)=(ah)=O(h).

Remark. Let G, be the isotropy group of @ over x € B and let ¥, be its Lie
algebra. Let 4 e P,. Denote by hx the differential of the mapping 4: G— G,.
h(g)=[hg, h]=19€e @, at ee G, where e denotes the unit of G. Let 2 be the
curvature form: .f the connection I' on P which is the representative of the

connection C. Ir. {5] Kolaf has introduced the curvature form of the connection C
at xe B by

Q(x)=hxQ(h),

where the dot denotes the composition of mappings, and also introduced
a generalized space with connection as a quadruple ¥=S(P(B. G), F. C.n).
where n: B— E'is a global cross-section. Let u € E,. Let ux denote the differential
of mapping a: G, — E,, u(#)=1¥(u), at 1, € G,. Then the form

(x) = (n(x)) Q(x)

is called by Kolaf the torsion form of the generalized space ¥ with connection at
x € B. The relations (13) and (16) give

(17) O(n(x))= —7(x).

Moreover the generalized space ¥(P(B, G), F, C, n) with connection determines
the SH-space (E, T, n”). Let #(x) be the torsion of this SH-space. Then
comparing (5) with (17) we get

T(x)= —11{(x).

4. Let us consider the special case of a vector bundle E(B, 7). Denote by V the
Liouville field on E determined by the 1-parametric group of all homothetics on E.

Locally, V=y“dy,. A v-field o0 on E will be said to be k-homogeneous, if
Lyo=ka.

Lemma 4. Locally let o= (a,(x', y*)dx' + b3(c', y*)dy"YROy.. Then o Iis
~ k-homogeneous if and only if aj or bj are homogencous functions of the degree
k+1 or k with respect to variables y”.
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Proof. Relation (1) gives
by

a a a
(18) Loo=| (5% v - az) ax* +50E iy @y,

This proves our assertion.

Proposition 8. Let (E, I') be an H-structure. Then "o is O-homogeneous if and
only if the Liouville field V is conjugate with I.
Proof. In the case of the tensor field "o of the H-structure we have

r day , by
(19) Lio=| (S5 -at) ar + 52 vy |@oy..

Using proposition 1, relation (19) and Lemma 4 complete our assertion.
Let X be the I'-lift of a field X on B. Then
(LV'o)(X)=[V, X].
This gives -

Proposition 9. The tensor field "o of the H-structure (E, I') is O-homogeneous
if and only if [V, X]=0 for every vector field X on B.

Let (E, I') be an H-structure, Z be a vertical field on E. Then I'«(Z) is a vector
field on the submanifold I'(E). The values of I'«(Z) are vertical tangent vectors on
the vector bundle J'E over B. Let i: T,(J.E)— J.E be the canonical identification.
Then wu—i-I'«(Z(u)) determines a mapping ¢:E—J'E. Locally,
Z=>b"(x', y*)3y, and :

(e, y7) 5 (x, b, ), 55 7).

therefore £ is a global cross-section of J'E over E if and only if Z = V. In this case
denote by (E, V(I')) the H-structure determined by £. Locally

(20) \ viD 5 — (dy“ +g_;jE yﬂdx')®ay., )
Proposition 10. Let (E, I') be an H-structure. Then

(21) (Lv("0))(u) = (I'(u) — V(I)(u))7x.
Proof. I': (x, y*)>dx'®dx, — aj(x, y)dx' @Dy,

V(ID): (¥, y*) > dx'®dx;

o7

ayﬁ y dx ®aya .

Using (19) we get (21).
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Corollary. An H-structure (E, I') is O-homogeneous if and only if '= V(I).

Remark. Asitis well known, the H-structure (E, I') is a connection on E if and
only if the cross-section I': E— J'E is a vector bundle morphism over B. Locally., I”
is a connection on E if and only if a;'=I;(x)y". Hence the Liouville field V is
conjugate with every connection on E.

Further, if (E, I') is an H-structure and ¢: B— E is a global cross-section, then,
using the identifications j: E, — T, E.. i: Treu,J.E—J.E, we get the mapping

=i-x]

from E, to J.E. It is easy to see that I is a connection on E. Locally, if the
functions a;(x, y) determine the H-structure (E, I'), then the functions

daj(x*, e"(x")) ,
ayt* y

determine the connection I".
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IFOPU3OHTAIJIbHBIE CTPYKTYPbI
HA PACCIIOEHHBIX IMTPOCTPAHCTBAX

AHtoH IekpeT
Pe3tome

[Tycts E paccnoenHoe npocTpaHcTBO. ['Oopu30OHTaNbHAst CTPYKTYpa MM 0606LIEHHAs CBSI3aHOCTh
370 ceyenne I: E—J'E paccnoenns J'E. B craTbe onpegeneHo noixe u popMa KpUBH3HBI TOPU30H
TanbHOM CTPYKTYpbl. [Tonb3ysce Teopuen cTpyeit HanieH aXeT-BuR HOpMbl KpUBH3HBL. OGOCHOBaHbI
HEKOTOpblEe CBOWCTBA MPOU3BOAHOM JIM Mot ropu3oHTANbHOM CTPYKTYphl. CriennanbHO HCIENOBaHbI
rOPU30OHTAbHbIE CTPYKTYPbl Ha BEKTOPHBIX PACCIOEHHBIX MPOCTPAHCTBAX. Pe3ynbTaThl COERMHEHBI
¢ noaeM u GopMoit KPUBH3HBI TOPH3OHTAILHOM CTPYKTYPbI CPaBHEHBI C TEOPHEH CBA3HOCTH Ha IJIaBHOM
pPaccnOeHHOM NMPOCTPAHCTBE M MPOCTPAHCTBAX ACCOLMMPOBAHHBIX C 3TUM MPOCTPAHCTBOM.
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