Anton Dekrét
Horizontal structures on fibre manifolds

Mathematica Slovaca, Vol. 27 (1977), No. 3, 257–265

Persistent URL: http://dml.cz/dmlcz/128859

Terms of use:
© Mathematical Institute of the Slovak Academy of Sciences, 1977

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz
HORIZONTAL STRUCTURES ON FIBRE MANIFOLDS

ANTON DEKRÉT

Libermann, [3], has defined a connection of the first order on a fibre space \(E(B, F, \pi) \) as a global cross-section \(\Gamma: E \rightarrow J^1E \). In this paper we find some properties of this structure. Our consideration are in the category \(C^\infty \). The standard terminology and notations of the theory of jets are used throughout the paper, see [2].

1. Let \(VTE \) denote the fibre bundle of vertical vectors on \(E(B, F, \pi) \). A tensor field \(\sigma: E \rightarrow VTE \otimes T^*E \) will be said to be a v-field. Let \(X \) be a vector field on \(E \). Denote by \(L_x(\sigma) \) the Lie derivative of \(\sigma \) by \(X \). Locally, let \((x', y^a), i=1, \ldots, n = \dim B, a=1, \ldots, \dim F, \) be local coordinates on \(E \). Direct evaluation yields for the v-field \(\sigma: (x, y) \mapsto (a_k(x, y)dx^k + b^a(x, y)dy^a) \otimes \partial y_a \) and the vector field \(X = a'(x, y)dx^1 + b''(x, y)dy^a \):

\[
L_x(\sigma) = - (a^a dx^i + b^a dy^a) \frac{\partial a^i}{\partial y^a} \otimes \partial x_i + \left\{ \left(\frac{\partial a^a}{\partial x^i} a^i + \frac{\partial a^a}{\partial y^a} \right) dx^i + \right. \\
+ \frac{\partial a^a}{\partial y^a} b^a + a^a \frac{\partial a^i}{\partial x^k} + b^a \frac{\partial b^a}{\partial x^i} \frac{\partial b^a}{\partial y^a} a^a \right\} dx^k + \\
\left. + \left(\frac{\partial a^a}{\partial y^a} + \frac{\partial b^a}{\partial x^i} a^i + \frac{\partial b^a}{\partial y^a} b^a + b^a \right) dy^a - \frac{\partial b^a}{\partial y^a} b^a \right\} \otimes \partial y_a.
\]

This immediately gives

Lemma 1. Let \(X \) be a vector field on \(E \). Then the Lie derivative of every v-field on \(E \) by \(X \) is a v-field on \(E \) if and only if \(X \) is projectable.

Let \(\sigma \) be a v-field, hence \(\sigma(u) \in \text{Hom}(T_uE, T_uE) \), \(\pi u = x \). If \(\sigma(u)|T_uE \) is regular for any \(u \in E \), then \(\sigma \) determines a horizontal distribution of the kernels of \(\sigma(u) \), i.e. a global cross-section \(E \rightarrow J^1E \). Denote by \(\kappa(E) \) the set of all such v-fields on \(E \) that \(\sigma(u)|T_uE = \text{id}|T_uE \) for any \(u \in E \). Let \(\Gamma_E \) be the set of all cross-sections \(E \rightarrow J^1E \). There is a one to one correspondence \(\delta: \kappa(E) \rightarrow \Gamma_E \), where
\(\delta(\sigma)\) is a cross-section \(E \to J^1E\) determined by the horizontal distribution of the kernels of \(\sigma(u), \ u \in E\).

2. **Definition 1.** Let \(\Gamma: E \to J^1E\) be a cross-section. The pair \((E, \Gamma)\) or the \(v\)-field \(\delta^{-1}(\Gamma) = \tau \sigma\) will be called an \(H\)-structure or a tensor of the \(H\)-structure, respectively.

Every 1-jet \(\Gamma(u)\) determines an element of \(\text{Hom}(T_xB, T_xE)\), \(\pi u = x\). Thus we get a cross-section \(\tilde{\Gamma}: E \to TE \otimes T^*B\). Locally, let \((x', y'^n, y'^i)\) be local coordinates on \(J^1E\). If \(\Gamma: (x', y'^n) \mapsto (x', y'^n, \ y'^i = - a'^i(x', y'^n))\), then

\[
\tau \sigma(x, y) \mapsto (a'^n(x, y)dx^n + dy^n) \otimes \partial y_n,
\]

\[
\tilde{\Gamma}: (x, y) \mapsto dx' \otimes \partial x' - a'^n(x, y)dx^n \otimes \partial y_n.
\]

By direct evaluation we get

Lemma 2. Let \(X\) be a projectable vector field on \(E\). Then \(L_X(\tilde{\Gamma})\) is a global cross-section \(E \to VTE \otimes T^*M\) and

\[
(L_X \tau \sigma)(u) = -(L_X \tilde{\Gamma})(u)\pi_*.
\]

Let \(X\) be a projectable vector field on \(E\) and \(^1X\) be the first prolongation of \(X\) on \(J^1E\). Let \(\Gamma(E)\) be the set of all values of the cross-section \(\Gamma: E \to J^1E\). By [1] a projectable field \(X\) on \(E\) is conjugate with \(\Gamma\) if \(\Gamma^*(X)(h) = ^1X(h)\). It is easy to prove

Proposition 1. Let \((E, \Gamma)\) be an \(H\)-structure. Let \(X\) be a projectable vector field on \(E\). Then \(X\) is conjugate with \(\Gamma\) if and only if \(L_X (\tau \sigma) = 0\).

Denote by \(\tilde{Y}\) the \(\Gamma\)-lift of a vector field \(Y\) on \(B\). Let \(Z_1, Z_2 \in T_xB\). Let \(Y_1\) or \(Y_2\) be such a vector field on \(B\) that \(Y_1(x_0) = Z_1\), or \(Y_2(x_0) = Z_2\), respectively. Put

\[
\Theta(u)(Z_1, Z_2) = \tau \sigma([\tilde{Y}_1, \tilde{Y}_2])(u))
\]

It is easy to prove that \(\Theta(u)(Z_1, Z_2)\) does not depend on the choice of the vector fields \(Y_1, Y_2\) and that the mapping \(u \mapsto \Theta(u)\) determines a global cross-section

\[
\Theta: E \to VTE \otimes \Lambda^2T^*B,
\]

which will be said to be the curvature field of the \(H\)-structure.

Let \(\Gamma_1: E \to J^1E\) denote the first prolongation of \(\Gamma: E \to J^1E\), see [4]. In local coordinates, if

\[
\Gamma: (x', y'^n) \mapsto (x', y'^n, y'^i = - a'^i(x', y'^n)),
\]

then

\[
(2) \quad \Gamma': (x', y'^n) \mapsto \left(x', y'^n, y'^i = - a'^i, y'^i = \frac{\partial a'^n}{\partial y'^p} a'^i - \frac{\partial a'^i}{\partial x'}\right).
\]

Kolář, [4], introduced the difference tensor \(X(\sigma)\) of an arbitrary semi-holonomic
jet X. We recall that if $h \in \mathcal{J}_x E$, $\beta h = u \in E$, then $\Delta(h) \in T_x E \otimes T^* B$. Locally, if $h = (x', y'', y''', y''''', y''')$, then $\Delta(h) = y''''', a_i \ dx^i \wedge dx^k \otimes \partial y_a$.

In the case of the H-structure (B, Γ) we obtain a global cross-section $\Delta(\Gamma'') : E \to VTE \otimes T^* B$. By the direct evaluation in local coordinates we get

Proposition 2. Let (E, Γ) be an H-structure. Then

$$\Theta(u) = -\Delta(\Gamma''(u))$$

for any $u \in E$.

By the relation (3) the curvature field Θ of the H-structure (E, Γ) is the curvature of the connection Γ by Libermann [3]. Relation (3) also gives in the comparison the curvature of the differential system Γ by Prad nes [6].

Let $\tilde{X} = a^i \partial x_i - a_k^a \partial y_a$ be the Γ-lift of a vector field X on M. Using (1) we have

$$L_x(\Gamma') = \left[\frac{\partial a_k^a}{\partial x_i} \frac{\partial a_k^a}{\partial y_a}, a_i \frac{\partial a_k^a}{\partial y_a} a_k^a - \frac{\partial a_k^a}{\partial x_i} \right] a^i dx^k \otimes \partial y_a$$

It immediately yields that the mapping

$$X \mapsto L_x(\Gamma')$$

is a linear mapping of the modul $D(M)$ of all vector fields on M to the modul of all tensor fields $E \to VTE \otimes T^* M$. Moreover if the curvature field of (B, Γ) vanishes, then the Γ-lift X of X is conjugate with Γ.

Let $w \in \mathcal{J}_x E$, $\beta w = u$, $\pi u = x$. Denote by $L(w)$ the element of $T_x E \otimes T^*_x M$ determined by w. Then $L(w) - L(\Gamma(u)) \in T_x E \otimes T^*_x M$ and determines a 1-jet of $\mathcal{J}_x(B, E_x)$, which we will denote by $w - \Gamma(u)$ and call the developement of w into E_x by means of Γ.

Let $v \in \mathcal{J}_x E$, $\beta v = u$. Then the tensor $\tilde{\tau}(v) = \Delta(v) - \Delta(\Gamma'(u))$ will be said to be the torsion of the 2-jet v. Let $\mathcal{J} : B \to \mathcal{J} E$ be a global section of $\mathcal{J} E$ over B. Let (E, Γ) be an H-structure. Then the threetuple (E, Γ, \mathcal{J}) will be called the SH-space. The tensor

$$\tilde{\tau}(x) = \Delta(\mathcal{J}(x)) - \Delta(\Gamma'(\mathcal{J}(x)))$$

will be said to be the torsion of the SH-space at $x \in B$.

Remark. The second prolongation of the section $S : B \to E$ gives a holonomic section $S^{(2)} : B \to \mathcal{J}^2 E$ and determines the SH-space $(E, \Gamma, S^{(2)})$, the torsion of which has the property

$$\tilde{\tau}(x) = \Theta(S(x)).$$

3. Let us compare our consideration with the theory of connections. Let Φ be a Lie grupoid of the operators on a fibre bundle $E(B, F, \pi)$. Let a, b be the projections of Φ and let $1, \epsilon \in \Phi$ denote the unit over $x \in B$. Let us recall (see [5])
that the connection (of the first order) on Φ is a global cross-section $C: B \to \bigcup_{x \in B} Q_x$, where Q_x denotes the set of all such elements $h \in J^1_x(a^{-1}(x), b, B)$ that $\beta h = 1_x$.

Let C be a connection on Φ, $C(x) = j_x^i \eta$. Let $v \in J^1 E$, $v = j_x^i \xi$. We recall that

$$(6) \quad C^{-1}(x)(v) = j_x^i [\eta^{-1}(z)[\xi(z)]] \in J^1(B, E_x)$$

is the development of v into E_x by means of C and analogously if $w \in J^1 E$, $w = j_x^i \xi$, then

$$(7) \quad C'^{-1}(x)(w) = C^{-1}(x)[j_x^i c^{-1}(z)(\xi(z))] \in \hat{J}^1(B, E_x)$$

is the development of w into E_x by means of C.

Let $u \in E$, $\pi u = x$, $C(x) = j_x^i \eta$. Using the diffeomorphism $\eta(z): E_x \to E_x$ put

$$(8) \quad C^\tau(u) = j_x^i[z \mapsto \eta(z)(u)] \in J^1 E.$$

It is easy to see that the mapping $u \mapsto C^\tau(u)$ determines a global cross-section $C^\tau: E \to J^1 E$. The H-structure (E, C^τ) will be said to be the representative of the connection C on E.

Denote by U the domain of the local cross-section η. We have a mapping $f: \pi^{-1}(U) \to E_x$ determined by $h \mapsto \eta^{-1}(z)(h)$, $\pi h = z$. Let dC_u be the differential of f at $u \in E$, $\pi u = x$.

Proposition 3. Let C be a connection on Φ. Then

$$dC_u = c^\sigma(u), \quad u \in E,$$

where c^σ denotes the tensor of the H-structure (E, C^τ).

Proof. Since $\beta C(x) = 1_x$, $dC_u|T_u(E_x) = \text{id}|T_u(E_x)$. Let $Y \in H_u \subset T_u(E)$, where H_u is the subspace determined by $C^\tau(u)$. Then $dC_u(Y) = O$. It proves our assertion.

Lemma 3. Let $v \in J^1 E$, $\beta v = u$. Then

$$L(C^{-1}(x)(w)) = L(v) - L(C^\tau(u)).$$

Proof. It is easy to see that $L(v) - L(C^\tau(u)) = c^\sigma(u)L(v)$ and that dC_u $L(v) = L(C^{-1}(x)(v))$. Then the relation (9) completes our proof.

Using Lemma 3 the following assertion can be proved by direct evaluation in local coordinates.

Proposition 4. Let $w \in \hat{J}^1 E$, $\beta w = u$, $\pi u = x$. Then

$$\hat{\tau}(w) = \Delta C'^{-1}(x)(w).$$

Let $P(B, G, p)$ be a principal fibre bundle and let $E(B, F, \pi)$ be a fibre bundle associated with P. Let $\Phi = PP^{-1}$ be the grupoid associated with P. Let us recall that
\Phi = (P \times P)\mid G, (h_1, h_2g) \sim (h_1, h_2); if \vartheta = (h_1, h_2) \in \Phi, then a\vartheta = ph_2, b\vartheta = ph_1; if \vartheta_1 = (h_1, h_2) and \vartheta_2 = (h_3, h_4), then the composition \vartheta_1 \vartheta_2 is defined if and only if h_1 = h_2 and \vartheta_1 \vartheta_2 = (h_1, h_4). Let us also recall that \Phi = P P^{-1} is a grupoid of operators on \(E(B, F, \pi)\). Let \(C\) be a connection on \(\Phi\) and let \(\Gamma: P \to J^1P\) be the representative of \(C\) on \(P\). It is known that \(\Gamma(g) = \Gamma h g\) (i.e. \(\Gamma\) is a connection on \(P\)). Hence the tensor \(s\) of the \(H\)-structure \((P, \Gamma)\) is equivariant, i.e. if \(Y \in T_hP\) is generated by \(Y \in \mathcal{G}\) (\(\mathcal{G}\) denotes the Lie algebra of \(G\)) and \(s(X) = \hat{Y}\), then
\[s(\rho W(X)) = \Ad g^{-1}(Y)\]. Let \(h \in P, \rho(h) = x\). Denote by \(h\) the map \(P \to G, \quad h(q) = h(hg) = g\). Let \(\varphi\) be the canonical form of the connection \(\Gamma\). Then \(\varphi(h) \in \mathcal{G}\otimes T^*_hP\) and
\[\varphi(h) = \hat{h}s(h)\).

Let \(\Omega\) be the curvature form of the connection \(\Gamma\) on \(P\), denoted by \(\Omega(h)\) the element of \(\mathcal{G} \otimes \Lambda^2 T^*_hM\) determined by \(\Omega\) at \(h \in P, \rho h = x\).

Proposition 5. Let \(\Theta\) be the curvature field of the \(H\)-structure \((P, \Gamma)\) determined by the connection \(\Gamma\) on \(P\). Let \(\Omega\) be the curvature form of \(\Gamma\). Then
\[\hat{h}\Theta(h) = -\Omega(h)\).

Proof. Let \(\hat{X}, \hat{Y}\) be the \(\Gamma\)-lifts of vector fields \(X, Y\) on \(B\). Using (12), the definitions of \(\Omega\) and \(\Theta\) yield
\[\Omega(h)(X, Y) = \varphi(\hat{X}, \hat{Y})(\hat{h}(h)) = -\hat{h}s(h)[\hat{X}, \hat{Y}] = -\hat{h}\Theta(h)(X, Y) \cdot QED\).

Denote by \((E, \tilde{\Gamma})\) the \(H\)-structure, which is the representative of the connection \(C\) on \(E\). Every \(h \in P, \rho h = x\), determines a mapping \(\hat{h}: P \to a^{-1}(x) \subset \Phi, \quad \hat{h}(q) = (q, h)\). Analogously denote by \(\tilde{u}: a^{-1}(x) \to E\) the map \(\vartheta \to \vartheta(u), u \in E_x\). Therefore \(\tilde{u}h: P \to E\) is a fibre morphism from \(P\) to \(E\). Let \((\tilde{u}h)': J^1P \to J^1E\) denote the prolongation of the map \(\tilde{u}h\). It is easy to see that the diagram

\[
P \xrightarrow{\tilde{u}h} E \\
\Gamma/ \xrightarrow{\tilde{\Gamma}} \tilde{E} \\
J^1P \xrightarrow{(\tilde{u}h)^*} J^1E
\]

is commutative. Let \((\tilde{u}h)^*\) denote the differential of \(\tilde{u}h\) at \(h \in P\). Using (14) we obtain

Proposition 6. Let \(\tilde{\sigma}\) or \(\tilde{s}\) be the tensor field of the \((E, \tilde{\Gamma})\), or \((P, \Gamma)\), respectively. Then
\[(\tilde{u}h)^*\tilde{s}(h)(X) = \tilde{\sigma}(\tilde{u}h)^*(X), \quad X \in T_h(P)\).

261
Proposition 7. Let \(h \in P_{x} \), \(u \in E_{x} \). Let \(\hat{\Theta} \) be the curvature field of the \(H \)-structure \((E, \tilde{\Gamma})\). Then

\[
(16) \quad \hat{\Theta}(u) = (uh)^{\ast} \Theta(h).
\]

Remark. Let \(G_{x} \) be the isotropy group of \(\Phi \) over \(x \in B \) and let \(\mathcal{G}_{x} \) be its Lie algebra. Let \(h \in P_{x} \). Denote by \(\hat{h} \) the differential of the mapping \(\hat{h} \colon G \to G_{x} \), \(\hat{h}(g) = [hg, h] = \theta \in \Phi \), at \(e \in G \), where \(e \) denotes the unit of \(G \). Let \(\Omega \) be the curvature form \(\tilde{\Gamma} \) the connection \(\Gamma \) on \(P \) which is the representative of the connection \(C \). In [5] Kolář has introduced the curvature form of the connection \(C \) at \(x \in B \) by

\[
\Omega(x) = \hat{h} \ast \cdot \Omega(h),
\]

where the dot denotes the composition of mappings, and also introduced a generalized space with connection as a quadruple \(\mathcal{F} = S(P(B, G), F, C, \eta) \), where \(\eta : B \to E \) is a global cross-section. Let \(u \in E_{x} \). Let \(\hat{u} \) denote the differential of mapping \(\hat{u} : G_{x} \to E_{x} \), \(u(\hat{1}) = \hat{1}(u) \), at \(1, e \in G \). Then the form

\[
\tau(x) = (\eta(x))^{\ast} \cdot \Omega(x)
\]

is called by Kolář the torsion form of the generalized space \(\mathcal{F} \) with connection at \(x \in B \). The relations (13) and (16) give

\[
(17) \quad \hat{\Theta}(\eta(x)) = - \tau(x).
\]

Moreover the generalized space \(\mathcal{F}(P(B, G), F, C, \eta) \) with connection determines the \(SH \)-space \((E, \tilde{\Gamma}, \eta^{\odot})\). Let \(\tilde{\tau}(x) \) be the torsion of this \(SH \)-space. Then comparing (5) with (17) we get

\[
\tilde{\tau}(x) = - \tau(x).
\]

4. Let us consider the special case of a vector bundle \(E(B, x) \). Denote by \(V \) the Liouville field on \(E \) determined by the 1-parametric group of all homothetics on \(E \). Locally, \(V = y^{\alpha} \partial y_{\alpha} \). A \(v \)-field \(\sigma \) on \(E \) will be said to be \(k \)-homogeneous, if \(L_{v} \sigma = k \sigma \).

Lemma 4. Locally let \(\sigma = (a_{i}(x^{i}, y^{\alpha})dx^{i} + b_{\alpha}(c^{i}, y^{\alpha})dy^{\gamma}) \otimes \partial y_{\alpha} \). Then \(\sigma \) is \(k \)-homogeneous if and only if \(a_{i} \) or \(b_{\alpha}^{\gamma} \) are homogeneous functions of the degree \(k+1 \) or \(k \) with respect to variables \(y^{\alpha} \).
Proof. Relation (1) gives

\[L_v \sigma = \left[\frac{\partial a^a_k}{\partial y^i} y^i - a^a_k \right] dx^k + \frac{\partial b^a_{\nu}}{\partial y^\nu} y^\nu dy^a \bigotimes \partial y_a. \]

This proves our assertion.

Proposition 8. Let \((E, \Gamma)\) be an \(H\)-structure. Then \(\sigma\) is \(O\)-homogeneous if and only if the Liouville field \(V\) is conjugate with \(\Gamma\).

Proof. In the case of the tensor field \(\sigma\) of the \(H\)-structure we have

\[L_{\nu} \sigma = \left[\frac{\partial a^a_k}{\partial y^i} y^i - a^a_k \right] dx^k + \frac{\partial b^a_{\nu}}{\partial y^\nu} y^\nu dy^a \bigotimes \partial y_a. \]

Using proposition 1, relation (19) and Lemma 4 complete our assertion.

Let \(\dot{X}\) be the \(\Gamma\)-lift of a field \(X\) on \(B\). Then

\[(L_{\nu} \sigma)(\dot{X}) = [V, \dot{X}]. \]

This gives

Proposition 9. The tensor field \(\sigma\) of the \(H\)-structure \((E, \Gamma)\) is \(O\)-homogeneous if and only if \([V, \dot{X}] = 0\) for every vector field \(X\) on \(B\).

Let \((E, \Gamma)\) be an \(H\)-structure, \(Z\) be a vertical field on \(E\). Then \(\Gamma^*(Z)\) is a vector field on the submanifold \(\Gamma(E)\). The values of \(\Gamma^*(Z)\) are vertical tangent vectors on the vector bundle \(J^1E\) over \(B\). Let \(i: T^*_{\nu}(\nu)E \rightarrow J^1E\) be the canonical identification. Then \(u \mapsto i \cdot \Gamma^*(Z(u))\) determines a mapping \(\zeta: E \rightarrow J^1E\). Locally, \(Z = b^a(x', y^\alpha)\partial y_a\) and

\[(x', y^\alpha) \mapsto (x', b^a(x', y^\alpha), \frac{\partial a^a_i}{\partial y^\alpha} b^\alpha).\]

therefore \(\zeta\) is a global cross-section of \(J^1E\) over \(E\) if and only if \(Z = V\). In this case denote by \((E, \nu(\Gamma))\) the \(H\)-structure determined by \(\zeta\). Locally

\[\nu(\Gamma) \sigma = (dy^a + \frac{\partial a^a_i}{\partial y^\alpha} y^\alpha dx^i) \bigotimes \partial y_a. \]

Proposition 10. Let \((E, \Gamma)\) be an \(H\)-structure. Then

\[(L_\nu \sigma)(u) = (\bar{\nu}(u) - V(\Gamma)(u))\pi\nu. \]

Proof. \(\bar{\nu}(x', y^a) \mapsto \bar{dx}' \bigotimes \partial x_i - a^a_i(x, y)dx' \bigotimes \partial y_a,\)

\[\bar{V}(\Gamma): (x', y^a) \mapsto dx' \bigotimes \partial x_i - \frac{\partial a^a_i}{\partial y^\alpha} y^\alpha dx' \bigotimes \partial y_a. \]

Using (19) we get (21).
Corollary. An H-structure \((E, \Gamma)\) is O-homogeneous if and only if \(\Gamma = V(\Gamma)\).

Remark. As it is well known, the H-structure \((E, \Gamma)\) is a connection on \(E\) if and only if the cross-section \(\gamma: E \rightarrow J^1E\) is a vector bundle morphism over \(B\). Locally, \(\gamma\) is a connection on \(E\) if and only if \(a_i^\nu = \Gamma^\nu_{\mu}(x)y^\mu\). Hence the Liouville field \(V\) is conjugate with every connection on \(E\).

Further, if \((E, \Gamma)\) is an H-structure and \(\varepsilon: B \rightarrow E\) is a global cross-section, then, using the identifications \(j: E \rightarrow T_{\varepsilon(x)}E, \ i: T_{\varepsilon(x)}J^1E \rightarrow J^1E\), we get the mapping

\[\Gamma^r(x) = i \cdot \Gamma \cdot j \]

from \(E\) to \(J^1E\). It is easy to see that \(\Gamma^r\) is a connection on \(E\). Locally, if the functions \(a_i^\nu(x, y)\) determine the H-structure \((E, \Gamma)\), then the functions

\[\frac{\partial a_i^\nu(x^k, \varepsilon^r(x^k))}{\partial y^\mu} \]

determine the connection \(\Gamma^r\).

REFERENCES

Received December 8, 1975
Пусть E расслоенное пространство. Горизонтальная структура или обобщенная связность это сечение $\gamma: E \rightarrow J'E$ расслоения $J'E$. В статье определено поле и форма кривизны горизонтальной структуры. Пользуясь теорией струй найден джет-вид формы кривизны. Обоснованы некоторые свойства производной Ли поля горизонтальной структуры. Специально исследованы горизонтальные структуры на векторных расслоенных пространствах. Результаты соединены с полем и формой кривизны горизонтальной структуры сравны с теорией связности на главном расслоенном пространстве и пространствах ассоциированных с этим пространством.