Michal Fečkan
Periodically forced damped beams resting on nonlinear elastic bearings

Persistent URL: http://dml.cz/dmlcz/128868

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 2005

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz
PERIODICALLY FORCED DAMPED BEAMS
RESTING ON NONLINEAR ELASTIC BEARINGS

MICHAL FEČKAN

(Communicated by Milan Medved')

ABSTRACT. We show the existence of periodic solutions for certain damped linear beam equations with periodic perturbations resting on nonlinear elastic bearings.

1. Introduction

We consider the equation

\[u_{tt} + u_{xxxx} + \delta u_t + h(x, t) = 0, \]
\[u_{xx}(0, \cdot) = u_{xx}(\pi/4, \cdot) = 0, \]
\[u_{xxx}(0, \cdot) = -f(u(0, \cdot)), \quad u_{xxx}(\pi/4, \cdot) = g(u(\pi/4, \cdot)), \]

where \(\delta > 0 \) is a constant, \(f, g \) are analytic and \(h \) is a forcing term \(T \)-periodic in \(t \). Equation (1) describes vibrations of a beam resting on two different bearings with purely elastic responses which are determined by \(f \) and \(g \). The length of the beam is \(\pi/4 \). We are interested in forced periodic vibrations of (1).

The existence of periodic, homoclinic and chaotic solutions is shown in the papers [1] [4] for several types of nonlinearities of (1).

2000 Mathematics Subject Classification: Primary 35B10, 35B20, 74K10.
Keywords: damped beam equation, periodic forcing, Leray-Schauder degree.
Partially supported by Grant VEGA-SAV 2/1140/23.
2. Setting of the problem

By a weak T-periodic solution of (1), we mean any $u(x, t) \in C([0, \pi/4] \times S^T)$ satisfying the identity

$$
\int_0^T \int_0^{\pi/4} \left[u(x, t) \{ v_{tt}(x, t) + v_{xxxx}(x, t) - \delta v_t(x, t) \} + h(x, t) v(x, t) \right] \, dx \, dt \\
+ \int_0^T (f(u(0, t)) v(0, t) + g(u(\pi/4, t)) v(\pi/4, t)) \, dt = 0
$$

for any $v(x, t) \in C^\infty([0, \pi/4] \times S^T)$ such that the following boundary value conditions hold

$$
v_{xx}(0, \cdot) = v_{xx}(\pi/4, \cdot) = v_{xxx}(0, \cdot) = v_{xxx}(\pi/4, \cdot) = 0.
$$

Here $S^T = \mathbb{R}/\{T\mathbb{Z}\}$ is the circle. The eigenvalue problem

$$
w_{xxxx}(x) = \mu^4 w(x), \\
w_{xx}(0) = w_{xx}(\pi/4) = 0, \\
w_{xxx}(0) = w_{xxx}(\pi/4) = 0
$$

is known ([4]) to possesses a sequence of eigenvalues μ_k, $k = -1, 0, 1, \ldots$, with $\mu_{-1} = \mu_0 = 0$

and

$$
\cos(\mu_k \pi/4) \cosh(\mu_k \pi/4) = 1, \quad k = 1, 2, \ldots.
$$

The corresponding orthonormal in $L^2(0, \pi/4)$ system of eigenvectors is

$$
w_{-1}(x) = \frac{2}{\sqrt{\pi}}, \quad w_0(x) = \frac{16}{\pi} \left(x - \frac{\pi}{8} \right) \sqrt{\frac{3}{\pi}}, \\
w_k(x) = \frac{4}{\sqrt{\pi} W_k} \left[\cosh(\mu_k x) + \cos(\mu_k x) \\
- \frac{\cosh \xi_k - \cos \xi_k}{\sinh \xi_k - \sin \xi_k} (\sinh(\mu_k x) + \sin(\mu_k x)) \right]
$$

where the constants W_k are given by the formulas

$$
W_k = \cosh \xi_k + \cos \xi_k - \frac{\cosh \xi_k - \cos \xi_k}{\sinh \xi_k - \sin \xi_k} (\sinh \xi_k + \sin \xi_k)
$$

for $\xi_k = \mu_k \pi/4$, $k \in \mathbb{N}$. From (4) we get the asymptotic formulas

$$
1 < \mu_k = 2(2k + 1) + r(k) \quad \text{for all} \quad k \geq 1
$$

along with

$$
|r(k)| \leq \hat{c}_1 e^{-\hat{c}_2 k} \quad \text{for all} \quad k \geq 1,
$$

where \hat{c}_1, \hat{c}_2 are positive constants. Moreover, the eigenfunctions $\{w_i\}_{i=-1}^\infty$ are uniformly bounded in $C([0, \pi/4])$.

218
3. Preliminary results

Let $H_1(x,t) \in C([0,\pi/4] \times S^T)$, $H_2(t), H_3(t) \in C(S^T)$ be continuous T-periodic functions and consider the equation

$$
\int_0^{T/4} \int_0^{\pi/4} \left[z(x,t) \{ v_{tt}(x,t) + v_{xxxx}(x,t) - \delta v_t(x,t) \} + H_1(x,t)v(x,t) \right] \, dx \, dt
+ \int_0^T \left\{ H_2(t)v(0,t) + H_3(t)v(\pi/4,t) \right\} \, dt = 0
$$

(5)

for any $v(x,t) \in C^\infty([0,\pi/4] \times S^T)$ satisfying the boundary conditions (3) along with

$$
\int_0^{\pi/4} v(x,t) \, dx = \int_0^{\pi/4} x v(x,t) \, dx = 0 \quad \text{for all } t \in S^T.
$$

(6)

Note that conditions (6) correspond to the orthogonality of $v(x,t)$ to $w_{-1}(x)$ and $w_0(x)$ for any $t \in S^T$. We look for $z(x,t)$ in the form

$$
z(x,t) = \sum_{i=1}^\infty z_i(t)w_i(x).
$$

(7)

We formally put (7) into (5) to get a system of ordinary differential equations

$$
\ddot{z}_i(t) + \delta \dot{z}_i(t) + \mu_i^4 z_i(t) = h_i(t),
$$

(8)

where

$$
h_i(t) = - \left(\int_0^{\pi/4} H_1(x,t)w_i(x) \, dx + H_2(t)w_i(0) + H_3(t)w_i(\pi/4) \right).
$$

(9)

Let us put

$$
M_i = \sup_{i \geq 1, \ x \in [0,\pi/4]} |w_i(x)|.
$$

Let $\omega = 2\pi/T$. We consider Banach spaces X_ω and Y_ω defined as follows

$$
X_\omega := \left\{ u(x,t) \in C([0,\pi/4] \times S^T) : u(x,t) = \sum_{k \in \mathbb{Z}} u_k(x) e^{i\omega kt}, \quad u_k \in C([0,\pi/4], \mathbb{C}), \quad \sum_{k \in \mathbb{Z}} \|u_k\|_\infty < \infty, \quad u_{-k}(x) = \overline{u_k(x)} \right\}
$$

$$
Y_\omega := \left\{ v(t) \in C(S^T) : v(t) = \sum_{k \in \mathbb{Z}} v_k e^{i\omega kt}, \quad v_k \in \mathbb{C}, \quad \sum_{k \in \mathbb{Z}} |v_k| < \infty, \quad v_{-k} = \overline{v_k} \right\}
$$

219
with the norms
\[|u| := \sum_{k \in \mathbb{Z}} \|u_k\|_\infty, \quad |v| := \sum_{k \in \mathbb{Z}} |v_k|, \]
respectively, where \(\| \cdot \|_\infty \) is the maximum norm. Clearly, \(\|u\|_\infty \leq |u| \) and \(\|v\|_\infty \leq |v| \).

We also consider the Banach spaces \(X_{\omega,0} \) defined as follows
\[X_{\omega,0} = \{ v(x,t) \in X_\omega : \text{conditions of (6) hold}\} \]
with the same norm \(|\cdot| \) as for \(X_\omega \).

If \(H_1(x,t) \in X_{\omega,0} \) and \(H_2(t), H_3(t) \in Y_\omega \), then
\[H_1(x,t) = \sum_{k \in \mathbb{Z}} h_{1,k}(x) e^{i\omega kt}, \]
\[\int_0^{\pi/4} h_{1,k}(x) \, dx = \int_0^{\pi/4} x h_{1,k}(x) \, dx = 0, \quad h_{1,-k}(x) = \overline{h_{1,k}(x)}, \]
\[H_2(t) = \sum_{k \in \mathbb{Z}} h_{2,k} e^{i\omega kt}, \quad h_{2,-k} = \overline{h_{2,k}}, \]
\[H_3(t) = \sum_{k \in \mathbb{Z}} h_{3,k} e^{i\omega kt}, \quad h_{3,-k} = \overline{h_{3,k}}. \]

Hence \(h_i(t) \) from (9) has the form
\[h_i(t) = \sum_{k \in \mathbb{Z}} h_{i,k} e^{i\omega kt} \quad (10) \]
with
\[h_{i,k} = -\left(\int_0^{\pi/4} h_{1,k}(x)w_i(x) \, dx + h_{2,k}w_i(0) + h_{3,k}w_i(\pi/4) \right). \]

Clearly \(h_{i,-k} = \overline{h_{i,k}} \). Consequently, we get
\[|h_i| = \sum_{k \in \mathbb{Z}} |h_{i,k}| \leq M_1 \left(\frac{\pi}{4} |H_1| + |H_2| + |H_3| \right). \quad (11) \]

Now we look for a solution \(z_i \in Y_\omega \) of (8) with \(h_i(t) \) of the form (10). Hence from \(z_i(t) = \sum_{k \in \mathbb{Z}} z_{i,k} e^{i\omega kt} \) we get
\[z_{i,k} = \frac{h_{i,k}}{\mu_i^4 - \omega^2 k^2 + i\delta \omega k}, \]
PERIODICALLY FORCED DAMPED BEAMS

Clearly, \(z_{i,-k} = \overline{z_{i,k}} \). For any \(t \geq 0 \), we have

\[
(\mu_i^4 - t)^2 + \delta^2 t \geq \gamma_i^2
\]

for the constants \(\gamma_i \) defined as follows

\[
\gamma_i = \gamma(\mu_i, \delta, \omega) := \begin{cases}
\frac{\mu_i^4}{2} & \text{for } \delta^2 \geq 2\mu_i^4, \\
\Delta_i & \text{for } 0 < \delta^2 \leq 2\mu_i^4.
\end{cases}
\]

Thus we get

\[
|z_i| = \sum_{k \in \mathbb{Z}} |z_{i,k}| \leq |h_i|/\gamma_i.
\]

Clearly such \(z_i(t) \) satisfies (8). Now the series \(\sum_{i=1}^{\infty} 1/\gamma_i \) converges, so the function (7) is well-defined and

\[
z(x, t) = \sum_{i=1}^{\infty} z_i(t)w_i(x) = \sum_{i=1}^{\infty} \sum_{k \in \mathbb{Z}} \frac{h_{i,k}}{\mu_i^4 - \omega^2 k^2 + i\delta \omega k} e^{i\omega k t} w_i(x)
\]

\[
= \sum_{k \in \mathbb{Z}} \left(\sum_{i=1}^{\infty} \frac{h_{i,k}}{\mu_i^4 - \omega^2 k^2 + i\delta \omega k} w_i(x) \right) e^{i\omega k t}.
\]

Hence \(z(x, t) \in X_{\omega,0} \) and by (11), it satisfies

\[
|z| = \sum_{k \in \mathbb{Z}} \left(\sum_{i=1}^{\infty} \frac{h_{i,k}}{\mu_i^4 - \omega^2 k^2 + i\delta \omega k} w_i(x) \right) \leq M_1 \sum_{i=1}^{\infty} \frac{1}{\gamma_i} \sum_{k \in \mathbb{Z}} |h_{i,k}|
\]

\[
= M_1 \sum_{i=1}^{\infty} \frac{1}{\gamma_i} |h_i| \leq M_2 \left(\frac{\pi}{4} |H_1| + |H_2| + |H_3| \right),
\]

where

\[
M_2 := M_1 \sum_{i=1}^{\infty} \frac{1}{\gamma_i} < \infty.
\]

Summarizing, we get the next result.

PROPOSITION 1. For any given functions \(H_1(x, t) \in X_{\omega,0}, H_2(t), H_3(t) \in Y_\omega \) equation (5) has a unique solution \(z(x, t) \in X_{\omega,0} \) of the form

\[
z(x, t) = \sum_{i=1}^{\infty} z_i(t)w_i(x)
\]

with \(z_i(t) \in Y_\omega \) for any \(i \geq 1 \). Such a solution satisfies:

(a) \(|z| \leq M_2 \left(\frac{\pi}{4} |H_1| + |H_2| + |H_3| \right) \).

(b) The mapping \(L_1: X_{\omega,0} \times Y_\omega \times Y_\omega \to X_{\omega,0} \) defined by \(L_1(H_1, H_2, H_3) := z(x, t) \) is compact.
Proof. It remains to prove the compactness of L_1. For this reason, let us put

$$
\gamma_{i,k} := \sqrt{(\mu_i^4 - \omega^2 k^2)^2 + \delta^2 \omega^2 k^2}.
$$

Clearly, $\gamma_{i,k} \geq \gamma_i$ and $\gamma_{i,k} \geq \delta \omega |k|$ for any $i \geq 1$ and $k \in \mathbb{Z}$. Now let us take a bounded sequence $\{(H_{1,n}, H_{2,n}, H_{3,n})\}_{n \in \mathbb{N}} \subset X_{\omega,0} \times Y_{\omega} \times Y_{\omega}$. Hence

$$
H_{1,n}(x,t) = \sum_{k \in \mathbb{Z}} h_{1,k,n}(x) e^{i \omega kt},
$$

$$
\int_0^{\pi/4} h_{1,k,n}(x) \, dx = \int_0^{\pi/4} x h_{1,k,n}(x) \, dx = 0, \quad h_{1,-k,n}(x) = \overline{h_{1,k,n}(x)},
$$

$$
H_{2,n}(t) = \sum_{k \in \mathbb{Z}} h_{2,k,n} e^{i \omega kt}, \quad h_{2,-k,n} = \overline{h_{2,k,n}},
$$

$$
H_{3,n}(t) = \sum_{k \in \mathbb{Z}} h_{3,k,n} e^{i \omega kt}, \quad h_{3,-k,n} = \overline{h_{3,k,n}}.
$$

Then we get

$$
z_n(x,t) = \sum_{k \in \mathbb{Z}} \left(\sum_{i=1}^{\infty} \frac{h_{i,k,n}}{\mu_i^4 - \omega^2 k^2 + i \delta \omega k} w_i(x) \right) e^{i \omega kt},
$$

where

$$
h_{i,k,n} = - \left(\int_0^{\pi/4} h_{1,k,n}(x) w_i(x) \, dx + h_{2,k,n} w_i(0) + h_{3,k,n} w_i(\pi/4) \right).
$$

We note that there is a constant $\tilde{K}_1 > 0$ such that

$$
\sum_{k \in \mathbb{Z}} |h_{i,k,n}| \leq \tilde{K}_1
$$

for any $i,n \in \mathbb{N}$. By using the Cantor diagonal procedure, we can suppose that $h_{i,k,n} \to h_{i,k,0}$ as $n \to \infty$ for any $i \in \mathbb{N}$ and $k \in \mathbb{Z}$. Then clearly

$$
\sum_{k \in \mathbb{Z}} |h_{i,k,0}| \leq \tilde{K}_1
$$

for any $i \in \mathbb{N}$. So the function

$$
z_0(x,t) = \sum_{k \in \mathbb{Z}} \left(\sum_{i=1}^{\infty} \frac{h_{i,k,0}}{\mu_i^4 - \omega^2 k^2 + i \delta \omega k} w_i(x) \right) e^{i \omega kt}
$$

222
PERIODICALLY FORCED DAMPED BEAMS

belongs to $X_{\omega,0}$. We prove that $z_n(x,t) \to z_0(x,t)$ in $X_{\omega,0}$. So let $\varepsilon > 0$ be given. We take so large $i_0, k_0 \in \mathbb{N}$ that

$$\sum_{i=i_0+1}^{\infty} \frac{1}{\gamma_i} \leq \frac{\varepsilon}{6K_1 M_1}, \quad 6K_1 M_1 i_0 \leq \varepsilon \delta \omega (k_0 + 1).$$

Then

$$\sum_{k \in \mathbb{Z}} \sum_{i=i_0+1}^{\infty} \frac{|h_{i,k,n} - h_{i,k,0}|}{\gamma_i, k} \leq \sum_{k \in \mathbb{Z}} \sum_{i=i_0+1}^{\infty} \frac{|h_{i,k,n} - h_{i,k,0}|}{\gamma_i}$$

$$= \sum_{i=i_0+1}^{\infty} \frac{1}{\gamma_i} \sum_{k \in \mathbb{Z}} |h_{i,k,n} - h_{i,k,0}|$$

$$\leq 2K_1 \sum_{i=i_0+1}^{\infty} \frac{1}{\gamma_i} \leq \frac{\varepsilon}{3M_1},$$

and

$$\sum_{i=1}^{i_0} \sum_{|k| \geq k_0 + 1} \frac{|h_{i,k,n} - h_{i,k,0}|}{\gamma_i, k} \leq \sum_{i=1}^{i_0} \sum_{|k| \geq k_0 + 1} \frac{|h_{i,k,n} - h_{i,k,0}|}{\delta \omega |k|}$$

$$\leq \frac{1}{\delta \omega (k_0 + 1)} \sum_{i=1}^{i_0} \sum_{|k| \geq k_0 + 1} |h_{i,k,n} - h_{i,k,0}|$$

$$\leq \frac{2K_1 i_0}{\delta \omega (k_0 + 1)} \leq \frac{\varepsilon}{3M_1}.$$

By using the above estimates, we obtain

$$|z_0 - z_n| \leq M_1 \sum_{k \in \mathbb{Z}} \sum_{i=1}^{\infty} \frac{|h_{i,k,n} - h_{i,k,0}|}{\gamma_i, k}$$

$$= M_1 \sum_{|k| \leq k_0} \sum_{i=1}^{i_0} \frac{|h_{i,k,n} - h_{i,k,0}|}{\gamma_i, k} + M_1 \sum_{|k| \geq k_0 + 1} \sum_{i=1}^{i_0} \frac{|h_{i,k,n} - h_{i,k,0}|}{\gamma_i, k}$$

$$+ M_1 \sum_{k \in \mathbb{Z}} \sum_{i=i_0+1}^{\infty} \frac{|h_{i,k,n} - h_{i,k,0}|}{\gamma_i, k}$$

$$\leq M_1 \sum_{|k| \leq k_0} \sum_{i=1}^{i_0} \frac{|h_{i,k,n} - h_{i,k,0}|}{\gamma_i} + \frac{2\varepsilon}{3}.$$

Since $h_{i,k,n} \to h_{i,k,0}$ as $n \to \infty$ for any $i \in \mathbb{N}$ and $k \in \mathbb{Z}$, there is an $n_0 \in \mathbb{N}$ such that for any $n \geq n_0$, it holds that

$$M_1 \sum_{|k| \leq k_0} \sum_{i=1}^{i_0} \frac{|h_{i,k,n} - h_{i,k,0}|}{\gamma_i} \leq \frac{\varepsilon}{3}.$$
Summarizing, we get \(|z_0 - z_n| \leq \varepsilon\) for any \(n \geq n_0\). Since \(\varepsilon > 0\) is arbitrary, the compactness of \(L_1\) is proved. The proof is finished.

Let us put

\[Y_{\omega,0} := \left\{ h = \sum_{k \in \mathbb{Z}} h_k e^{i\omega k t} \in Y_{\omega} : h_0 = 0 \right\} \]

with the same norm \(|\cdot|\) as for \(Y_{\omega}\). We introduce the projection \(Q: Y_{\omega} \to Y_{\omega}\) given by

\[Qy = \frac{1}{T} \int_0^T y(s) \, ds , \]

and the projection \(P: Y_{\omega} \to Y_{\omega,0}, P = I - Q\). Note that \(T = 2\pi/\omega\). Clearly \(|P| = |Q| = 1\).

Now we consider the equation

\[\ddot{y} + \delta \dot{y} = h(t) \quad (12) \]

for \(y, w, h \in Y_{\omega}\). We need the following simple result.

Proposition 2. Equation (12) has a solution \(y \in Y_{\omega}\) if and only if \(h \in Y_{\omega,0}\) and this solution is unique for \(y := L_2 h \in Y_{\omega,0}\) satisfying

\[|y| \leq \frac{1}{\omega \sqrt{\delta^2 + \omega^2}} |h| . \]

Moreover, the linear mapping \(L_2: Y_{\omega,0} \to Y_{\omega,0}\) is compact.

Proof. If equation (12) has a solution \(y \in Y_{\omega}\) then clearly \(\int_0^T h(t) \, dt = 0\), so \(h \in Y_{\omega,0}\). On the other hand, if \(h \in Y_{\omega,0}\), then

\[h(t) = \sum_{k \in \mathbb{Z} \setminus \{0\}} h_k e^{i\omega k t} . \]

Let

\[y(t) := \sum_{k \in \mathbb{Z} \setminus \{0\}} \frac{h_k}{-\omega^2 k^2 + i\delta \omega k} e^{i\omega k t} . \]

Hence \(y \in Y_{\omega,0}\) and

\[|y| \leq \sum_{k \in \mathbb{Z} \setminus \{0\}} \frac{|h_k|}{\sqrt{\omega^4 k^4 + \delta^2 \omega^2 k^2}} \leq \sum_{k \in \mathbb{Z} \setminus \{0\}} \frac{|h_k|}{\sqrt{\omega^4 + \delta^2 \omega^2}} = \frac{|h|}{\omega \sqrt{\omega^2 + \delta^2}} . \]

Similarly we can show that \(\dot{y}, \ddot{y} \in Y_{\omega,0}\) and thus \(y(t)\) solves (12). This proves the first part of Proposition 2.
PERIODICALLY FORCED DAMPED BEAMS

To show the compactness of L_2: $Y_{\omega,0} \to Y_{\omega,0}$, we take a bounded sequence
\(\{h_n(t)\}_{n \in \mathbb{N}} \subset Y_{\omega,0} \) with
\[
h_n(t) = \sum_{k \in \mathbb{Z} \setminus \{0\}} h_{k,n} e^{\omega kt}, \quad h_{k,n} = \overline{h_{-k,n}},
\]
and there is a constant $\tilde{K}_2 > 0$ such that
\[
\sum_{k \in \mathbb{Z} \setminus \{0\}} |h_{k,n}| \leq \tilde{K}_2
\]
for any $n \in \mathbb{N}$. Again by using the Cantor diagonal procedure, we can suppose
that $h_{k,n} \to h_{k,0}$ as $n \to \infty$ for any $k \in \mathbb{Z} \setminus \{0\}$. Then
\[
\sum_{k \in \mathbb{Z} \setminus \{0\}} |h_{k,0}| \leq \tilde{K}_2
\]
and the function
\[
y_0(t) := \sum_{k \in \mathbb{Z} \setminus \{0\}} \frac{h_{k,0}}{-\omega^2 k^2 + i\delta \omega k} e^{\omega kt}
\]
bilds to $Y_{\omega,0}$. Let $\varepsilon > 0$ be given. We take $k_0 \in \mathbb{N}$ so large that
\[
\sqrt{\omega^4 k_0^4 + \delta^2 \omega^2 k_0^2} \geq \frac{4\tilde{K}_2}{\varepsilon}
\]
and put $y_n = L_2 h_n$. Then
\[
|y_0 - y_n| = \sum_{k \in \mathbb{Z} \setminus \{0\}} \frac{|h_{k,n} - h_{k,0}|}{\sqrt{\omega^4 k^4 + \delta^2 \omega^2 k^2}}
\]
\[
= \sum_{0 < |k| \leq k_0} \frac{|h_{k,n} - h_{k,0}|}{\sqrt{\omega^4 k^4 + \delta^2 \omega^2 k^2}} + \sum_{|k| \geq k_0 + 1} \frac{|h_{k,n} - h_{k,0}|}{\sqrt{\omega^4 k^4 + \delta^2 \omega^2 k^2}}
\]
\[
\leq \sum_{0 < |k| \leq k_0} \frac{|h_{k,n} - h_{k,0}|}{\sqrt{\omega^4 k^4 + \delta^2 \omega^2 k^2}} + \frac{\varepsilon}{4\tilde{K}_2} \sum_{|k| \geq k_0 + 1} |h_{k,n} - h_{k,0}|
\]
\[
\leq \sum_{0 < |k| \leq k_0} \frac{|h_{k,n} - h_{k,0}|}{\sqrt{\omega^4 k^4 + \delta^2 \omega^2 k^2}} + \frac{\varepsilon}{2}.
\]
Since $h_{k,n} \to h_{k,0}$ as $n \to \infty$ for any $k \in \mathbb{Z} \setminus \{0\}$, there is an $n_0 \in \mathbb{N}$ such that
for any $n \geq n_0$, it holds that
\[
\sum_{0 < |k| \leq k_0} \frac{|h_{k,n} - h_{k,0}|}{\sqrt{\omega^4 k^4 + \delta^2 \omega^2 k^2}} \leq \frac{\varepsilon}{2}.
\]
Summarizing, we get $|y_0 - y_n| \leq \varepsilon$ for any $n \geq n_0$. Since $\varepsilon > 0$ is arbitrary, the
compactness of L_2 is proved. The proof is finished. \(\square\)
4. Periodic solutions

In this section, we present the main results concerning equation (1). We seek a solution $u(x,t)$ of (2) in the form

$$u(x,t) = y_1(t)w_{-1}(x) + y_2(t)w_0(x) + z(x,t)$$

where $y_1(t), y_2(t) \in Y_\omega$ and $z(x,t) \in X_{\omega,0}$ belongs to the infinite dimensional space spanned by $\{w_i\}_{i=1}^\infty$. To get the equations for $y_1(t)$, $y_2(t)$, and $z(x,t)$ we take $v(x,t) = \phi_1(t)w_{-1}(x) + \phi_2(t)w_0(x) + v_0(x,t)$ in (2) with $\phi_i \in C^\infty(S^T)$, $v_0(x,t) \in C^\infty([0,\pi/4] \times S^T)$ satisfying besides (3) also (6). Plugging the above expression for $v(x,t)$ into (2) and using the orthonormality, we arrive at the system of equations

$$\ddot{y}_1(t) + \delta y_1(t) + \frac{2}{\sqrt{\pi}} \int_0^{\pi/4} h(x,t) \, dx$$

$$+ \frac{2}{\sqrt{\pi}} f \left(\frac{2}{\sqrt{\pi}} y_1(t) - 2 \sqrt{\frac{3}{\pi}} y_2(t) + z(0,t) \right)$$

$$+ \frac{2}{\sqrt{\pi}} g \left(\frac{2}{\sqrt{\pi}} y_1(t) + 2 \sqrt{\frac{3}{\pi}} y_2(t) + z(\pi/4,t) \right) = 0,$$

(13)

$$\ddot{y}_2(t) + \delta y_2(t) + \frac{16}{\pi} \sqrt{\frac{3}{\pi}} \int_0^{\pi/4} h(x,t) \left(x - \frac{\pi}{8} \right) \, dx$$

$$- 2 \sqrt{\frac{3}{\pi}} f \left(\frac{2}{\sqrt{\pi}} y_1(t) - 2 \sqrt{\frac{3}{\pi}} y_2(t) + z(0,t) \right)$$

$$+ 2 \sqrt{\frac{3}{\pi}} g \left(\frac{2}{\sqrt{\pi}} y_1(t) + 2 \sqrt{\frac{3}{\pi}} y_2(t) + z(\pi/4,t) \right) = 0,$$

(14)

$$\int_0^T \int_0^{\pi/4} \left[z(x,t) \left\{ v_{tt}(x,t) + v_{xxxx}(x,t) - \delta v_1(x,t) \right\} + h(x,t)v(x,t) \right] \, dx \, dt$$

$$+ \int_0^T \left\{ f(u(0,t))v(0,t) + g(u(\pi/4,t))v(\pi/4,t) \right\} \, dt = 0$$

(15)

where we wrote $v(x,t)$ instead $v_0(x,t)$. Thus, in equation (15), $v(x,t)$ is any function in $C^\infty([0,\pi/4] \times S^T)$ such that the conditions (3) and (6) hold. We remark that in this way we have split the original equation in two parts: to the resonant finite-dimensional part represented by (13)–(14) and to the non-resonant infinite-dimensional part represented by (15).

Now we take in (13)–(15) the decomposition $y_i(t) \leftrightarrow c_i + y_i(t)$ for $i = 1, 2$ and $c_i \in \mathbb{R}$, $y_i(t) \in Y_{\omega,0}$, and then we also plug this system to a homotopy with
PERIODICALLY FORCED DAMPED BEAMS

a parameter $\lambda \in [0, 1]$. So we get the system

$$
j\dot{y}_1(t) + \delta y_1(t) + P \left\{ \frac{2}{\sqrt{\pi}} \int_0^{\pi/4} h(x, t) \, dx \right\} + \frac{2}{\sqrt{\pi}} f \left(\frac{2}{\sqrt{\pi}} c_1 + \lambda \frac{2}{\sqrt{\pi}} y_1(t) - 2 \sqrt{\frac{3}{\pi}} c_2 - \lambda 2 \sqrt{\frac{3}{\pi}} y_2(t) + \lambda z(0, t) \right) + \frac{2}{\sqrt{\pi}} g \left(\frac{2}{\sqrt{\pi}} c_1 + \lambda \frac{2}{\sqrt{\pi}} y_1(t) + 2 \sqrt{\frac{3}{\pi}} c_2 + \lambda 2 \sqrt{\frac{3}{\pi}} y_2(t) + \lambda z(\pi/4, t) \right) \right\} = 0,
$$

(16)

$$
j\dot{y}_2(t) + \delta y_2(t) + P \left\{ \frac{16}{\pi} \int_0^{\pi/4} h(x, t) \left(x - \frac{\pi}{8} \right) \, dx \right\} - \frac{2}{\sqrt{\pi}} \int_0^{\pi/4} h(x, t) \left(x - \frac{\pi}{8} \right) \, dx dt
$$

$$
\int_0^T \int_0^{\pi/4} \left[z(x, t) \left\{ v_{tt}(x, t) + v_{xxxx}(x, t) - \delta v_t(x, t) \right\} + \lambda h(x, t) v(x, t) \right] \, dx \, dt
$$

$$
+ \frac{\lambda}{\pi} \int_0^T \left\{ \int_0^{\pi/4} f \left(\frac{2}{\sqrt{\pi}} c_1 + \lambda \frac{2}{\sqrt{\pi}} y_1(t) - 2 \sqrt{\frac{3}{\pi}} c_2 - \lambda 2 \sqrt{\frac{3}{\pi}} y_2(t) + \lambda z(0, t) \right) v(0, t) + g \left(\frac{2}{\sqrt{\pi}} c_1 + \lambda \frac{2}{\sqrt{\pi}} y_1(t) + 2 \sqrt{\frac{3}{\pi}} c_2 + \lambda 2 \sqrt{\frac{3}{\pi}} y_2(t) + \lambda z(\pi/4, t) \right) v(\pi/4, t) \right\} \, dt = 0
$$

(18)

$$
\int_0^T f \left(\frac{2}{\sqrt{\pi}} c_1 + \lambda \frac{2}{\sqrt{\pi}} y_1(t) - 2 \sqrt{\frac{3}{\pi}} c_2 - \lambda 2 \sqrt{\frac{3}{\pi}} y_2(t) + \lambda z(0, t) \right) \, dt = \theta_1,
$$

$$
\int_0^T g \left(\frac{2}{\sqrt{\pi}} c_1 + \lambda \frac{2}{\sqrt{\pi}} y_1(t) + 2 \sqrt{\frac{3}{\pi}} c_2 + \lambda 2 \sqrt{\frac{3}{\pi}} y_2(t) + \lambda z(\pi/4, t) \right) \, dt = \theta_2,
$$

(19)

$$\theta_1 = \frac{4}{\pi} \int_0^{\pi/4} \int_0^T h(x, t) \left(x - \frac{\pi}{4} \right) \, dx \, dt, \quad \theta_2 = -\frac{4}{\pi} \int_0^{\pi/4} \int_0^T h(x, t) x \, dx \, dt.$$
We note that system (19) is derived from the system

\[
(I - P) \left\{ \int_0^{\pi/4} h(x, t) \, dx
+ f \left(\frac{2}{\sqrt{\pi}} c_1 + \lambda \frac{2}{\sqrt{\pi}} y_1(t) - 2\sqrt{\frac{3}{\pi}} c_2 - \lambda 2\sqrt{\frac{3}{\pi}} y_2(t) + \lambda z(0, t) \right)
+ g \left(\frac{2}{\sqrt{\pi}} c_1 + \lambda \frac{2}{\sqrt{\pi}} y_1(t) + 2\sqrt{\frac{3}{\pi}} c_2 + \lambda 2\sqrt{\frac{3}{\pi}} y_2(t) + \lambda z(\pi/4, t) \right) \right\} = 0,
\]

\[
(I - P) \left\{ \int_0^{\pi/4} h(x, t) \left(x - \frac{\pi}{8} \right) \, dx
- f \left(\frac{2}{\sqrt{\pi}} c_1 + \lambda \frac{2}{\sqrt{\pi}} y_1(t) - 2\sqrt{\frac{3}{\pi}} c_2 - \lambda 2\sqrt{\frac{3}{\pi}} y_2(t) + \lambda z(0, t) \right)
+ g \left(\frac{2}{\sqrt{\pi}} c_1 + \lambda \frac{2}{\sqrt{\pi}} y_1(t) + 2\sqrt{\frac{3}{\pi}} c_2 + \lambda 2\sqrt{\frac{3}{\pi}} y_2(t) + \lambda z(\pi/4, t) \right) \right\} = 0.
\]

Since \((I - P)y = Qy = \frac{1}{T} \int_0^T y(s) \, ds\), system (20) is equivalent to the system

\[
\int_0^T f \left(\frac{2}{\sqrt{\pi}} c_1 + \lambda \frac{2}{\sqrt{\pi}} y_1(t) - 2\sqrt{\frac{3}{\pi}} c_2 - \lambda 2\sqrt{\frac{3}{\pi}} y_2(t) + \lambda z(0, t) \right) \, dt
+ \int_0^T g \left(\frac{2}{\sqrt{\pi}} c_1 + \lambda \frac{2}{\sqrt{\pi}} y_1(t) + 2\sqrt{\frac{3}{\pi}} c_2 + \lambda 2\sqrt{\frac{3}{\pi}} y_2(t) + \lambda z(\pi/4, t) \right) \, dt
= - \int_0^T \int_0^{\pi/4} h(x, t) \, dx \, dt,
\]

\[
\int_0^T f \left(\frac{2}{\sqrt{\pi}} c_1 + \lambda \frac{2}{\sqrt{\pi}} y_1(t) - 2\sqrt{\frac{3}{\pi}} c_2 - \lambda 2\sqrt{\frac{3}{\pi}} y_2(t) + \lambda z(0, t) \right) \, dt
+ \int_0^T g \left(\frac{2}{\sqrt{\pi}} c_1 + \lambda \frac{2}{\sqrt{\pi}} y_1(t) + 2\sqrt{\frac{3}{\pi}} c_2 + \lambda 2\sqrt{\frac{3}{\pi}} y_2(t) + \lambda z(\pi/4, t) \right) \, dt
= \frac{8}{\pi} \int_0^T \int_0^{\pi/4} h(x, t) \left(\frac{\pi}{8} - x \right) \, dx \, dt.
\]
PERIODICALLY FORCED DAMPED BEAMS

It is clear that system (21) implies system (19). Now, we take

\[
d_1 = \frac{2}{\sqrt{\pi}} c_1 - 2\sqrt{\frac{3}{\pi}} c_2, \quad \zeta_1(t) = \frac{2}{\sqrt{\pi}} y_1(t),
\]

\[
d_2 = \frac{2}{\sqrt{\pi}} c_1 + 2\sqrt{\frac{3}{\pi}} c_2, \quad \zeta_2(t) = 2\sqrt{\frac{3}{\pi}} y_2(t),
\]

and we split

\[
h(x, t) = 8 \frac{\theta_2 - 2\theta_1}{T\pi} + 96 \frac{\theta_1 - \theta_2}{T^2} x + p(x, t)
\]

such that

\[
\int_0^T \int_0^{\pi/4} p(x, t) \, dx \, dt = \int_0^T \int_0^{\pi/4} xp(x, t) \, dx \, dt = 0.
\]

By using these notations along with Propositions 1 and 2 we can rewrite system (16) (19) as the following semi-fixed point problem

\[
\zeta_1(t) = -\frac{4}{\pi} L_2 \left\{ \int_0^{\pi/4} p(x, t) \, dx + f\left(d_1 + \lambda \zeta_1(t) - \lambda \zeta_2(t) + \lambda z(0, t) \right) \right.
\]

\[
\left. + g\left(d_2 + \lambda \zeta_1(t) + \lambda \zeta_2(t) + \lambda z(\pi/4, t) \right) \right\},
\]

\[
\zeta_2(t) = -\frac{12}{\pi} L_2 \left\{ \int_0^{\pi/4} \frac{8}{\pi} p(x, t) \left(x - \frac{\pi}{8} \right) \, dx - f\left(d_1 + \lambda \zeta_1(t) - \lambda \zeta_2(t) + \lambda z(0, t) \right) \right.
\]

\[
\left. + g\left(d_2 + \lambda \zeta_1(t) + \lambda \zeta_2(t) + \lambda z(\pi/4, t) \right) \right\},
\]

\[
z(x, t) = \lambda L_1 \left(p(x, t), f\left(d_1 + \lambda \zeta_1(t) - \lambda \zeta_2(t) + \lambda z(0, t) \right), \right.
\]

\[
\left. g\left(d_2 + \lambda \zeta_1(t) + \lambda \zeta_2(t) + \lambda z(\pi/4, t) \right) \right),
\]

\[
\int_0^T f\left(d_1 + \lambda \zeta_1(t) - \lambda \zeta_2(t) + \lambda z(0, t) \right) \, dt = \theta_1,
\]

\[
\int_0^T g\left(d_2 + \lambda \zeta_1(t) + \lambda \zeta_2(t) + \lambda z(\pi/4, t) \right) \, dt = \theta_2.
\]
Since \(f \) and \(g \) are analytic, we have expansions
\[
f(x) = \sum_{n=0}^{\infty} a_n x^n \quad \text{and} \quad g(x) = \sum_{n=0}^{\infty} b_n x^n.
\]
Then we put
\[
F(x) = \sum_{n=0}^{\infty} |a_n| x^n, \quad G(x) = \sum_{n=0}^{\infty} |b_n| x^n.
\]
We note that \(X_{\omega}, X_{\omega,0}, Y_{\omega} \), and \(Y_{\omega,0} \) are all Banach algebras [6]. Now again by using Propositions 1 and 2, from (24)–(26) we get
\[
|\zeta_1| \leq \frac{4}{\pi \omega \sqrt{\omega^2 + \delta^2}} \left\{ \frac{\pi}{4} |p| + \left(F(A + |d_1|) + G(A + |d_2|) \right) \right\},
\]
\[
|\zeta_2| \leq \frac{12}{\pi \omega \sqrt{\omega^2 + \delta^2}} \left\{ \frac{\pi}{8} |p| + \left(F(A + |d_1|) + G(A + |d_2|) \right) \right\},
\]
\[
|z| \leq M_2 \left(\frac{\pi}{4} |p| + \left(F(A + |d_1|) + G(A + |d_2|) \right) \right),
\]
where \(A = |\zeta_1| + |\zeta_2| + |z| \). By summing up the above inequalities, we obtain the following:

Proposition 3. Let \(h \in X_{\omega} \). If system (24)–(27) has a solution \(\zeta_1(t), \zeta_2(t) \in Y_{\omega,0} \) and \(z(x,t) \in X_{\omega,0} \), then it holds that
\[
A \leq \left(\frac{5}{2 \omega \sqrt{\omega^2 + \delta^2}} + M_2 \frac{\pi}{4} \right) |p| + \left(F(A + |d_1|) + G(A + |d_2|) \right) \left(\frac{16}{\pi \omega \sqrt{\omega^2 + \delta^2}} + M_2 \right),
\]
where \(A = |\zeta_1| + |\zeta_2| + |z| \).

Now we can prove the main results of this note.

Theorem 1. Let \(h \in X_{\omega} \) and \(\theta_1, \theta_2 \in \mathbb{R} \). Let \(\tilde{c}_1, \tilde{c}_2 \) be simple roots of the equations \(f(\tilde{c}_1) = \theta_1 / T \) and \(g(\tilde{c}_2) = \theta_2 / T \), respectively. We assume the existence of positive constants \(r_1, r_2, k_1, k_2, K_1, K_2 \) and \(A \) such that
\[
k_1 \leq |f'(s_1)| \leq K_1, \quad k_2 \leq |g'(s_2)| \leq K_2
\]
for any \(|s_i - \tilde{c}_i| \leq r_i + A, \; i = 1, 2 \), and
\[
A > \left(\frac{5}{2 \omega \sqrt{\omega^2 + \delta^2}} + M_2 \frac{\pi}{4} \right) |p| + \left(F(A + |\tilde{c}_1| + r_1) + G(A + |\tilde{c}_2| + r_2) \right) \left(\frac{16}{\pi \omega \sqrt{\omega^2 + \delta^2}} + M_2 \right).
\]
If

\[k_i r_i > AK_i, \quad i = 1, 2, \]

then equation (1) has a solution \(u(x, t) \in X^X. \)

Proof. We solve the system (24)–(27) on the ball \(B \) in the Banach space \(X = \mathbb{R}^2 \times Y_{\omega,0} \times X_{\omega,0} \) given by

\[B := \{(d_1, d_2, \zeta_1, \zeta_2, z) \in X : |d_1 - \bar{c}_1| \leq r_1, \quad |d_2 - \bar{c}_2| \leq r_2, \quad |\zeta_1| + |\zeta_2| + |z| \leq A\}. \]

The norm on \(X \) is given by

\[|(d_1, d_2, \zeta_1, \zeta_2, z)| = |d_1| + |d_2| + |\zeta_1| + |\zeta_2| + |z|. \]

We show that the system (24)–(27) has no solutions on the border (the sphere) \(\partial B \) of the ball \(B \). For \(|\zeta_1| + |\zeta_2| + |z| = A \), this follows from Proposition 3. For \(|d_1 - \bar{c}_1| = r_1 \) and \(|\zeta_1| + |\zeta_2| + |z| \leq A \), we have \(A \geq \|\zeta_1\|_\infty + \|\zeta_2\|_\infty + \|z\|_\infty \) and

\[\left| \int_0^T f(d_1 + \lambda \zeta_1(t) - \lambda \zeta_2(t) + \lambda z(0, t)) \, dt - \theta_1 \right| \geq T |f(d_1) - f(\bar{c}_1)| - K_1 TA \geq (k_1 r_1 - K_1 A)T > 0. \]

Similarly for \(|d_2 - \bar{c}_2| = r_2 \) and \(|\zeta_1| + |\zeta_2| + |z| \leq A \). Consequently, by using Propositions 1 and 2, we can apply the Leray-Schauder degree theory to the system (24)–(27). Indeed, let us denote by \(\Psi_1(d_1, d_2, \zeta_1, \zeta_2, z, \lambda) \) the left-hand side of (27) and by \(\Psi_2(d_1, d_2, \zeta_1, \zeta_2, z, \lambda) \) the right-hand side of (24)–(26), respectively. We put

\[\Psi_1 := \Psi_1(d_1, d_2, \zeta_1, \zeta_2, z, \lambda) + (d_1 - \theta_1, d_2 - \theta_2). \]

Then by using Propositions 1 and 2, the operators

\[\Psi_1 : X \times [0, 1] \to \mathbb{R}^2, \quad \Psi_2 : X \times [0, 1] \to Y_{\omega,0} \times X_{\omega,0} \]

are compact and continuous. Moreover, by putting

\[\psi := (d_1, d_2, \zeta_1, \zeta_2, z), \quad \Psi(\psi, \lambda) := (\Psi_1(\psi, \lambda), \Psi_2(\psi, \lambda)), \]

system (24)–(27) has the form

\[\psi - \Psi(\psi, \lambda) = 0. \]

We already know that \(\psi - \Psi(\psi, \lambda) \neq 0 \) on \(\psi \in \partial B \) for any \(\lambda \in [0, 1] \). Hence we can define the Leray-Schauder degree \(\deg(I - \Psi(\cdot, \lambda), B, 0) \). Now from system
(24) (27) for $\lambda = 1$, we get (2), while for $\lambda = 0$, we get

$$
\zeta_1(t) = -\frac{4}{\pi} L_2 P \left\{ \int_0^{\pi/4} p(x, t) \, dx + f(d_1) + g(d_2) \right\},
$$

$$
\zeta_2(t) = -\frac{12}{\pi} L_2 P \left\{ \int_0^{\pi/4} p(x, t) \left(x - \frac{\pi}{8} \right) \, dx - f(d_1) + g(d_2) \right\},
$$

(28)

$$
z(x, t) = 0,
$$

$$
f(d_1) = \theta_1 / T,
$$

$$
g(d_2) = \theta_2 / T.
$$

Since \tilde{c}_1, \tilde{c}_2 are simple roots of the equations $f(\tilde{c}_1) = \theta_1 / T$ and $g(\tilde{c}_2) = \theta_2 / T$, we see that the system (28) is solvable for $d_i = \tilde{c}_i$, $i = 1, 2$, and also the corresponding Leray-Schauder degree or the coincidence topological degree $\text{deg}(I-\Psi(\cdot, 0), B, 0)$ is nonzero (see [5]). Since

$$
\text{deg}(I-\Psi(\cdot, 1), B, 0) = \text{deg}(I-\Psi(\cdot, 0), B, 0) \neq 0,
$$

system (24)-(27) is solvable in the ball B. The proof is finished. \Box

For instance, if $f(x) = g(x) = Kx + \varepsilon x^3$ for constants $K > 0$ and ε, then Theorem 1 is applicable when

$$
\eta := 4K \left(\frac{16}{\pi \omega \sqrt{\omega^2 + \delta^2}} + M_2 \right) < 1
$$

and ε is sufficiently small. Indeed, we first take $\varepsilon = 0$. Hence $f(x) = g(x) = Kx$.

Then $k_1 = k_2 = K_1 = K_2 = K$ in Theorem 1 for any s_1, s_2. We take $r_1 = r_2 = A/\eta$ to satisfy $k_i r_i > AK_i$, $i = 1, 2$. We note $\tilde{c}_i = \frac{\theta_i}{K_i}$, $i = 1, 2$. The condition of Theorem 1 for constants θ_1, θ_2 and function p now reads as follows

$$
\left(\frac{5}{2\omega \sqrt{\omega^2 + \delta^2}} + M_2 \frac{\pi}{4} \right) |p| + \frac{16}{T} \left(\frac{16}{\pi \omega \sqrt{\omega^2 + \delta^2}} + M_2 \right) < A \frac{1 - \eta}{2}.
$$

Since we can always find $A > 0$ satisfying the above inequality, we see that when $\varepsilon = 0$, then (1) is solvable for any $h \in X_\omega$. Clearly the above inequalities remain also for ε small. This gives the solvability of (1) for any fixed $h \in X_\omega$ and ε small depending on h.

Now we present more constructive method than Theorem 1. We consider system (24)-(26) for $\lambda = 1$. Let $N(d_1, d_2, \zeta_1, \zeta_2, z)$ denote the right-hand side of (24)-(26) with $\lambda = 1$. Hence (24)-(26) with $\lambda = 1$ has the form

$$
\tau = N(d_1, d_2, \tau)
$$

(29)
PERIODICALLY FORCED DAMPED BEAMS

for \(\tau = (\zeta_1, \zeta_2, z) \) and \(d_1, d_2 \) are parameters. We intend to apply the Banach fixed point theorem to solve (29). For this reason, we consider on the Banach space \(Y = Y^2_{\omega, 0} \times X_{\omega, 0} \) the ball
\[
B_A = \{ \tau = (\zeta_1(t), \zeta_2(t), z(x, t)) \in Y : |\zeta_1| + |\zeta_2| + |z| \leq A \}.
\]
The norm on \(Y \) is given by \(|\tau| = |\zeta_1| + |\zeta_2| + |z| \). We suppose positive constants \(D_i, i = 1, 2 \), such that it holds that
\[
\left(\frac{5}{2\omega \sqrt{\omega^2 + \delta^2}} + M_2 \frac{\pi}{4} \right) |p| + \left(F(A + D_1) + G(A + D_2) \right) \left(\frac{16}{\pi \omega \sqrt{\omega^2 + \delta^2}} + M_2 \right) \leq A
\]
and
\[
(F'(A + D_1) + G'(A + D_2)) \left(\frac{16}{\pi \omega \sqrt{\omega^2 + \delta^2}} + M_2 \right) < 1.
\]

The conditions (30) and (31) imply that for any \((d_1, d_2) \in B_D\) with
\[
B_D := \{(d_1, d_2) \in \mathbb{R}^2 : |d_i| \leq D_i, \ i = 1, 2\},
\]
the mapping \(N(d_1, d_2, \cdot) \) maps \(B_A \) to itself with the Lipschitz contraction constant
\[
\Gamma := \left(F'(A + D_1) + G'(A + D_2) \right) \left(\frac{16}{\pi \omega \sqrt{\omega^2 + \delta^2}} + M_2 \right).
\]

Hence (29) has a unique fixed point \(\tau = \tau(d_1, d_2) \) in \(B_A \) for any \((d_1, d_2) \in B_D\). Moreover, mapping \(\tau(d_1, d_2) \) is Lipschitz continuous with the constant \(\Gamma/(1 - \Gamma) \), i.e. it holds that
\[
|\tau(d_1, d_2) - \tau(d_1', d_2')| \leq \frac{\Gamma}{1 - \Gamma} (|d_1 - d_1'| + |d_2 - d_2'|)
\]
for any \((d_1, d_2), (d_1', d_2') \in B_D\). We consider in (30) and (31) the function \(p \) as a parameter for fixed \(A, D_1, D_2 \). Hence \(\tau(d_1, d_2) = \tau(d_1, d_2, p) \). We plug this \(\tau(d_1, d_2, p) \) into (27) with \(\lambda = 1 \) to get
\[
\theta_1 = \int_0^\tau \phi(d_1 + \tau(d_1, d_2, p)(0, t)) \, dt,
\]
\[
\theta_2 = \int_0^\tau \phi(d_2 + \tau(d_1, d_2, p)(\pi/4, t)) \, dt,
\]
where
\[
\tau(d_1, d_2, p)(0, t) = \xi_1(t) - \xi_2(t) + z(0, t),
\]
\[
\tau(d_1, d_2, p)(\pi/4, t) = \xi_1(t) + \xi_2(t) + z(\pi/4, t)
\]
233
for \(\tau(d_1, d_2, p) = (\xi_1(t), \xi_2(t), z(x, t)) \).

By using the above formulas for \(\theta_1, \theta_2 \), from the splitting (22) for the function \(h(x, t) \), we obtain

\[
\begin{align*}
\Phi(x) := (F(x) + G(x)) & \left(\frac{16}{\pi \omega \sqrt{x^2 + \delta^2} + M_2} \right).
\end{align*}
\]

Now, if there is an \(x_0 > 0 \) such that \(\Phi(x_0) < x_0 \) and \(\Phi'(x_0) < 1 \), then for the validity of Theorem 2, we can take

\[
\begin{align*}
B & = D_1 = D_2 = D = \frac{4(x_0 - \Phi(x_0))\omega \sqrt{x^2 + \delta^2}}{10 + \omega \sqrt{x^2 + \delta^2}(M_2 \pi + 4)}, \\
A & = x_0 - D.
\end{align*}
\]

For instance, if \(f(x) = g(x) = \Omega x^3, \Omega > 0 \), then we get

\[
\Phi(x) = 2\Omega x^3 \left(\frac{16}{\pi \omega \sqrt{x^2 + \delta^2} + M_2} \right).
\]
PERIODICALLY FORCED DAMPED BEAMS

and we can take

\[x_0 = \sqrt{\frac{\pi \omega \sqrt{\omega^2 + \delta^2}}{12 \Omega (16 + \pi \omega \sqrt{\omega^2 + \delta^2} M^2)}}. \]

Then we obtain

\[x_0 - \Phi(x_0) = \frac{5}{6} \sqrt{\frac{\pi \omega \sqrt{\omega^2 + \delta^2}}{12 \Omega (16 + \pi \omega \sqrt{\omega^2 + \delta^2} M^2)}}, \]

which according to (33) implies

\[B = \frac{5 \omega \sqrt{\omega^2 + \delta^2}}{10 + \omega \sqrt{\omega^2 + \delta^2} (M^2 \pi + 4)} \sqrt{\frac{\pi \omega \sqrt{\omega^2 + \delta^2}}{27 \Omega (16 + \pi \omega \sqrt{\omega^2 + \delta^2} M^2)}}. \]

This gives a relationship between the magnitude of the constant \(B \) and the parameter \(\Omega \).

REFERENCES

