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PERIODICALLY FORCED DAMPED BEAMS
RESTING ON NONLINEAR ELASTIC BEARINGS

MicHAL FECKAN

(Commaunicated by Milan Medved)

ABSTRACT. We show the existence of periodic solutions for certain damped
linear beam equations with periodic perturbations resting on nonlinear elastic
bearings.

1. Introduction

We consider the equation

utt + ua:a::vz + 6ut + h(.’L‘, t) = Oa
uzx(o’ ) = umx(ﬂ'/ﬁl, ) =0, (1)
u:m:z(o’ ) = —f(U(O, )) ) Uzzz(ﬂ'/él, ) = g(u(w/4, )) 3

where d > 0 is a constant, f, g are analytic and h is a forcing term T -periodic
in t. Equation (1) describes vibrations of a beam resting on two different bearings
with purely elastic responses which are determined by f and g. The length of
the beam is 7/4. We are interested in forced periodic vibrations of (1).

The existence of periodic, homoclinic and chaotic solutions is shown in the
papers [1] [4] for several types of nonlinearities of (1).
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MICHAL FECKAN

2. Setting of the problem

By a weak T-periodic solution of (1), we mean any u(z,t) € C([0, /4] x ST)

satisfying the identity
T /4

// [u(x,t){vtt(x,t)+vxm(x,t)—6vt(a:,t)}+h(m,t)v(x,t)} dz dt

+ )v(0,8) + g(u(m/4,8))v(r/4,1)) dt

O\

(2)

for any v(z,t) € C*([0,7/4] x ST) such that the following boundary value

conditions hold
v,,(0,) =v, (7/4,") =v,..(0,") = v, (7/4,-) =0.
Here ST = R/{TZ} is the circle. The eigenvalue problem
Waaao (€) = phw(z)
w,,(0) =w,, (7/4) =0, w,,,(0)=w,,. (7/4) =0

is known ([4]) to possesses a sequence of eigenvalues p,, k = —1,0,1,...,
1=K =0
and
cos(p,,m/4) cosh(u,m/4) =1, k=1,2,....
The corresponding orthonormal in L?(0,7/4) system of eigenvectors is
w_l(x):_\/z?’ wo(:r):—lf(x—%) %7

w(z) = \/_Wk [cosh(ukx) + cos(p,x)

cosh¢, — . )
_ —Si—nﬁ(smh(ukx) + sm(uk:v))}

where the constants W, are given by the formulas

cosh &, —cos§, , . .
SR, —sime, (sinh &, + sin &)

for £, = p,m/4, k € N. From (4) we get the asymptotic formulas
1<py, =202k+1)+r(k) forall k>1

W, = cosh§, + cosé; —

along with
Ir(k)| < é, ek forall k>1,

3)

with

(4)

where ¢, , ¢, are positive constants. Moreover, the eigenfunctions {w;}22_, are

uniformly bounded in C ([0, 7/4]).
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PERIODICALLY FORCED DAMPED BEAMS
3. Preliminary results

Let H,(z,t) € C([0,7/4] x ST), H,(t),H,;(t) € C(ST) be continuous
T -periodic functions and consider the equation

T ©/4

/ / [z(w, t){v, (2, 1) + v ,,. (2, 0) — dv,(z,t) } + H, (2, t)v(, t)] dz dt
0 0

T
+/{H2(t)v(0,t) + Hy(t)v(r/4,t)} dt =0

0

(5)
for any v(z,t) € C*([0,7/4] x ST) satisfying the boundary conditions (3) along
with

/4 /4
/ v(z,t) dz = / zv(z,t)dz=0  forall teST. (6)
0 0

Note that conditions (6) correspond to the orthogonality of v(z,t) to w_,(x)
and wy(z) for any ¢ € ST. We look for z(z,t) in the form

2(z,1) = Y z(t)w,(z). (7)
i=1
We formally put (7) into (5) to get a system of ordinary differential equations
2(t) 4+ 02,(t) + piz(t) = hy(t), (8)
where
w/4
h;(t) = — / H,(z,t)w,(z) dz + H,(t)w,(0) + Hy(t)w,(w/4) | .  (9)
0
Let us put

M, = sup |w,(z)].
i>1,
z€[0,m/4]
Let w = 2m/T. We consider Banach spaces X and Y, defined as follows

X, = {u(a:,t) € C([0,7/4] x ST) : u(z,t) = 3 u,(x)ewkt,
kEZ

u € C(0,7/4,0), 3 e < 00 1y (2) = 5] |

Y, = {v(t) €C(ST): v(t) = 3 v, ekt v, €C, Y |y <o, v, :q}
kEZ k€EZ
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with the norms

ul = lugll,  ll= Jv,l,

keZ kez
respectively, where | - ||, is the maximum norm. Clearly, [lul|_ < |u| and
vl < f0]-
We also consider the Banach spaces Xw,o defined as follows
X, 0= {v(z,t) € X, : conditions of (6) hold}

with the same norm |- | as for X .
If H (z,t) € X,, and Hy(t),H;(t) €Y, then

H (z,t) = Z hy () ekt
keZ
m/4 w/4

/ hy x(z) dz = / zhy . (z) dz =0, hy _p(z) = hy w(2),

0

0
H,(t) = Z Ry i e, hy k= hyy,

kEZ

Hy(t) = Z hsy i Cl ha = hy -
kez

Hence h,(t) from (9) has the form

hi(t) =) by et (10)
keZ
with
w/4
hiw=— / hl,k(‘r)wi(m) dz + hy jw,(0) + hy jw;(m/4)
0

Clearly h; _, = h; ;. Consequently, we get

hal = D7 Wl < My (T, + [Hy | + [Hy]) (1)
keZ
Now we look for a solution z; € Y, of (8) with h(t) of the form (10). Hence

from z;(t) = ¥ z, , e we get
kez

Z., = hi’k
Tt — w2k2 4 dwk
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PERIODICALLY FORCED DAMPED BEAMS

Clearly, z; , =7%;. For any ¢t > 0, we have
(ui —8)* + 8%t > 77
for the constants -, defined as follows

i for 62 > 2u?,

,0,
= 0,0) { 8 /4t — 42 for 0 < 62 <2uf.

Thus we get

lz;| = Z 2 ] < 1Rl /s -

kez

Clearly such z,(t) satisfies (8). Now the series » 1/, converges, so the function

i=1
(7) is well-defined and

o0

t) = wkt
2(@1) ; et I;Z i — w2k2 +wk © (@)
hi
— Z Z (3} (.TJ)) ezu)kt )

keZ(  pg — wik? + 0wk

Hence z(z,t) € X, , and by (11), it satisfies
- hz k

.'L‘

EEDY

kEZ

Z i — w2k? + 0wk

i=1

<315 s
—MZ |h|<M(4|H|+tH|+|H|)

where
M, := M, Z = <0,
=1 z
Summarizing, we get the next result.

PROPOSITION 1. For any given functions H,(z,t) € X, o, Hy(t), H5(t) € Y,
equation (5) has a unique solution z(z,t) € X, , of the form

z(x,t) = Z z,(H)w,(x)

with z,(t) € Y, for any i > 1. Such a solution satisfies:
() |2 < My(FH, |+ |H,| + |Hs)) .
(b) The mapping L,: X, x Y, xY, — X defined by L,(H,, H,, Hy) :=
z(z,t) is compact.

221



MICHAL FECKAN

Proof. It remains to prove the compactness of L, . For this reason, let us
put

Vik = \/(M“l — w?k?)2 + §2w2k2.
Clearly, v, , > 7; and 7, > dw|k| for any ¢ > 1 and k € Z. Now let us take a
bounded sequence {(H, ,,,H, ,, H3 )}, en C X, o XY, x Y, . Hence

1,n’""2,n’

Hy,(z,t) =Y hyy () ek

kez
/4 m/4

/ hy jn(x) dz = / zhy 4 ,(z) dz =0, hy kn(@)=hy g (2),
0

0

t) = Z h2,k,n eZWkt7 h2,—k,n = h2,k,n ’
k€EZ
t) = Z h3)k7n elwkt, h3,—k,7’l = h’S,k,n :
k€EZ
Then we get
1 k,n wkt
t )
kot I§Z<z=: TPk +adwk (a:)) ¢
where
/4
S / B (@)w3(2) 42 + by 0,(0) + hy 1w, (/4)

0

We note that there is a constant K 1 > 0 such that
Z |hi,k,n| < Kl
kez

for any 4,n € N. By using the Cantor diagonal procedure, we can suppose that
h.

i,k,n

= ko

as n — oo for any i € N and k € Z. Then clearly
Z |B; 1ol < K
kez

for any ¢ € N. So the function

sz wkt
Z(Z T 0%k2 4wk (x)) ¢

kEZ ™ i= 1”1
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PERIODICALLY FORCED DAMPED BEAMS

belongs to X, ;. We prove that 2, (z,t) = zy(z,t) in X, . Solet € > 0 be
given. We take so large iy, k, € N that

o]

1 _
Y <, 6K, Miy < ebuw(ky +1).
—~ Y, 6K,M
i=ip+1 1771

1kn— sz' zkn_ sz'
>y ey > P

k€EZ i=ig+1 z, kEZ i=1i9+1 4

Z Zl zkn_hi,k,ol

i=ig+1 ‘kez

< 2K, Z ig 5
zzo+1i

1 n—— l z ,n_h’i,,l
Z Z k ’7" sz <Z Z kdw,k’ k,0

i=1 |k|>ko+1 i=1 |k|>ko+1

“&uk 1 Z Z zk,n_hi,k,ol

i=1 |k|>ko+1
< 2K i, < &
= dw(ky +1) — 3M;
By using the above estimates we obtain

, z,<MZZ zkn_ szI

Then

and

keZ i=1 uk
—M Z Z zkn— tkO'+M Z Z zkn_ szl
[k|<ko i=1 [k|>k0+1zl ik
0, S Z hikm — z,k,o'
k€Z i=ig+1 1

<M ZZ zkn_ szl+§_‘

|k|<kq i=1
Since h; ;. , = h; ;g as n — oo for any 1 € N and k € Z, there is an n, € N
such that for any n > n,, it holds that

M ZZ zkn_ zk0|_§.

[k|<ko i=1
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Summarizing, we get |z, — 2,,| < € for any n > n,. Since € > 0 is arbitrary, the

compactness of L, is proved. The proof is finished. O
Let us put
kEZ
with the same norm |- | as for Y, . We introduce the projection Q:Y, — Y

given by
T
Q=7 [vs) ds.
0

and the projection P: Y, =Y ,, P =1-Q. Note that T' = 2r/w. Clearly
1Pl =11l = 1.
Now we consider the equation

i+ 0y = h(t) (12)
for y,w,h € Y. We need the following simple result.

PROPOSITION 2. Equation (12) has a solution y € Y, if and only if h€ Y
and this solution is unique for y := Lyh € Y,, , satisfying

1
< ——nn—|h|.
< T
Moreover, the linear mapping L,: Y, o =Y, o is compact.

T
Proof. If equation (12) has a solution y € Y then clearly [ A(t) dt =0,
0
so h € Yw,O' On the other hand, if A € Yw,O’ then

h(t) = Z h, et .

kez\{o}
Let b
y(t) = Z - k ewkt
wezv(oy ¥ k2 + 16wk
Hence y € Y, ; and
[P [ ||
i kezz\:{o} Vot + PR S ke;{o} 0wl

Similarly we can show that y,% € Y ; and thus y(¢) solves (12). This proves
the first part of Proposition 2.
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To show the compactness of L,: Y, , =Y, ,, we take a bounded sequence
{h,()}en C Y, with

hn(t) = Z h’k,n ewkt ’ hk,n = h~k n’
kezZ\{0}

and there is a constant KQ > 0 such that
Z Ihk,nl S K2
kez\{0}

for any n € N. Again by using the Cantor diagonal procedure, we can suppose
that hy , — hy o as n — oo for any k € Z\ {0}. Then

>yl < K,

kezZ\{0}
and the function L
k,0 wkt
IRCESRD pj .
keZV (0} w?k? 4+ 10wk

belongs to Y, ;. Let € > 0 be given. We take k; € N so large that

‘ 41K
\Jwiks 4+ 62w2k3 > —52

and put y, = Lyh, . Then

|h’kn - h‘k Ol
Yo = Ynl = Z ikd + 0202k2

kez\{0}
_ Z |hk,n_h1c,0| + Z ,hk,n_hk,ol
41.4 2, 212 47.4 2, 212
0<|K<ko wrk? 4+ 2wk k[ Shat1 whk? + 02w?k
|hkn_h’k0| 3
< D ; et D i~ gl
- 47.4 2,,21.2 ) k,0
0<ihch, VWK + OPWIRE 4Ky S

h, —h
< Z l k,n k,OI +

€
i 2 212 | 9
o<|kI<ko wtkt + 0%w?k 2

Since hy, ,, = hy o as n — oo for any k € Z\ {0}, there is an n, € N such that
for any n > ng, it holds that

Z |hk,n - hk,Ol S

€
14 1 52 252 — 9
o<ikTSko wrkt + 62wk 2

Summarizing, we get |y, —y,,| < € for any n > n,. Since ¢ > 0 is arbitrary, the
compactness of L, is proved. The proof is finished. O
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4. Periodic solutions

In this section, we present the main results concerning equation (1). We seek
a solution u(z,t) of (2) in the form

u(z,t) =y, (Ow_, () + yo(t)wy (z) + 2(z, 1)

where y,(t),y,(t) € Y, and z(x,t) € X, belongs to the infinite dimensional
space spanned by {w,}$2,. To get the equations for ¥, (t), y,(t), and z(z,t) we
take v(z,t) = ¢, (t)w_, (z) + ¢y ()wy(x) + vy(z,t) in (2) with ¢, € C=(ST),
vo(z,t) € C([0,7/4] x ST) satisfying besides (3) also (6). Plugging the above
expression for v(z,t) into (2) and using the orthonormality, we arrive at the
system of equations

Uy (t) + 07,(t) \/> / h(z,t) t a:— —) dz

—2\/7f<\/_1 2\/%y2(t)+z(0,t)> (14)
+2\/§g<\/_y1(t)+2\/gy2(t)+z(7r/4,t)> -0,

z(z, t){v,(z,t) + v, (2, 1) — dv,(z,t)} + h(z, t)v(z, t)] dz dt

4

o\i

T
0/
+/{f(u(0,t))v(0,t) +g(u(7r/4,t))v(7r/4,t)} dt=0
0 (15)
where we wrote v(z,t) instead vy(z,t). Thus, in equation (15), v(z,t) is any
function in C* ([0,7/4] x ST) such that the conditions (3) and (6) hold. We
remark that in this way we have split the original equation in two parts: to
the resonant finite-dimensional part represented by (13)-(14) and to the non-
resonant infinite-dimensional part represented by (15).
Now we take in (13)-(15) the decomposition y,(t) <+ ¢, + y,;(t) for i = 1,2
and ¢; € R, y,(t) €Y, ,, and then we also plug this system to a homotopy with
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a parameter A € [0, 1]. So we get the system

w/4

y1<t)+ayl(t>+P{% / Wz, 1) dz

7 (\/_cl +A—= yl(t \/jcz —Azfyz(t + 22(0, t))
+ ﬁg<ﬁcl + /\ﬁyl(t) + 2\/;c2 + /\2\/;y2(t) + ,\z(7r/4,t))} =0,

(16)
/4

1y (t) + d9,(t) +P{ \/—/h(xt :1:——

- 2\/§f(ﬁcl + /\ﬁyl(t) - 2\/;02 - )\2\/;y2(t) + )\z(O,t))
+ 2\/gg<%cl + )\%yl(t) + 2\/gc2 + /\2\/§y2(t) + Az(m/4, t)) } =

(17)
/4

T
/ / [, ) {03 (@,8) + v,y (2,8) — F0,(2,0)} + M(a, (s, )] dadt
0 0

+A /{f(%cl + /\%yl (t) - 2\@@2 - A2\/gy2(t) +A%(0, t))v(O, 9
+g< 27r —|—/\iy1 +2\/j02+/\2\/—y2(t)+)\z(7r/4 t )v(7r/4 t)} dt=0

(18)

o

O/Tf< —c yl(t)—Q\/7 —A2[y2(t+AzOt)> dt =6,
/Tg(%c1 + )‘%?h (t) + 2\/%32 + )\2\/§y2(t) + )\z(7r/4,t)) dt =46,, (19)

4

h(z,t)z dzdt.

™/ T

/h d:rdt = é/
Vi

0 0

o~
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We note that system (19) is derived from the system

m/4

(I—P){ / h(z, 1) do
-(:- f (%01 + /\%y1 (t) — 2\/502 - AQ\/%ZIQ(U + Az(0, t))

A2 (t) + Az(0, t))

-1 7 )=
(7 7 v, (£) +2\/jc2+x2
(2

T
Since (I — P)y = Qy = % [ y(s) ds, system (20) is equivalent to the system
0

jf(%cl - /\:%yl(t) - 2\/%:2 - Az\/g%(t) + Az(o,t)) at

[
Yoo

+ g(% + A%yl )+ 2\/%’2 +A2\/§y2<t) + Aa(/4, t)) }= 0,
\ﬁ%_

t) + Az( 7r/4t)}—

0.
0)

+ fg(%cl + A%yl(t) + 2\/%2 + /\2\/%1/2(25) + Az(r/4, t)) dt

0
T 7/4

—//h(w,t) dzdt,
f(i7T 2 f —AQ\[y?t)JrAz()t)

o

o\ﬂ o

+/Tg( QW yl(t)+2\/%(:2 +A2\/§y2(t) +/\z(7r/4,t)) dt

0
T 7/4
§//hxt) dxdt
s

0 0
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It is clear that system (21) implies system (19). Now, we take

3 2
dl \/— \/; ﬁyl (t) )
3
d2 \/—01 +2 , C (¢ )= 2\/;y2(t),
and we split
6, — 26, 6, — 0,
_ 22
h(z,t) =8 Tt 96 Tz 8 + p(z,t) (22)
such that
T 7/4 T /4
//p(:v,t) drdt = / / zp(z,t) dedt = 0. (23)
0 0 00

By using these notations along with Propositions 1 and 2 we can rewrite system
(16) (19) as the following semi-fixed point problem

/4

() = —%LQP{ [ ) o 7(d + 36,0 = X 6) + 12(0,0)

0

+ g(dy + A () + MG () + Az( /4, t))}, (24)

G (t) = —17T—2L2P{% /p(w,t) (:c— %) dz — f(dy + A¢, (£) = AGy(£) + 22(0, 1))

+ g(dy + A (1) + MG (E) + X2(m/4, t))},

(25)
2(z,t) = ALy (p(x, 1), £(dy + A(, () = MG (8) + A2(0, 1)), (26)
g(dy + ¢, (8) + G (1) + Az(m/4,1)))
T
/f dy + A (1) — MG, (1) + A2(0,8)) dt =6, ,
’ (27)

/g(d2 1 NG (1) 4 MG (1) + Az /4, 8)) dt = 6, .

0
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o0
Since f and g are analytic, we have expansions f(z) = > a,z" and g(z) =
n=0

>~ b,z™. Then we put

n=0

F(z)=)Y la,lz",  G(z)=)_ |b,|a".
n=0 n=0

We note that X, X, Y, and Y, are all Banach algebras [6]. Now again
by using Propositions 1 and 2, from (24)-(26) we get

[k Wﬁ{%lm + (F(A+1d,]) + G(A+1dy))) }

2
Gl < m{%m + (F(A+ |d,]) +G(A+ |d2|))},

2] < My (Zlpl + (F(A +1d,]) + G(A +1dy))) ),

where A = |(,| + |(,| + |2|. By summing up the above inequalities, we obtain
the following:

PROPOSITION 3. Let h € X . If system (24)—~(27) has a solution (,(t),(,(t)
€Y, , and z(z,t) € X, then it holds that

5 - 16
A< (mﬂwﬁ) Ipl+(F (A+]d,|)+G (A+|d,))) (W ——5 +M2),

where A = || + |G| + 2]
Now we can prove the main results of this note.

THEOREM 1. Let h € X and 6,,0, € R. Let ¢,, ¢, be simple roots of
the equations f(¢;) = 6,/T and g(c,) = 0,/T, respectively. We assume the
existence of positive constants vy, 75, k;, ky, K, K, and A such that

k, < |fl(31)| <K, k, < |g’(32)| <K,
forany |s,—¢|<r,+A,i=1,2, and

5
A - -
> <2w\/w2 + 62
+ (F(A+g|+r) +G(A+e] +1,)) (

0,5 )l

Y i um )
TwvVw? + §2 2)
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If
ko, > AK,,  i=1,2,
then equation (1) has a solution u(z,t) € X, .
Proof. We solve the system (24)—(27) on the ball B in the Banach space
X =R>xY2;xX,, given by
B:= {(dl’dmCvazaZ) €X: |di—g| <7y, |dy—Gf S o |GIHIGIHI2] < A}'

The norm on X is given by

|(d15d27<1,<2az)| = ldll + |d2| + ICl| + |<2| + |Z| .

We show that the system (24)—(27) has no solutions on the border (the sphere)
OB of the ball B. For |(;|+|(,| + |2| = A, this follows from Proposition 3. For
ld, —¢;| =ry and (] +[G] + [2] < A, we have A > |I(i]l oo + 1G]l + 12ll00
and

‘ /f(d1 + MG () = MG (8) + A2(0,8)) At — 6, > T|f(d,) — f(¢,)| — K,TA
0
> (k,r, — K, A)T > 0.

Similarly for |dy — ¢,| = 7, and |(;| + |¢,] + |2| < A. Consequently, by using
Propositions 1 and 2, we can apply the Leray-Schauder degree theory to the
system (24)—(27). Indeed, let us denote by \ill(dl,d2,C1,C2,z,)\) the left-hand
side of (27) and by ¥,(d,,d,,(;, (s, 2, A) the right-hand side of (24)—(26), re-
spectively. We put

U, = 'i'l(dpdg,Cp Gy 2, A) + (dy =0y, dy—0,) .
Then by using Propositions 1 and 2, the operators
Ui X x[0,1] 2R,  T,: X x[0,1]] Y2 xX,,
are compact and continuous. Moreover, by putting
b=y, dy, G, 60n2), BN = (T, 1), Ty(0, V)
system (24)—(27) has the form
Y —¥(P,A) =0.

We already know that ¢ — ¥ (3, A) # 0 on ¢ € OB for any X € [0, 1]. Hence we
can define the Leray-Schauder degree deg(/—¥(-,\), B,0). Now from system
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(24) (27) for A =1, we get (2), while for A = 0, we get

w/4
C1(t) = _%LQP{/p(‘Z" t) d$+f(d1) +g(d2)} )

0

w/4
Gt = —%?Lf{ 8 [ ptet)(o-F) do-sdy)+ g<d2>} o (29)
z(z,t) =0,
f(d1) = 91/T7
9(dy) = 6,/T.

Since ¢,, ¢, are simple roots of the equations f(¢,) = 6,/T and g(c,) =
0,/T, we see that the system (28) is solvable for d; = ¢;, ¢ = 1,2, and also
the corresponding Leray-Schauder degree or the coincidence topological degree

deg(I-¥(-,0),B,0) is nonzero (see [5]). Since
deg(I-¥(-,1), B,0) = deg(I-¥(-,0),B,0) #0,
system (24)—(27) is solvable in the ball B. The proof is finished.
For instance, if f(z) = g(z) = Kz + ez for constants K > 0 and &, then

Theorem 1 is applicable when

O

16
=AK | ———
g (mu\/w2 + 62
and ¢ is sufficiently small. Indeed, we first take ¢ = 0. Hence f(z) = g(z) = K.
- Then k;, = k, = K;, = K, = K in Theorem 1 for any s,, s,. We take r; =
r, = A/n to satisfy k;r, > AK,, i = 1,2. We note ¢, = —géf, i =1,2. The
condition of Theorem 1 for constants 6, , 6, and function p now reads as follows

5 T IHI—HHI( 16 ) 1—7
2 M T+ T + M) <A
<2w\/w2 + 42 24 ) ! T TwvVw? + 62 2 2
Since we can always find A > 0 satisfying the above inequality, we see that
when ¢ = 0, then (1) is solvable for any h € X . Clearly the above inequalities
remain also for € small. This gives the solvability of (1) for any fixed h € X

and ¢ small depending on h.
Now we present more constructive method than Theorem 1. We consider

system (24)-(26) for A = 1. Let N(d,,d,,(;,(,,2) denote the right-hand side
of (24)-(26) with A = 1. Hence (24)—(26) with A = 1 has the form

T =N(d;,d,,T)

+A12) <1

(29)
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for 7 = ({;,(,,2) and d,, d, are parameters. We intend to apply the Banach
fixed point theorem to solve (29). For this reason, we consider on the Banach
space Y =Y2  x X, the ball

By = {r = (G(),6,(0), 2(z,8) € Y : G|+ 1Gl + |l < 4}

The norm on Y is given by |7| = |(;|+|{,| +|2|. We suppose positive constants
D,, i =1,2, such that it holds that

(Ww;?ﬁ +M2%) lp|+ (F(A+D,)+G(A+D,)) (L +M2) <A

TwVw? + §2
(30)
and
! ! 16
(F (A+D1)+G (A+D2)) (W'FM?) <l1.
(31)

The conditions (30) and (31) imply that for any (d,,d,) € By with
Bp:={(d,,d,) e R : |d;| < D;, i=1,2},

the mapping N(d,,d,,") maps B, to itself with the Lipschitz contraction con-
stant

Twvw? + 62
Hence (29) has a unique fixed point 7 = 7(d,,d,) in B, for any (dy,d,) € Bp.

Moreover, mapping 7(d;, dy) is Lipschitz continuous with the constant T'/(1-T"),
i.e. it holds that

I':=(F'(A+ D))+ G'(A+ D,)) (—16—— 4 M2> :

Ir(dy, dy) = 7(d}, dy)| < T (1dy — dy| + |d, — )

for any (d,,d,),(d},d3) € B,,. We consider in (30) and (31) the function p as
a parameter for fixed A, D | D, . Hence 7(d,,d,) = 7(d;,dy,p). We plug this
7(dy, dy, p) into (27) with X =1 to get

T
0, = /f(dl +T(d11d2:1’)(07t)) dt,
0
T
0y = /g(dz +7(dy, dy, p)(1/4,1)) dt,

0

where

(41> dy, ) (0,8) = &, (£) — & (¢) + (0, 1) ,
7(dy, s D) (1/4, 1) = €, (t) + £,(t) + 2(/4,t)
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for 7(dy,dy,p) = (& (2), & (1), 2(2,1)) -
By using the above formulas for 8, , 6, , from the splitting (22) for the function
h(z,t), we obtain

T

h(z,t) = 1——x /g (dy + 7(dy, dy, p)(m/4, 1)) dt
" (32)
+ 1685 1) /f (dy +7(dy, dy, p)(0, 1)) dt + p(z, 1)
0

where p(z,t) € X, satisfies (23). Summarizing, we get the following result.
THEOREM 2. If there are positive constants A, B, D,, D, such that

5 . 16
—————=+M,— |B+(F(A+D,)+G(A+D ——F———+M, ) <A
(v ) B+ (Pl D+ 60+ D) (s 30 ) <

and

16
F'(A+D,)+G'(A+D <i+M) <1
( ( 1) ( 2)) ﬂ_wm 2
then for any (d,,d,) € B, p(z,t) € X satisfying (23) and |p| < B, there is
a unique 7(dy,dy,p) € Y with |7| < A solving (29). Moreover, equation (1) has
a T -periodic solution for the function h(z,t) given by (32).

Since we use the Banach fixed point theorem to find 7(d,,d,,p) € Y in B,
we can construct h(z,t) from (32). Moreover, by using the structure of functions
from X, X ,,Y,, Y, o, we can approximate this h(z,t) by using the Fourier
truncation method We also note that the form (32) of the function A(z,t) is not
only sufficient but it is also, in some sense, necessary for the solvability of (1).

Finally we note that to verify the assumptions of Theorem 2, we can take the
function 16

®(z) := (F(z) + G(z)) (mu\/uﬂ_+(52 + MQ) :
Now, if there is an x, > 0 such that ®(z,) < z, and ®'(z,) < 1, then for the
validity of Theorem 2, we can take

4(zy — ®(zy) ) wVw? + 62
10 + wvVw? + 02(M,m +4)’ (33)

B=D, =D,=D=
A=z,-D.
For instance, if f(z) = g(z) = Qz3, Q> 0, then we get

16
o(z) = 200% — —— 4+ M, )
() N (ﬂw\/w2 + 62 2
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and we can take

. = TwVw? + §2
o 120(16 + mwvw? + 52M2) '

Then we obtain

5 Twvw? + 62
6\ 129Q(16 + TwVw? + §2M,)

which according to (33) implies
Swvw? + 62 Twvw? + 62
10+w Vw? + 82(Myr +4) | 27916 + mwvw? + 62M,)

This gives a relationship between the magnitude of the constant B and the
parameter €.

zy — ®(x,) =
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