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REMARKS ON THE ZERO-ONE LAW

HARRY 1. MILLER*—BOSKO ZIVALJEVIC

1. Introduction

The beautiful theorem of Kolmogorov, often called the zero-one law ([1],
pg. 247), states the following:

Theorem. If (X,)x-: is a sequence of independent random variables defined on
a probability space (2, #, P), and if

Ae ﬁ 0(Xs, Xnet, -..),
then either
P(A)=0 or P(A)=1.

Here 0(X., Xa41, ...) is the smallest o-algebra of subsets of £ containing all sets
of the form X;'((a, ©)), where a is any real number and ie{n,n+1, ...}. '

The following corollary of Kolmogorov’s Theorem can be obtained by consider-
ing characteristic functions of independent events.

Corollary. If (A.)--1 is an independent sequence of events (in a probability
space, say (2, %, P)), then for each event A in the tail o-field ﬁ 0(An, Anits o),

n=1
P(A) is either 0 or 1.

Here 0(A., Aas1, ...) is the smallest o-algebra containing the sets A;, i=n.
It is not difficult to show that the last mentioned result implies the following :

Theorem A. If A<[0,1) is a Lesbesgue measurable ,,tail set, then the
Lesbesgue measure of A is either 0 or 1.

Definition. A [0, 1) is called a ,,tail set* if and only if x € A and x ~ ry implies
yeA.

* The work of the first author was supported by the Council for Scientific Work of the Republic
Bosnia and Herzegovina.
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Here x~1Y (x, y €[0, 1)) means that there exists a positive integer N such that
x:(x)=x(y) for every i=N, where for each a€[0, 1)
a= i x;(a)27" is the unique binary expansion of a (i.e. x;(a) € {0, 1} for each i)

i=1

with > x(a)< in case a is of the form _2r_r:
i=1

Theorem A can be shown to follow from the zero-one law of Kolmogorov with
X, taken to be the function x, (i.e. the n* binary digit function) for each n. Also
Theorem A can be obtained from the Corollary given above with A, given by
A,={x€[0,1): x,(x)=1} for each n.

The following Baire set analogue of Theorem A holds ([4], pg. 85):

Theorem B. If A =0, 1) is a ,,tail set* possessing the property of Baire, then
either A or (0, 1)\A is a set of the first Baire category.

Definition. A subset A of a topological space X is said to possess the Baire
property, or be a Baire set, if A can be written in the form:

A =(G\P)uQ, where G is an open set and P and Q are sets of the first Baire
category. _

The relationship between measurable sets and Baire sets is carefully studied in
Oxtoby’s book ,,Measure and Category‘‘ [4].

For completeness we shall offer the proofs of Theorems A and B in outlines.

Proof of Theorem A. If A is a ,.tail set*“ (A =[O0, 1)), then for each n the sets

k-1 k\\*
(a2
are congruent and therefore if A is Lesbesgue measurable, each of these sets has

m(A)
2n

the same Lesbesgue measure, namely , where m denotes the Lesbesgue

measure. Therefore A and each set [-152_71, —ZE") are independent (two Lesbesgue

measurable subsets B and C of [0, 1) are said to be independent if m(BNC)=
m(B) m(C)) since

k—1 k) _ ) k-1 k
for each positive integer n and each k, 1 <k <2". From this it follows that A and
any set that is the union of sets of the form

[5%)

are independent. Since any measurable set can be approximated by sets of this form
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it can be shown that A and any Lesbesgue measurable subset B of [0, 1) are
independent and therefore

P(A)=P(AnA)=P(A)P(A),

completing the proof.

Proof of Theorem B. Suppose A [0, 1) is a “tail set” possessing the Baire
property. If A is not a set of the first category, then A can be written in the form
A =(G\P)uQ, where G is a non-empty open set and P and Q are sets of the first
Baire category. Since G# and an open A contains some set of the form

ko - 1 ko
[ 22)\ P
where P,, is of the first Baire category and

ko=1 ko
Pkoc[ n ’ Zn)'

Therefore, as A is a ‘“tail set””, each of the sets

k-1 k 2"
{7 2)r4l..,
is congruent and therefore

2 rk-1 k
A:H[zn ,7)\1’,‘,

where P, is congruent to P, for each k.

20
Therefore [0, 1)\A < |J P, is a set of the first Baire category.
k=1

In this paper we show that the hypotheses that A is measurable in theorem A
and that A is a Baire set in Theorem B are not redundant. We give two proofs, one
using a standard analysis and the other using a non-standard analysis, of the fact
that if A [0, 1) is a “tail set”, then A need not be Lesbesgue measurable, nor
a Baire set. In addition questions about general equivalence relations on [0, 1),
having countable equivalance classes rather than only the equivalence relation ~
considered in our introduction in connection with Theorems A and B, are
considered.

2. Results

Theorem 1. There exists a “tail set” A, A [0, 1), that is non-measurable and
lacks the property of Baire. _

First (standard) proof. Our proof imitates the proof of Theorem 5.3 (due to F.
Bernstein) on page 23 in [4]. Let ¢ denote the cardinal number of the continuum

377



(i.e. the real line). By the well-ordering principle and the fact that the class 2 of
uncountable closed subsets of [0, 1) has cardinality ¢, 9 can be indexed by the
ordinal numbers less than w., where w. is the first ordinal having ¢ predecessors,
that is can be written as

A={U,: a<w.}.

Assume further that [0, 1), and therefore each member of U has been well ordered.

Let O,={pe€[0,1): p~p,}, where p, is the first element in U, (the first set in
) and ~r is the equivalence relation on [0, 1) given in the introduction. Let g,
denote the first element in U;\P; (which is nonempty since the cardinality of U, is ¢
(Lemma 5.1, p.g. 23., [4])) and P, is countable. Let Q ={q €[0, 1): q ~r q.}. Let
p2 be the first member of U,\(P,uQ;), again this set is non-empty by the above
remarks.

Set P,={pel[0,1): porp,}. Let g, denote the first element in
U \(P,uP,uQ,) and let Q,={q €[0, 1): q ~r q.}. Suppose that 1 <a<w., and
" that the equivalence classes (of ~1) P; and Q; have been defined for all B<a in
such a way that:

a) PanUp#0 and QsnU;# 0 for all B, B<a.
b) PonPs,=0, QsnQp=0, and P,,n Qs =@ for all B, B.<a, p1# Pa.
Let p. be the first element of U,\| J (PsuQ;s), which is a non-empty set since the

B<a

cardinality of U, is ¢ and | J PsuUQ; is the union of less than c-many countable sets

B<a
and so has the cardinality less than c.
Let P,={pe[0,1): p ©r p,}. Let q, be the first element in

Ua\{U (PgUOB)UPa} and let
B<a

Q.={qe€[0,1): q ~r qa}.

Then clearly the collections of sets {Ps}s<a and { Qs }s<. satisfy conditions a) and
b) with < replaced by < everywhere. Therefore by transfinite induction it follows
that there exist two collections of equivalence classes (of ©1), {P.}a<w. {Qa}a<a,
satisfying a) and b).

Put
A= P..

Since p,e AnU, and q, € ([0, 1)\A)NU, for each a<w,, the set A, which is
clearly a “tail set”, has the property that both it and its relative complement
([0, 1)\A) neet every uncountable closed subset of [0, 1). From this it follows,

378



exactly as in the proof of Theorem 5.4 on pg. 24 in [4] that A is non-measurable
and lacks the property of Baire.

We now will give a non-standard proof of Theorem 1. The notations used here,
the usual ones of non-standard analysis, can be found in [2] or [3]. _
Second (non-standard proof). Let U denote the standard universe with the

individuals set R of real numbers. N denotes the set of natural numbers, Z the set
of integers and P[0, 1) the collection of all subsets of [0, 1). Then we have

U:=(VneN)(3A., € P[0, 1))(3B, € P|0, D)FiAFAFAF,)

where:
=(VxeA, )(VmeZ)(x+ 10, D>x+7; A)
F,=(Vx€[0,1))(xe A,<1—x€B,)
=(A,uB,=[0, 1)\L)
F4 = (An ﬂB,, = ﬂ)
and

L {2”1 0<m<2"+'}

To see that sets (An)nen and (B,).n exist one need only consider the following
elementary examples:

A= (2 Z), 5T (Bt 2ty
Clearly F;, and F; imply that
U:=Fi _ '
=(VxeB, )(VmeZ)(x+ Lel0, )>x+7 eB)
Transforming the above expression by the *+ — transformation we have

*U:=(Vne*N)(3A, e*P[0, 1))(3B, € *P[0, 1))[*FiA*FA*FsA*F,]

where:

*F,= (VxeA)(Vme*Z)(x+ [0, D>x+7; A)

*F,=(Vxe*0,1))(xe A,<>1—-x€B,)
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*F,=(VA,UB, =*[0, 1)\*,)
*F4 =F,
and

*U:=*F|
*F = (VxeB)(Vme*Z)(x+ [0, )>x+71 eB)

Let ve*N\N andset A, =A,Nn[0, 1). We now proceed to show that A} is a “tail
set” that is nonmeasurable and lacks the Baire property.
First A] is a “tail set”. This is true because

xeA, and x+—e[0 1)(neN,0<sm<2")

v—n v—n

2"m€[0, 1) and therefore by *F;, x +2 > meA How-

implies x € A, and x + 2

ever, it is clear that x +§; is a standard element and therefore

x+§;eA’

In an analogous way, using *Fi, we conclude that
B.=B,n[0, 1) isa “tail set”.

Because of *F; we have
ALUB,=[0, 1)\D, where D = {—2-;: m, neN},

since *I,n[0, 1) = D. Furthermore from F, we conclude that A;nB,=40.
Condition *F, implies that A} and B, are congruent and therefore m(A.)=m(B.)
if A, is measurable. In addition, the Baire categories of A, and B, are the same.

If A, is measurable, then because of Theorem A we have: either the measure of
A, is zero or one. If m(A;)=0, then m(B.)=0 and therefore 1=m([0, 1))=
m(A,uB,uD)=0, if m(A!)=1, then m([0, 1))=m(A,uB,uD)=2.

If A} is a Baire set, then Theorem B implies that either [0, 1)\A,=B,uD or A
is a set of the first Baire category. But since these two sets have the same Baire
category this would imply that [0, 1) is of the first Baire category. Therefore A} is
not a Baire set.

Remark 1. Suppose that a non-standard extension *U of the superstructure U
has been given by the non-principle ultrafilter D over the set of natural numbers
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and that v denotes the equivalence class of sequences determined by the identity
sequence i (i.e. i: N— N and i(k)=k for each k).
Then

| Au=(ﬂ A.~) /D, that is A,

consists of all classes (mod D) of sequences a: N— [0, 1) such that a(n)e A, for
each n. ’
In this case A, consists of classes of sequences a

a: N—[0,1), which are D equivalent with some sequence %: N—[0, 1),
£(n)=x for every ne N and x €[0, 1).

A} can be written in standard form as follows

A.’:'_—U n Ax.

IeD kel

When we consider all non-principle ultra-filters on the set of natural numbers
and a fixed infinite natural number v as above, then we obtain different sets A;. In

fact in this case the intersection of all these sets A/ is [ ] A,, that is all points in
neN

[0, 1), excluding those of the form g’; (m, ne N), whose bose 4 representation
contains only zeroes and twos. This set is a nowhere dense set of measure zero.

Definition. If A [0, 1), T(A) will denote the smallest ‘“‘tail set” containing A,
ie.

T(A)=(1)[B: B<[0,1), AcB, B a “tail set”].

Then it is very easy to see that the following two propositions hold.

Proposition 1. If A [0, 1) is a measurable, then T(A) is measurable and
therefore by Theorem A, m(T(A))=0 or 1. If A c[0, 1) is a Baire set, then T(A)
is also a Baire set and therefore by Theorem B, either T(A) or [0, 1)\T(A) is a set
of the first Baire category.

Proof. Set Q= {23:- meZ, ne N}, then

T(A)=U[g@PA: qeQ], where g@PA=(q+A)N[0,1),
and

q+A={q+a: aeA}.

Clearly q@® A is measurable if A is measurable as Q is countable. Therefore it
follows that T(A) is measurable. The same proof shows that T(A) is a Baire set
whenever A is a Baire set.
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Proposition 2. If A [0, 1) is a measurable, then

a) m(A)=0 implies that m(T(A))=0 and
b) m(A)>0 implies that m(T(A))=1.

If Ac[0, 1) is a Baire set, then

a') A being a set of the first Baire category implies that
T(A) is a set of the first Baire category and

b') A being a set of the second Baire category implies that
[0, )\T(A) is a set of the first Baire category.

Proof. These results are immediate by Theorems A and B and the fact that A
can be written in the form T(A)={J[q@A: qeQ].

In this paper we have considered the equivalence relation ~ on [0, 1), where
x~ry if and only if x;(x)=x:(y) for all but finitely many i’s. Notice that each
equivalence class of ~ + has countably many elements and is dense in [0, 1). The
zero-one law (Theorem A) says that any measurable set obtained as the union of
equivalence classes of ~r must have measure either zero or one, It is natural to ask
the following question.

Question: Does there exist an equivalence relation ~ on [0, 1) such that the
equivalence classes of ~ are each countable and dense in [0, 1) and such that for
each x (0<x=<1), there exists a subcollection of the equivalence classes of
whose union, denoted A,, is measurable and m(A,)=x?

We now show that it is possible to construct an equivalence relation with the above
mentioned properties. '

Theorem 2. There exists an equivalence relation ~ with the properties men-
tioned in the question above.

Proof. Let Hc[0,1) be a Hamel basis for the real numbers containing
a rational number and having measure zero.
k(H), the cardinality of H, is c¢. Therefore H can be written in the form

H=DH,., where k(H,)=c for

n=1

each n and the sets
{H,}7-1, are pairwise disjoint.

For each he H let C,={h+r: re Q}n[0, 1), where Q is the set of all rational
numbers. Notice that the sets {C,}..u are pairwise disjoint since H is a Hamel
basis containing a rational number. The interval [0, 1) can be written in the form
[0, D)={x.: a<w.}.

Furthermore,

;.Un G.= Ul (r+H)N[0, 1), where
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r+H={r+h: heH), and therefore C=J C, has measure zero (since
. heH
m(H)=0). For each ne N let

2" 1—-1 2"-1
In—[T—_l-_9 on )'

Since k(H,)=c, each H, can be written in the form
H,={h%: a<w.}.

We now proceed to decompose [0, 1) into countable, dense and disjoint subsets
that will be the equivalence classes of our equivalence relation.
Let Ci=Ci u{xi} where x} is the first element (relative to the well-ordering of
[0, 1) given above) in I, that is not in C.
Let C3=Cru{x3} where x} is the first element in I\(Cu{xi}).

We can continue this process, so that C is defined by transfinite induction for each
a <., since C has measure zero and (_J {x}} has cardinality less than c as w, is the
B<a

first ordinal having cardinality c. Clearly CL is dense in [0, 1) for each a<w.. In
addition

U C};DI]\C and 11UC3 U C,‘,

a<we a<w¢

and therefore

m( U C.‘,) =—12-
a<we
since C has measure zero. Furthermore the sets {Ck}a<.. are pairwise disjoint.
Proceeding to L, let C; = Czu{x}}, where x3 is the first element (relative to the
well ordering of [0, 1) given above) in L\C.
Let C;= Cgau{x}} where xj is the first element in I, = Cu{x?}. We continue by
transfinite induction as in the n=1 case.
By ordinary induction this process can be continued for each n e N and so we
obtain a collection of sets

{C:: neN, a<w.} suchthat:

a) Each set is countable and dense in [0, 1),
b) The sets in our collection are pairwise disjoint.
c) m( U C:) =§1-,,- for each ne N.
a<we
d) The union of all the sets in our collection is exactly equal to [0, 1).
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If 0<x =<1, then x can be written in the form

x=%+%+..., where e,€{0, 1} for each n.
Take
A,=U[U C:: e,.=l].
Then

m(A,)=x.

Remark 2. It would be interesting to characterize those equivalence relations
o~ on [0, 1) for which the zero-one law holds; that is, to find necessary and
sufficient conditions that m(A) is always either 0 or 1 whenever A is a measurable
subset of [0, 1) formed by unions of equivalence classes of ~.

REFERENCES

[1] BILLINGSLEY, P.: Probability and measure, Wiley, New York, 1979.

[2] DAVIS, M.: Applied Nonstandard Analysis, Wiley, New York, 1977.

[3] LUXEMBURG, W.—STROYAN, K.: Introduction to the Theory of Infinitesimals, Academic
Press, New York, 1976.

[4] OXTOBY, J.: Measure and Category, Springer-Verlag, New York, 1971.

Received May 3, 1982

Harry Miller . Bosko Zivaljevié
Dimitrija Tucoviéa 8 Z.Josila 5

Sarajevo 71000 Sarajevo 71000
Jugoslavija Jugoslavija

3AMEYAHUS O HYJIb — EQUHULIE 3AKOHE
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