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REMARKS ON THE ZERO-ONE LAW 

HARRY I. MILLER*—BOSKO 2IVALJEVIC 

1. Introduction 

The beautiful theorem of Kolmogorov, often called the zero-one law ([1], 
pg. 247), states the following: ' 

Theorem. If (Xn)"-i is a sequence of independent random variables defined on 
a probability space (Q, 2F, P), and if 

A e f ) a ( X , X B + i , 4 
n - l 

then either 

P(A) = 0 or P(A) = t 

Here o(Xn, Xn + i , . . . ) is the smallest a-algebra of subsets of Q containing all sets 
of the form Xrl((a9 «>)), where a is any real number and ie{n9 n + 1 , . . . } . 

The following corollary of Kolmogorov's Theorem can be obtained by consider­
ing characteristic functions of independent events. 

Corollary. If (Ai)*,i is an independent sequence of events (in a probability 
CO 

space, say (Q9 2F9 P)), then for each event A in the tail o-field f] o(An, Aw + i , . . .) , 
n«l 

P(A) is either 0 or 1. 
Here o(An9 An + i , . . . ) is the smallest a-algebra containing the sets A , i^n. 
It is not difficult to show that the last mentioned result implies the following: 

Theorem A. If A c [ 0 , 1 ) is a Lesbesgue measurable „tail set", then the 
Lesbesgue measure of A is either 0 or 1. 

Definition. A cz [0,1) is called a „tail set" if and only ifxeA and x~Ty implies 
ye A. 

* The work of the first author was supported by the Council for Scientific Work of the Republic 
Bosnia and Herzegovina. 
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Here x ~ ry (x, y € [0,1)) means that there exists a positive integer N such that 
Xi(x) = Xi(y) for every i^N, where for each ae[0,1) 

CO 

a -= 2 **(fl)2""' is the unique binary expansion of a (i.e. xt(a) e {0, 1} for each i) 
i = l 
00 m 

with y jc,(a)<<» in case a is of the form —. 
i= i -£ 

Theorem A can be shown to follow from the zero-one law of Kolmogorov with 
Xn taken to be the function xn (i.e. the nth binary digit function) for each n. Also 
Theorem A can be obtained from the Corollary given above with An given by 
An = {xe [0,1): xn(x) = 1} for each n. 

The following Baire set analogue of Theorem A holds ([4], pg. 85): 
Theorem B. If A a [0, 1) is a „tail set" possessing the property of Baire, then 

either A or (0, 1)\A is a set of the first Baire category. 

Definition. A subset A of a topological space X is said to possess the Baire 
property, or be a Baire set, if A can be written in the form: 

A = (GYP)uQ, where G is an open set and P and Q are sets of the first Baire 
category. 

The relationship between measurable sets and Baire sets is carefully studied in 
Oxtoby's book „Measure and Category" [4]. 

For completeness we shall offer the proofs of Theorems A and B in outlines. 
Proof of Theorem A. If A is a „tail set" (A cz [0,1)), then for each n the sets 

{H^Шl-г 
are congruent and therefore if A is Lesbesgue measurable, each of these sets has 

the same Lesbesgue measure, namely ,!„ , where m denotes the Lesbesgue 

[fc — 1 k\ 
—yr-> 2^) are independent (two Lesbesgue 

measurable subsets B and C of [0,1) are said to be independent if m(BnC) = 
m(B)m(C)) since 

m ( A n [ V 1 ' ê))=w(A)' m([ V^' Щ 
for each positive integer n and each k, 1 ^ k ^ 2 n . From this it follows that A and 
any set that is the union of sets of the form 

fc-1 k \!LZ1 Ł) 
L 2" ' 2 V 

are independent. Since any measurable set can be approximated by sets of this form 
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it can be shown that A and any Lesbesgue measurable subset B of [0,1) are 
independent and therefore 

P(A) = P(AnA) = P(A)P(A)9 

completing the proof. 
Proof of Theorem B. Suppose A c [ 0 , 1 ) is a "tail set" possessing the Baire 

property. If A is not a set of the first category, then A can be written in the form 
A = (G\P)uQ, where G is a non-empty open set and P and Q are sets of the first 
Baire category. Since G=£0 and an open A contains some set of the form 

rfco-i fco\ 
[ 2" ' 2") \p»0, 

where P*o is of the first Baire category and 

"ko-1 k0 гfcçг-2 M 
Гko [ 2" ' 2")' 

Therefore, as A is a "tail set", each of the sets 

-fe-1 k- -»2" 
{[".*-' ғ ) n A L 

is congruent and therefore 

where Pk is congruent to P^ for each k. 
2 n 

Therefore [0, l)\Acz | J Pk is a set of the first Baire category. 

In this paper we show that the hypotheses that A is measurable in theorem A 
and that A is a Baire set in Theorem B are not redundant. We give two proofs, one 
using a standard analysis and the other using a non-standard analysis, of the fact 
that if A c [ 0 , 1 ) is a "tail set", then A need not be Lesbesgue measurable, nor 
a Baire set. In addition questions about general equivalence relations on [0,1), 
having countable equivalance classes rather than only the equivalence relation ~ T 

considered in our introduction in connection with Theorems A and B, are 
considered. 

2. Results 

Theorem 1. There exists a "tail set" A, A c [0, 1), that is non-measurable and 
lacks the property of Baire. 

First (standard) proof. Our proof imitates the proof of Theorem 5.3 (due to F. 
Bernstein) on page 23 in [4]. Let c denote the cardinal number of the continuum 
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(i.e. the real line). By the well-ordering principle and the fact that the class 91 of 
uncountable closed subsets of [0, 1) has cardinality c, 91 can be indexed by the 
ordinal numbers less than a>c, where a>c is the first ordinal having c predecessors, 
that is can be written as 

?( = {[/„: a<coc}. 

Assume further that [0,1), and therefore each member of 91 has been well ordered. 
Let Oi = {p e [0, 1): p <*> px}, where px is the first element in Ux (the first set in 

91) and <v>T is the equivalence relation on [0, 1) given in the introduction. Let qx 

denote the first element in UX\PX (which is nonempty since the cardinality of Ux is c 
(Lemma 5.1, p.g. 23., [4])) and Pi is countable. Let Q = {q e [0, 1): q ™T qx}. Let 
p2 be the first member of U2\(PxuQx), again this set is non-empty by the above 
remarks. 

Set P2 = {pe[0, 1): p ™T p2}. Let q2 denote the first element in 
17 2 \ (PIUP 2UQI) and let Q2 = {q e [0, 1): q ™T q2}. Suppose that 1 < a < coc, and 
that the equivalence classes (of ™T) Pp arid Qp have been defined for all fi<a in 
such a way that: 

a) PenUp±0 and QpnUp*0 for all j8, |3<a. 

b) PfilnPfh = 0, QPlnQ^ = 0, and PPlnQ^ = 0 for all ft, /32<a, fr?-j32. 

Let pa be the first element of £/a\|J (PpvQp), which is a non-empty set since the 

cardinality of Ua is c and U P^uQ^ is the union of less than c-many countable sets 
p<a 

and so has the cardinality less than c. 
Let Pa = {p e[0, 1): p ™T pa}. Let qa be the first element in 

Ua\\\J (P^OP)uPa) and let 

Qa = {qe[0, 1): q™Tqa}. 
Then clearly the collections of sets {Pp}p<a and {Qfi}p*a satisfy conditions a) and 
b) with < replaced by ^ everywhere. Therefore by transfinite induction it follows 
that there exist two collections of equivalence classes (of ™T), {Pa}a<uic {Qa}a<a)c 

satisfying a) and b). 

Put 

A = U Pa. 
a<ajc 

Since paeAnUa and qae([0, l)\A)nl7a for each a<coc, the set A, which is 
clearly a "tail set", has the property that both it and its relative complement 
([0,1)\A) neet every uncountable closed subset of [0,1). From this it follows, 
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exactly as in the proof of Theorem 5.4 on pg. 24 in [4] that A is non-measurable 
and lacks the property of Baire. 

We now will give a non-standard proof of Theorem 1. The notations used here, 
the usual ones of non-standard analysis, can be found in [2] or [3]. 
Second (non-standard proof). Let U denote the standard universe with the 
individuals set R of real numbers. N denotes the set of natural numbers, Z the set 
of integers and P[0,1) the collection of all subsets of [0,1). Then we have 

where: 

O: = (Vn6N)(3A„6P[0, l))(3B„eP[0, 1 ) ) ( F . A F 2 A F 3 A F 4 ) 

Ft KVx e An)(Vm e Z ) ( J C + | J e [0, l ) ^ x + p e A,) 

F2 = (Vxe[0, l))(xeA,ol-xeBn) 

F3 = (AnvBn=[0,l)\In) 

F4 = (AnnBn=0) 

and 

Ь = [ßï- 0^m<2"+1}. 

To see that sets (A„)nsN and (B„)neN exist one need only consider the following 
elementary examples: 

A *M i 2 k 2k + 1\ R _ 2 u (2k+ 1 2k + 2\ 
\2n + 1 ' 2"+1 /' — V 2"+1 ' 2B+1 /' 

Clearly F. and F2 imply that 

U: = H 

F{ = ( V x 6 B B ) ( V m 6 Z ) ^ + p e [ 0 , l ) - > x + ^ 6 B „ ) . 

Transforming the above expression by the * — transformation we have: 

*U: = (Vn e*N)(3An 6*P[0,1))(3B„ e*P[0, l))[*FtA*F2A*F3A*F4] 

where: 

*F1 = (VxeA n ) (Vm6*Z)(x+g6*[0, l ) ->x + p 6 A „ ) 

*F2 = (Vxe*[0, l))(xeAnol-xeBn) 
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*Fз = (VA,uB„ = *[0, l)\*í„) 

*FЛ = F4 

and 

*l/: = *F{ 

*F{ = (VxeB n )(Vm6*Z)(x+^G*[0,l )-»jc+PeB n ) . 

Let v e *N\N and set Av = A vn[0,1). We now proceed to show that Av is a "tail 
set" that is nonmeasurable and lacks the Baire property. 

First Av is a "tail set". This is true because 

xeA'v and x + | J e [ 0 , l ) (neN, 0^m^2") 

2v~nm 2v~nm 
implies JC G AV and * H—•--— e [0, 1) and therefore by *Fi JC H—~— e Av. How-

m 
ever, it is clear that x + — is a standard element and therefore 

m , 

In an analogous way, using *Fi, we conclude that 

Bi = Bvn[0, 1) is a "tail set". 

Because of *F3 we have 

AiuBi = [0,1)\D, where D = { ^ : m, neNV 

since *Ivn[0, 1) = D. Furthermore from F4 we conclude that A'vnB'v-=0. 
Condition *F2 implies that Av and Bv are congruent and therefore m{Av) = m(Bv) 
if Ai is measurable. In addition, the Baire categories of Av and B'v are the same. 

If A i is measurable, then because of Theorem A we have: either the measure of 
Av is zero or one. If m(Ai) = 0, then m(B£) = 0 and therefore l = m([0, 1)) = 
m(AiuBiuD) = 0, if m(Av) = l, then m([0, l)) = m(AiuB;uD) = 2. 

If Av is a Baire set, then Theorem B implies that either [0,1)\A£ = BiuD or Av 

is a set of the first Baire category. But since these two sets have the same Baire 
category this would imply that [0, 1) is of the first Baire category. Therefore Av is 
not a Baire set. 

Remark 1. Suppose that a non-standard extension *U of the superstructure U 
has been given by the non-principle ultrafilter D over the set of natural numbers 
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and that v denotes the equivalence class of sequences determined by the identity 
sequence i (i.e. i: N-+N and i(k) = k for each k). 

Then 

A u = =(ri A ' ) / D ' that is A-
consists of all classes (mod D) of sequences a: N-»[0,1) such that a(n)e An for 
each n. 
In this case Av consists of classes of sequences a 

a: N—>[0, 1), which are D equivalent with some sequence x: N-»[0, 1), 
x(n) = x for every neN and xe[0, 1). 

Av can be written in standard form as follows 

Ai=u riAfc. 
IeD kel 

When we consider all non-principle ultra-filters on the set of natural numbers 
and a fixed infinite natural number v as above, then we obtain different sets A'v. In 

fact in this case the intersection of all these sets Av is H An, that is all points in 
neN 

[0, 1), excluding those of the form — (m, neN), whose bose4 representation 

contains only zeroes and twos. This set is a nowhere dense set of measure zero. 

Definition. If A a [0, 1), T(A) will denote the smallest "tail set" containing A, 
i.e. 

T(A) = C\[B: Bc=[0,1), AcB, B a "tailset99]. 

Then it is very easy to see that the following two propositions hold. 

Proposition 1. If A c [ 0 , 1) is a measurable, then T(A) is measurable and 
therefore by Theorem A, m(T(A)) = 0 or 1. If A c [0,1) is a Baire set, then T(A) 
is also a Baire set and therefore by Theorem B, either T(A) or [0,1)\T(A) is a set 
of the first Baire category. 

Proof. Set Q = te meZ, neN], then 

T(A) = \J[q@A:qeQ], where q®A = (q + A)n[0,1), 
and 

q+A = {q + a: aeA). 

Clearly q®A is measurable if A is measurable as Q is countable. Therefore it 
follows that T(A) is measurable. The same proof shows that T(A) is a Baire set 
whenever A is a Baire set. 
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Proposition 2. If A c [ 0 , 1 ) is a measurable, then 

a) m(A) = 0 implies that m(T(A)) = 0 and 
b) m(A)>0 implies that m(T(A)) = l. 

If A c[0, 1) is a Baire set, then 
a') A being a set of the firsf Baire category implies that 

T(A) is a set of the first Baire category and 
b') A being a set of the second Baire category implies that 

[0,1)\T(A) is a set of the first Baire category. 
Proof. These results are immediate by Theorems A and B and the fact that A 

can be written in the form T(A) = ( J [ q © A : qeQ]. 
In this paper we have considered the equivalence relation ™T on [0, 1), where 

x<uTy if and only if jc,(jc) = jc,(y) for all but finitely many I'S. Notice that each 
equivalence class of ™T has countably many elements and is dense in [0, 1). The 
zero-one law (Theorem A) says that any measurable set obtained as the union of 
equivalence classes of <\>T must have measure either zero or one. It is natural to ask 
the following question. 

Quest ion: Does there exist an equivalence relation ^ on [0, 1) such that the 
equivalence classes of CN> are each countable and dense in [0, 1) and such that for 
each x ( O ^ J C ^ I ) , there exists a subcollection of the equivalence classes of c\> 
whose union, denoted Ax, is measurable and ra(Ax) = x? 
We now show that it is possible to construct an equivalence relation with the above 
mentioned properties. 

Theorem 2. There exists an equivalence relation <*> with the properties men­
tioned in the question above. 

Proof. Let Hcz[0, 1) be a Hamel basis for the real numbers containing 
a rational number and having measure zero. 
fc(H), the cardinality of H, is c. Therefore H can be written in the form 

H = U H , , where fc(Jt,) = c for 
ft=i 

each n and the sets 

{Hn }r=i, are pairwise disjoint. 

For each h e H let C = {h + r: r e Q}n[0, 1), where Q is the set of all rational 
numbers. Notice that the sets {Ch}heH are pairwise disjoint since H is a Hamel 
basis containing a rational number. The interval [0, 1) can be written in the form 
[0, 1) = {*„: a<o)c}. 
Furthermore, 

U G = U ( r + H)n[0 , l ) , where 
heH reQ 
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r + H={r + h: heH}, and therefore C = ( J C has measure zero (since 
heH 

m(H) = 0). For each neN let 

in [ 2„_1 , 2» ;• 

Since fc(Hn) = c, each Hn can be written in the form 

Hn = {hn

a: a<o)c}. 

We now proceed to decompose [0,1) into countable, dense and disjoint subsets 
that will be the equivalence classes of our equivalence relation. 
Let C\ = Cn\ u{jt}} where x\ is the first element (relative to the well-ordering of 
[0,1) given above) in Ix that is not in C. 

Let C2 = C/,ju{*2} where x\ is the first element in IA(CU{JCI}). 

We can continue this process, so that Ca is defined by transfinite induction for each 

a < (oc, since C has measure zero and U {XD has cardinality less than c as coc is the 
p<a 

first ordinal having cardinality c. Clearly Ca is dense in [0,1) for each a <coc. In 
addition 

U C a 3lAC and IIUCZD U Ca 
a<oac a<(oc 

and therefore 

( U c -И 
\a<oic / --* 

m[ 
1«Oc 

since C has measure zero. Furthermore the sets {Ca}a<a>c are pairwise disjoint. 
Proceeding to I2, let C? = Gju{jcf}, where x\ is the first element (relative to the 

well ordering of [0,1) given above) in I2\C. 
Let C1 = Glut*!} where x\ is the first element in I 2 = CU{JC?}. We continue by 
transfinite induction as in the n = 1 case. 

By ordinary induction this process can be continued for each neN and so we 
obtain a collection of sets 

{Ca: neN, a<coc} such that: 

a) Each set is countable and dense in [0,1), 

b) The sets in our collection are pairwise disjoint. 

c) m( U Co) =^r for each neN. 

d) The union of all the sets in our collection is exactly equal to [0,1). 
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If O ^ J C ^ I , then x can be written in the form 

el e2 
ac=y-f-^2-f..., where e„e{0,1} for each n. 

Take 

La<ct>c J a<ct>c 

Then 
m(Ax) = x. 

Remark 2. It would be interesting to characterize those equivalence relations 
^ on [0, 1) for which the zero-one law holds; that is, to find necessary and 
sufficient conditions that m(A) is always either 0 or 1 whenever A is a measurable 
subset of [0, 1) formed by unions of equivalence classes of c\>. 
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ЗАМЕЧАНИЯ О НУЛЬ — ЕДИНИЦЕ ЗАКОНЕ 

Налу МШег—ВоИко 2,\\а\]еу\Ъ 

Резюме 

В этой работе даны два доказательства, стандартное и неархимедого, существования остаточ­
ного множества (т.е. содержащего все суммы его элементов с бинарными рациональными 
числами), которые ни не измеримо по Лебегу, ни не является множеством Бэра. Кроме того 
рассматриваются вопросы о некотором обобщении отношений эквивалентности. 

384 


		webmaster@dml.cz
	2012-08-01T00:57:55+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




