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ON THREE LATTICES THAT BELONG
TO EVERY SEMIGROUP

ROBERT SULKA

Dedicated to Academician Stefan Schwarz on the occasion of his 70th birthday

In paper [6] three kinds of nilpotency were introduced. By means of them we
define three lattices which are subsets of the Boolean ( P(S), <) of a semigroup S.
Some properties of these lattices were found. For example it is proved that two of
these lattices are complete and one of them is complemented.

We give conditions for a subset M of a semigroup S to belong to these lattices. It
is proved that all ideals, (m, n)-ideals and (m, n)-quasiideals of a semigroup are
elements of all these lattices.

In the case of cyclic semigroups we describe all elements of these lattices.

In the last section we are dealing with these lattices of subsemigroups of
a semigroup.

Basic definitions and properties

In paper [6] the following definitions are introduced (see also [4] and [1]).

Definition 1. Let S be a semigroup, Mc S and x € S.

a) If there exists a positive integer ny(x) such that x" € M holds for all positive
integers n = ny(x), then x will be called strongly M-potent. The set of all strongly
M-potent elements of S will be denoted by N(M).

b) If x" € M holds for infinitely many positive integers n, then x will be called
weakly M-potent. The set of all weakly M-potent elements of S will be denoted by
N>(M).

c) If x" € M holds for at least one positive integer n, then x will be called almost
M-potent. The set of all almost M-potent elements of S will be denoted by N;(M).

d) Let J be a (two-sided) ideal of S such that J = N,(M) holds. Then J will be
called a strong M-ideal. If J = N,(M), then J will be called a weak M-ideal. The
union of all strong M-ideals will be denoted by R*¥(M) and the union of all weak
M-ideals will be denoted by R%(M).
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It Mc S, M, c S and M.c S, then the following statements are true (see [6]):
(i) N(M)c N.(M)c N.(M).
(i) If M, =M., then N (M) N,(M.) fori=1,2,3.
(iii) N\(M,nM.)=N,(M\)nN,(M.).
(iv) N.(MyuUM.,)= N-(M)UN,(M.).
(v) N(U{M,|iel})=U{N.(M)|iel}.
(vi) R¥(M\nM,)=R¥(M)NnR¥(M.).

It is casy to prove the following Lemmas.

Lemma 1. Let M, c S and N\(M,))=N.(M,) for i=1,2. Then N (M,uM.) =
N.(M,UM.).
Proof. (i), (iv), the assumptions of Lemma 1 and (ii) imply

N(M,uM,)c N-(M,UM.)= N.(M,)UN-(M-) =
=N, (M,)uUN,(M.)c N,(M,uM.).

Hence Ny(MyuM») =N.(M,uM.).
Similarly one can prove the following two Lemmas.

Lemma 2. Let M, c S and N(M,)= N«(M,) tor alliel. Then N(U{M,|iel})=
N.(u{Mliel}).

Lemma 3. Let M, < S and No(M,) = N«(M,) for all i e I. Then N-(U{M.|ieI})=
N.J(u{Mliel}).

Lemma 4. Let M, c S and N\(M,))=N.(M,) for i=1,2. Then N (M,nM.)=
NV(M|0M1).
Proof. From the assumptions of Lemma 4, from (iii), (i) and (ii) it follows that

N-(M)AN:(M-)= N,(M,)AN,(M.) =
=N(M,AM>) = N.(M,AM-) = N.(M,)AN:(M.).

Hence N(M,nM:)=Ny(M,AM.).
Similarly we can prove

Lemma 5. Let M,c S and N\(M,)=N.M,) for i=1,2. Then N\(M,nM.)=
N.(M,nM.).

Lemma6. LetMc S, M, cSand M, < S. Then the following statements hold:
(i) R¥(M)c R*(M), R¥(M)c N(M), R¥(M)c N:(M).
(it) If M, c M, then R*(M,)c R*(M.) for i=1,2.
(iii) If N((M)= N,(M), then R¥(M)= R*(M).
Proof. (i) and (ii) follow immediately from Definition 1.
If N((M)=N.(M), then for every ideal J the relation J< N, (M) holds iff
J = N.(M). Using Definition 1, this implies (iii).
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Corollary. Let M, c S and N\(M,) = N,(M;) for i=1, 2. Then R¥(M,)= R¥(M,)
fori=1,2, R¥(MnM;)=R%(M,nM) and R¥(M,uUM,)=R¥(M,uM,).
The proof follows from Lemmas 6, 4 and 1.

Lemma 7. Let M, c S and R¥(M;) = R%¥(M,) for i=1, 2. Then R¥(M,nM,) =
R¥(M,nM,).

The proof of Lemma 7 is similar to the proof of Lemma 4.

Let (P(S), ) be the Boolean of S.

Lemmas 1—7 imply

Theorem 1. Let S be a semigroup,

Niz={M c S|Ni(M)=N(M)}, Niz={McS|N(M)=N,(M)},
Naa={Mc S|N,(M)=Ny(M)} and % ={M c S|R¥(M)=R%$(M)).

Then the following statements hold:

a) # and S are contained in Nz, N3, N2z and R.

b) NicN.c R and Nizc Naa.

c) (N, <) is a lattice.

d) (N, ) is a complete lattice.

e) (N, <) is a complete lattice.

f) (R, <) is a lower semilattice.

g) (N2, N, U) is a sublattice of {P(S), N, U).

h) (N, N, U) is a sublattice of (N2, N, U).

i) (N5, N, U) is a sublattice of (N, A, U).

j) (N, <) is a complete upper subsemilattice of {P(S), c).
k) (N2, <) is a complete upper subsemilattice of (P(S), <).
) (N, N, U} is a distributive lattice.
m) (N, N, U) is a distributive lattice.

n) (R, n) is a lower subsemilattice of {P(S), N).

Lemmas 1—7 and (iii)—(vi) imply

Theorem 2. Let S be a semigroup. Then the following statements are true:

a) The mapping N.;: (N12, 0, U) = (P(S), N, U), Nio(M) = N,(M) = N,(M) is
a homomorphism.

b) The mapping Ni3: (N3, 0, U) = (P(S), N, U), Nz(M) = N((M) = N,(M) is
a homomorphism. It preserves infinite joins (set-theoretical unions).

¢) The mapping Ny: (Na, U)—(P(S), U), Na(M)=N(M)=N,(M) is
a homomorphism. It preserves infinite joins (set-theoretical unions).

d) The mapping R*t:: (R, n)—(P(S), n), Rt:(M)=R¥(M)=R%(M) is
a homomorphism.
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Some examples

Let N be the set of all positive integers.

It S=(a) is a cyclic semigroup generated by the clement ¢ and J(x) is the
principal two-sided ideal generated by an element x € S, then x=a" for some
noe N and J(a™)y={a"|n=n,}.

Theorem 3. Let W+ Mc S and S = (a) be a cyclic semigroup, generated by the
clement a. Then M e .V iff there exists an element x € S such that J(x) < M holds.

Proof. a) Let N{(M) = N.(M) hold. Since M+ {J, there exists a positive integer
k such that «" € M is true. Hence we have a € Ny(M) = N,(M). This implics the
existence of a positive integer n, such that for all positive integers n =n, the
relation a" € M holds. This means that J(a™)={da"|n=n,} <M.

b) Let the relation J(a"™) = {a"|n=n.) =M hold. Let z be an arbitrary clement
of S={(a). Then z=a" holds for some positive integer k. Since J(u™) < M. we
have a" € M for all positive integers n = n.. Hence we have also 2" = (a*)" € M for
all positive integers n=n,. This means that z € Ni(M). In this way we get that
N/(M)=S. Hence by (i) Ni(M)= N.(M).

Remark. The condition J(x) < M is equivalent to the condition that M contains
an ideal.

Theorem 4. Let M c S and S = (a) be a cyclic semigroup. Then M € .. itf cither
the relation a” € M holds only for a finite number of positive integers nor J(x)c M
for some x € S.

Proof. If the relation «" € M holds only for a finite number of positive integers
n, then the condition N(M)= N,(M) is satisfied. Therefore it is sufficient to
consider subsets M of S satisfying the relation " € M for infinitely many positive
integers n.

a) Let N\(M)= N-.(M) and let a" € M hold for infinitcly many positive integers
n. Then a e N.(M)= N,(M) and we get that J(x)c M as in the first part of the
proof of Theorem 3.

b) Let J(a")={a"|n=n.} =M (then clearly «" € M holds for infinitely many
positive integers n). From the second part of the proof of Theorem 3 we know that
N((M)=S. From this and (i) we get that N,(M)= N.(M).

If S is a cyclic semigroup of infinite order, we can formulate Theorem 4 as

follows:

Theorem da. Let M < S and S = (a) be a cyclic semigroup of infinite order. Then
M e .V, iff either M is a tinite subset of S or J(x)< M for an element x € S.

Let S={a,a’,....,a'.a'"", ..., a"'™ "} be a cyclic semigroup of finite order with
index r and with period m (see [1] and [3]). Denote G={a', a’'''. ....a’ "™ '} the

maximal subgroup of S and P={a, a’, ..., a' '}. In such semigroup the condition
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J(x) c M is equivalent to the condition G ¢ M. This follows from the fact that for
all positive integers n, the inclusion G < J(a") holds and G =J(a").
Hence we have

Theorem 3a. Let ##Mc S and S = (a) be a cyclic semigroup of finite order.
Then M e N\, iff Ge M.

If S=(a) is a cyclic semigroup of finite order, then the condition that the
relation " € M holds only for a finite number of positive integers is cquivalent to
the condition M c P.

This implies

Theorem 4b. Let M c S and S = (a) be a cyclic semigroup of finitc order. Then
M e N, iff either Mc P or G M.

Theorem 5. Let S be a semigroup and M c S. Then M e N, iff M < N.(M).

Proof. a) Let M e N, i.e. No(M)= Ny(M). Since Mc N(M) we have Mc
N.(M).

b) Let Mc N>(M). If xe N:(M), then for a positive integer m we have
x" =ye M. Since M = N.(M), there exists a strictly increasing sequence (k,.),, | of
positive integers k, such that y* e M i.e. x"* e M for all n e N. This means that
x € Ny(M) and we have N:(M)c No(M). Since by (i) N-(M)c N(M), we get
N>(M)= N:(M) i.e. M € N.

Theorem 6. Let S be a semigroup and M < S. Then M < N.(M) iff for every
x € M there exists a positive integer n>1 such that x" € M.

Proof. a) Let M < N>(M). If x e M, then x € N.(M) and there exists a positive
integer n>1 such that x" e M.

b) If for every x € M there exists a positive integer n > 1 such that x" € M, then
for every x € M there exists a sequence of positive integers k, > 1 such that x, x*'*,
xhibeba s xhibek O belong to M i.e. x € No(M). Hence M < N.(M).

Theorems 5 and 6 imply the following

Corollary. Let S be a semigroup and x € S. Let (k,)-1 be a sequence of positive
integers k,>1 and M = {x, x", x** .. x*** ). Then Me N.

Lemma 8. Let S be a semigroup and x an eclement of S of infinite order. Let
(k.)» 1 and (r.)»-: be two distinct sequences of positive integers k,>1 and r, > 1.
Let

Kk ky.. K
M, = {x, x*r, xkle, | xfileta) }
and
M= {x, x", x"", ..., x" )

Then M; # M,.
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Proof. Let i be the least index such that k, # r, holds. Suppose that k, <r,. Then
xkikakie M, but x*1*2- k¢ M,.

Theorem 7. If the semigroup S contains at least one element of infinite order, the
card Np; = 2%,

Proof. Let A be the system of all sets M = {x, x*, x"*, ..., xh
(k.)~- 1 is a sequence of positive integers k, > 1. By Lemma 8 we have card .{{ = 2™
Corollary of Theorems 5 and 6 implies # < N>, therefore card N>, =2,

b ki) where

Corollary. Let S=(a) be a cyclic semigroup of infinite order. Then card N> =
2%,

The proof follows from Theorem 7 and from the fact that card P(S)=2".

Now we can prove that the sets N, N, A, R and P(S) may be distinct. This
follows from the foregoing Theorems and their Corollaries.

Example. Let S=(a) be the cyclic semigroup of infinite order. Then A =
{a}eN.but A ¢.N.yand A .4, because N\(A)=N,(A)=¢@ but N\(A)=A+#0.
Hence N> # Na: and N2 # Ny.. Moreover Ni(A) = {a} is neither an ideal in S nor
it contains an ideal. Therefore R¥(A)=R%*(A)=40 i.e. A e R. Hence we have
A€R but A éNyie R#Nu Moreover A ¢.N», implies that N # P(S).

Let B=S\{a"|peN, p is prime}. Then R¥(B)=S\{a}# S = R%(B). Hence
B ¢ % and we have R+ P(S).

By Corollary of Theorems 5 and 6 M= {a’*|ke N} e N:, but M ¢ A\ since
a ¢ N,(M) but g € N;(M). Therefore N; # .N:. Now we shall prove that M € & but
M ¢ N).. Clearly a € N,(M) but a & N,(M), therefore M ¢ ... On the other hand
M e N>y and N>(M) = N,(M)={a}uM, but this is neither an ideal of S nor it
contains an ideal of S. Hence R¥(M)=R*¥(M)=/ i.e. Me R. We have R+ .V..
Moreover Me R, M &Ny, imply Me R, M ¢ Nis. Hence R+ N

Some other properties

In the following example it will be shown that {¥., =) need not be a complete
lattice.

Example. Let S = (a) be the cyclic semigroup of infinite order generated by a.
Let M, ={a”} for all ie N. Denote M=uU{M,|ie N}. Then clearly N,(M,)=
N,(M))=¢ for all ie N. On the other hand a e N,(M) but a ¢ N,(M), hence
N, (M) # N>(M). This means that the union of infinitely many elements of .V',> does
not belong to .¥,,. Moreover we shall prove that in (., <) the sup {M,|ie N} =
v{M,|ie N} does not exist.

Let ae Ny, and A oM. Since ae N, (M), we have a e N,(A) and A contains
a set {a*|k=n,}, where n,e N. Now it is easy to see that every upper bound A of
M in (N, <) is of the form A = Mu{a*|k=n,}, where n,€ N. But the system of
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all these upper bounds of M has no minimal element. This implies that (N, <) is
not a complete lattice.

Theorem 8. Let S be a semigroup. Then (N, 0, U) is a complemented lattice.

Proof. We prove it indirectly. Let M e N> i.c. N((M)= N-(M) and S\M ¢ .\
i.e. Ni(S\M)# N,(S\M). Since N,(S\M)c N.(S\M) and N,(S\M) # N.(S\M)
there exists an x such that x € No.(S\M) but x ¢ N,(S\M). Now x ¢ N,(S\M)
implies that x € No(M) = N;(M). However x € Ny(M) and x € N.(S\M) cannot
hold. We have got a contradiction. Hence S\M €.V)..

Corollary. Let S be a semigroup. Then (N,»(N:), n, U) is a complemented
lattice.

The proof follows from the fact that Ny.: (N N, u)—=(P(S), N, U) is
a homomorphism. ,

In the next example it will be shown that (., n, U) nced not be a com-
plemented lattice. ‘

Example. Let S=(a) be the cyclic semigroup of infinite order. Let M=
{a"|n>no}, where noe N. Then clearly M € .N'; but S\M = {a*|k <n,) ¢ N5 by
Theorem 3.

In the following example it will be shown that (.¥:, ) need not be a complete
sublattice of (P(S), ).

Example. Let S=(a) be the cyclic semigroup of infinite order. Let M, =
{a}ula"|n=k} for all keN. Then clearly M, eN,» for all keN but
N{Mi|keN}={a} ¢ N.

Theorem 9. Let S be a semigroup. Then {N:(N:), N, U) is a complemented
lattice.

Proof. First we prove that A =S\N,;(M) is a union of cyclic semigroups. If
x" € Ni:(M)= N;(M), then x € N;(M)= N,3(M). Hence x€ A implies (x)c A.

Next we show that N;(A)=A. Clearly N;(A)2 A. If x € N;(A), then infinitely
many powers x" belong to A, because A is a union of cyclic semigroups. From this
follows that x ¢ N\3(M) (i.e. x € A) since x € Ni;(M) = N,(M) implies that almost
all powers x" are contained in M c N,;(M). Hence x € N.(A) implies that x € A i.e.
Ni(A)c A. We got N:(A)=A.

Now we prove that Ni(A)= A. Clearly N\(A)c N3(A)= A, therefore N,(A)c
A. Since A is a union of cyclic semigroups, Ni(A)2 A holds. We have N,(A) =
A = N;(A), therefore A = N3(A)e Ni3(N3).

We got the following results: N;(M)e N;3(Ni:), Nizs(A)=A € Ni:(Nh),
Ni:(M)UN,;(A)=S and N,;(M)nN,;(A)=4#. This means that {( N;3(N13), N, U)
is a complemented lattice.

In the following example it will be shown that in the complete lattice (N2, <)
even the finite meets need not be set-theoretical intersections.
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Example. Let S=(a) be the cyclic semigroup of infinite order. If M, =
{aYu{a™]ie N} and My={a” '|ie N}, then M, € N>, and M. € N>, by Theorem 5
and 6. But M,nM,={a) ¢ N>:. Hence M,AM,=4.

From the following example we shall see that the complete lattice (N, <) need
not be complemented.

Example. Let S=(a) be the cyclic semigroup of infinite order. Let M, =
la"|peN, p=1or pis a prime} and M,={a"|neN, n#1, n is not a prime}.
Then M, & N,y since No(M,)= M, but No(M,)= {a}. By Theorem 5 and 6, M. € .V,
because M. contains with every element a" € M, also its power (a")’ =a™".

Now we have MuM, =S and M\nM,={J. We want to find an K €.V such that
M.UK =S and M>,AK =0.

The condition MUK =S implies K 2 M,. By Theorem 6, the conditions K € N>,
and K o M, imply that for the element « € M, there has to exist a sequence ()¢ 1,
n, € N such that T={a""™, ..., """, ...} € K holds. But then M-nK 2 T+ ¢ and
by Theorem 6 T e N>.. Hence M>A K# (). We see that M, € .Y5: has no complement
in (A, ). therefore {.N»:, <) is not complemented.

In the following example it is shown that the mapping Ny.: (N, N, U)—
(P(S), N, U) need not preserve infinite joins and infinite meets.

Example. Let S be the free semigroup generated by the set {0, a}u{b, |k e N}
and by the relations 0-0=0-a=a-0=0-b,=b-0=a-b,=b,-a=0for all ke N
and by b =b; b, =0 forall k,le N, k+1.

a) Let M, ={a"}u(b.) for all keN. Clearly N,(M,)=N.(M,)=(b,) =
Nu(A/IA), hchC MA E.N‘]g.

We have U{M;|ke N} =(a)u(u{(b)|k e N}))=S\{0}. Morecover

N(U{M, |k e N})=Ny(U{M|keN})=
= (a)u(U{(h. )|k e N})=S\{0} = Ni.(U{M. |k e N}),

hence U{M,|ke N} e N..

On the other hand we get M=U{N(M)|keN}=0{(b.)|keN}+S\{0},
N/(M)=N.(M)=M=N;,(M) i.e. U{N:(M)|k e N} =M e N,»(N},).

Hence Ni(U{Mi |k € N})=S\{0} # U{Ni.(M,)| k € N}.

b) Let Ly = {a'|i=k}u(b.) forall ke N. Then N\(L,) = Nx(L,) = (a)u(b.) =
Ni>(L.), hence L, € V..

Moreover n{Li|keN}=0 and N(#)=N(#)=0=N.(4) imply that
n{L ke N}eN, and N.(n{L.|keN})=0.

On the other hand N{N,,(L,)|k e N}=(a). But N.({(a))=N.({a))=(a) =
N:((a)) means that " {N,(L.)|k € N} € Ni2(N)»).

Hence Nio(n{Li|ke N})=0% (a) =n{N.:(L)|k e N}.
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Subsets that belong to N5 or to N>,

We shall prove that if a subset M of a semigroup S satisfies some conditions, then
M belongs to N or to Naa.

Lemma 1 of [6] implies that every subsemigroup of a semigroup S belongs to
Naa.

From Lemma 2 of [6] it follows that every left ideal, right ideal and two-sided
ideal of a semigroup S belongs to N, (hence it belongs also to N, and N33).

Let S be a semigroup, M = S and M # @J. We consider the following conditions:

(1) M" S M"cM,

(2) M"SAS M"cM,
where m. n are fixed nonnegative integers, not both equal 0 and for m=0orn =0,
M" be the empty symbol. We say that M satisfies condition (1) or (2), respectively,
for the pair (m, n).

Remark. If M satisfies condition (1) or (2) for the pair (m, n), it also satisfies
this condition for the pair (p, q), p=m, q=n (see [2]).

Lemma 9. If M satisfies condition (1), then N{(M)= N;(M).

Proof. a) N\(M)c N.(M).

b) If x € N:(M), then there exists a positive integer k, such that x“ € M holds. In
view of condition (1) we have x*"*"*”"e M for all p e N. Hence N;(M)< N,(M).

Lemma 10. If M satisfies condition (2) it satisfies also condition (1) (see [2]).
Proof. Evidently M"SM"cM™S and M"SM"cSM". Hence M"SM" c
M"SNSM" c M. Hence (2) implies (1).

Corollary. If M satisfies condition (2), then N,(M)= N:(M).

Further let us consider the condition

(3) S"MnMS"cM, where m, n are fixed positive integers. We say that M
satisfies condition (3) for the pair (m, n).

Lemma 11. If M satisfies condition (3) for some pair (m, n), then it satisfies
condition (3) for every pair (p, q), p=m, q=n.
Proof. We have S"MnMS* cS"MnMS"c M.

Lemma 12. If M satisfies condition (3) for some pair (m, n), then N\(M)=
N.(M).

Proof. a) Ny(M)c Ni(M).

b) If m=n and M satisfies condition (3) for the pair (m, n), then M also satisfies
this condition for the pair (m, m) and for every pair (m+t, m+t), te N.

Let xe Ny(M) i.e. x*eM for some positive integer k. Then the relation
S""MnAMS™' =M, te N implies that x**™*"e€ M for every te N i.e. x e N(M).
We have obtained that N;(M)c N,(M). Hence N,(M) = N,(M).

From the foregoing Lemmas we have
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Theorem 10. Let S be a semigroup. All subsets M c S that satisfy some of the
conditions (1), (2), (3) are elements of Ns.

Corollary. Let S be a semigroup. Then all (m, n)-ideals and all (m, n)-quasiide-
als of S are elements of Ns.
The Corollary follows immediatelly from definitions (see [2] and [5]).

Lemma 13. Let S be a semigroup, A =S, Bc S and let ABc AnB.
Then Ny(AB) = N,(AB)=Ni(AnB)=(N;(AB).

Proof. a) First we prove that N>(AB)=N,(AnB). Evidently N.(AB)c
N,(AnB) since ABc AnB. Now let x e N(AnB). Then for infinitely many
k € N we have x* € AnB i.e. for infinitely many k € N there is x* € A and x* € B.
This implies that for infinitely many k we have x** € AB i.e. x € N.(AB). Hence
N,(AnB)c N.(AB).

b) Similarly it can be proved that N;(AB)= Ni(AnB).

c) It remains to prove that Ns(AB)= N,(AB). It is sufficient to prove that
N+(AB) = N,(AB) because we know that N>(AB) c N.(AB).

Let x € N;(AB). Then there exists a k € N such that x* € AB. We shall prove that
x" € AB for all n e N. This statement is true for n =1. Suppose that x™ € AB c
ANnB. Then x" e A. But x*e ABc AnB implies x* € B. Therefore x"*"*=
x™-x* € AB. We have x™ € AB forall n e N i.e. x € N.(AB). We have proved that
N.(AB)c N,(AB). This together with N>(AB)c< N;(AB) gives N,(AB)=
N.(AB).

Theorem 11. Let S be a semigroup, AcS, BcS and ABc AnB. Then
ABE.N:}, AnNnB EN23 and qu(AB)=N21(AﬂB).

Subsemigroups

Let S be a semigroup, S’ a subsemigroup of S and M’ = S’. Then N{(M') will be
the set of all strongly M'-potent elements of S’, N;(M') will be the set of all weakly
M'-potent elements of S’ and N3i(M’) will be the set of all almost M'-potent
elements of S’'.

We have the following

Lemma 14. Let S be a semigroup, S’ a subsemigroup of S and M c S. Then
Ni(S'nM)=N,(M)nS’ holds for i=1, 2, 3.

Proof. a)If xe N{(S'nM), then x" € S'nM c M for almostallne Nand xe S’
hold. This means that x e N,(M) and x€S’, hence x e N\(M)nS’. Therefore
Ni(S'nM)c N\(M)nS' is valid.

b) If xe N\(M)nS’, then x e N\(M) and x € S’. This implies that x" e M for
almost all ne N and x € S’. Since S’ is a subsemigroup, x" € S’ holds for all n € N.
Hence we get x" e MNS’ for almost all ne N and xe S’ i.e. xe Ni(S'nM).
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For the cases i =2 and 3 the proofs are similar.

Corollary. Let S be a semigroup, S’ a subsemigroup of S and Mc S’. Then
N/ (M)=N.(M)nS' fori=1,2,3.

Using the notations Ni,={McS’'|Ni(M)=Nj}(M)}, Ni; ={McS'|Ni{(M)=
N;3(M)} and N};={McS’'|N3(M)=N;i(M)}, we get

Lemma 15. Let S be a semigroup, S’ be a subsemigroup of S and Mc S'. If
M e N3, then M € Nss.

Proof. Let Mc S’ and M e N, i.e. N3(M)= Ni(M). If x € N.(M), then there
exists n € N such that x" e M c S’. This means that x" € Nj(M) = Ni(M). There-
fore x™" =(x")" €M holds for infinitely many me N i.e. x € N.(M). We have
proved that N.(M)c N.(M). This, together with N,(M) < N.(M) gives N.(M) =
Nz(M) i.e. M €N,

A subsemigroup S’ of a semigroup S is called isolated if x" € S’ implies x € S’ for
all xeS.

Lemma 16. Let S be a semigroup, S’ an isolated subsemigroup of S and Mc S'.
Then the following statements hold:

a) If Me N, then M e N,

b) If M e N, then M e N,,.

Proof.a) Let Mc S’ and M e Niii.e. N{(M) = N;i(M). If x e N;(M), then there
exists n € N such that x"e M c S’. But since S’ is an isolated subsemigroup, we
have x€ S’ and x" € M, hence x € Ni(M)= N{(M). Therefore x™ € M holds for
almost all m e N i.e. x € N,(M). We have obtained N:(M) c N,(M) what together
with N(M) c Ni(M) gives N (M) = N:(M). This means that M € N\;.

The proof of b) is similar.

Theorem 12. Let S be a semigroup and S’ a subsemigroup of S. Then the
following statements hold:

a) Nisg Naa.

b) If S’ is an isolated subsemigroup, then N N2 and Ni;c Na.

c) The complete lattice (N3, <) is a complete sublattice of the complete lattice
(st, §>~

d) If S’ is an isolated subsemigroup, then the lattice {/N'{,, N, U) is a sublattice
of the lattice (N2, N, U).

e) If S’ is an isolated subsemigroup, then the complete lattice (N}, <) is
a complete sublattice of the complete lattice (N, ).

The proof follows from the foregoing Lemmas and Theorem 1.

The following example illustrates that if S’ is not an isolated subsemigroup of S,
then neither N1, < N2 nor Nis< N3 need be true.

Example. Let S = (a) be the cyclic semigroup of infinite order. Let S’ =M =
{a**|k € N}. Then N{(M)=Ni(M)=Ni(M)=M=S"i.e. Me N, and M e N}..
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On the other hand a ¢ N(M) but aeN,(M) and «eNy(M). Hence
N (M) # N,(M) and Ni\(M)+# N:y(M) i.e. MéN, and M &N,
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O TPEX CTPYKTYPAX. IPUHAIJIEXAIUUX BCIKOHU IMOJIYTPYIIIE
Robert Sulka
Pesiome

C noMouibio NMOHATUS HUILMOTEHTHOCTH ONpeesieHbl TPU CTPYKTYPbI, 3JIEMEHTBI KOTOPbIX MPHHAj-
nexar 6yneany ( P(S), <) noayrpynnei S. J[loka3bIBaroTcst HEKOTOPbIE CBOWCTBA 3THX CTPYKTYp. Tak
ABE M3 3TUX CTPYKTYpP SBJISIOTCH MOJHBIMH M OfIHA U3 HUX SIBNSAETCS CTPYKTYPOH C JIONOTHEHUSMH.
[Toka3bIBaeTcs, 4TO Bee (m, n) — upeansl U Bce (m, n) — KBa3uMIEa bl COLEPXKATCS BO BCEX TPEX ITUX
cTpyKTypax. M3ydaroTcs Toxe 3TU CTPYKTYpbI B cllyyae UMKJIMYECKMX MOJYTPYNI U B cllyyae NOAnony-
rpynn noJayrpynmsl.
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