Charles Dorsett
New characterizations of regular open sets, semi-regular sets, and extremally disconnectedness

Mathematica Slovaca, Vol. 45 (1995), No. 4, 435--444

Persistent URL: http://dml.cz/dmlcz/128880

Terms of use:
© Mathematical Institute of the Slovak Academy of Sciences, 1995

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz
NEW CHARACTERIZATIONS OF REGULAR OPEN SETS, SEMI-REGULAR SETS, AND EXTREMALLY DISCONNECTEDNESS

CHARLES DORSETT

(Communicated by Július Korbaš)

ABSTRACT. In this paper, each of regular open sets, semi-regular sets, and extremally disconnectedness are further examined and characterized.

1. Introduction

In the study of mathematics, there are many solution techniques and strategies. One technique that has been utilized in the study of minimal topological spaces, as well as other areas, is the construction and consideration of associated sets and associated topologies for a given topological space. As one example, in 1937 ([22]), regular open sets were introduced and used to define the semiregularization space of a topological space. Let \((X, T)\) be a space and let \(A \subset X\). Then \(A\) is regular open, denoted by \(A \in RO(X, T)\), if and only if \(A = \text{Int} (\text{Cl}(A))\). In the 1937 (paper [22]), it was shown that \(RO(X, T)\) is a base for a topology \(T_s\) on \(X\) coarser than \(T\), and \((X, T_s)\) is called the semiregularization space of \((X, T)\). The set \(A\) is regular closed, denoted by \(A \in RC(X, T)\), if and only if one of the following equivalent conditions is satisfied ([23]):

(a) \(A = \text{Cl}(\text{Int}(A))\) and
(b) \(X \setminus A \in RO(X, T)\).

There are many other instances in which associated sets and associated topologies have been used to better understand and further investigate mathematical properties.

The study of semi open sets and related sets and properties began in 1963 ([18]). Let \((X, T)\) be a space and let \(A \subset X\). Then \(A\) is semi open, denoted by \(A \in SO(X, T)\), if and only if there exists \(O \in T\) such that \(O \subset A \subset \text{Int} (\text{Cl}(A))\) and

AMS Subject Classification’(1991): Primary 54A10, 54G05.

Key words: regular open, semi open, semi closure, extremally disconnectedness, associated topologies.
Cl(O). The introduction of semi open sets raised many basic general topological questions, which has thus far led to a productive study in which many new mathematical tools have been added to the general topology tool box, many new properties have been defined and examined, many new gems have been discovered for old properties, additional associated sets and associated topologies have been introduced, examined, and utilized, and, very importantly, additional basic general topological questions continue to arise.

Semi closed sets and the semi closure operator were added to the literature in 1970 ([1]). Let \((X, T)\) be a space and let \(A, B \subseteq X\). Then \(A\) is semi closed if and only if \(X \setminus A\) is semi open, and the semi closure of \(B\), denoted by \(\text{scl} B\), is the intersection of all semi closed sets containing \(B\). In 1978 ([3]), the subset \(A\) was defined to be regular semi open, denoted by \(A \in \text{RSO}(X, T)\), if and only if there exists a regular open set \(U\) such that \(U \subseteq A \subseteq \text{Cl}(U)\). Semi open sets were used in 1980 ([6]), to define semi compact spaces. The space \((X, T)\) is semi compact if and only if every cover of \(X\) by semi open sets has a finite subcover. In 1984 ([4]), the semi interior and semi closure operators were used to define semi regular open sets. The semi interior of \(A\), denoted by \(\text{sint} A\), is the union of all semi open sets contained in \(A\), and \(B\) is semi regular open, denoted by \(B \in \text{SRO}(X, T)\), if and only if \(B = \text{sint}(\text{scl} B)\). Also, the question of whether or not semi compactness could be reduced to compactness led to a new associated topology in 1984 ([21]). The topology \(\text{TSO}\) on \(X\) with subbase \(\text{SO}(X, T)\) is called the semi open set generated topology of \((X, T)\). In the 1984 (paper [21]), it was shown that \((X, T)\) is semi compact if and only if \((X, \text{TSO})\) is compact. Semi-regular sets and s-closedness were introduced in 1987 ([5]). The subset \(A\) is semi-regular, denoted by \(A \in \text{SR}(X, T)\), if and only if \(A\) is both semi open and semi closed, and \((X, T)\) is s-closed if and only if every cover of \(X\) by semi open sets has a finite subcollection whose semi closures cover \(X\). In the 1987 (investigation [5]), it was shown that \(\text{RSO}(X, T) = \text{SRO}(X, T) = \text{SR}(X, T)\). The further investigation of s-closedness in 1991 ([7]), led to the introduction and investigation of another associated topology. The topology \(\text{TSR}\) on \(X\) with subbase \(\text{SR}(X, T)\) is called the semi-regular set generated topology of \((X, T)\), and \((X, T)\) is s-closed if and only if \((X, \text{TSR})\) is compact. In this paper, the associated sets and associated topologies given above are used to further investigate and characterize regular open sets, semi-regular sets, and extremally disconnectedness. The space \((X, T)\) is extremally disconnected if and only if \(\text{Cl}(O) \in T\) for each \(O \in T\) ([23]).

2. Regular open sets and semi-regular sets

The study of semi open sets and related properties has led to many new characterizations of regular open sets. In 1978, open sets and the semi closure operator were used to define feebly open sets. Let \((X, T)\) be a space and let \(A \subseteq X\). Then \(A\) is feebly open, denoted by \(A \in \text{FO}(X, T)\), if and only if there exists
NEW CHARACTERIZATIONS OF REGULAR OPEN SETS, ...

$O \in T$ such that $O \subset A \subset \text{scl} A$ ([19]). The further study of feebly open sets showed that $\text{FO}(X, T)$ is a topology on X, $T \subset \text{FO}(X, T) = \text{FO}(X, \text{FO}(X, T))$ ([8]), that $\text{FO}(X, T)$ is the finest topology on X having the same semi open sets as (X, T) ([9]), and $\text{RO}(X, T) = \{\text{scl} A \mid A \in \text{FO}(X, T)\}$ ([10]) $\equiv \{\text{scl} O \mid O \in T\}$ [11] $\{\text{Int}(\text{Cl}(O)) \mid O \in T\}$ [12] $\{\text{Ext}(O) \mid O \in \text{FO}(X, T)\} = \{\text{Ext}(O) \mid O \in T\}$ ([13]). Of course, for each new characterization of regular open sets, there is a corresponding characterization of $\text{RC}(X, T)$. Below additional characterizations of $\text{RO}(X, T)$ and $\text{RC}(X, T)$ are given.

THEOREM 2.1. Let (X, T) be a space. Then $\text{RO}(X, T) = \{\text{Ext}(O) \mid O \in \text{SO}(X, T)\} = \{\text{Ext}(O) \mid O \in \text{SR}(X, T)\}$, and $\text{RC}(X, T) = \{\text{Cl}(O) \mid O \in \text{SO}(X, T)\} = \{\text{Cl}(O) \mid O \in \text{SR}(X, T)\}$.

Proof. Since $T \subset \text{SO}(X, T)$, then $\text{RO}(X, T) \subset \{\text{Ext}(O) \mid O \in \text{SO}(X, T)\}$. Let $O \in \text{SO}(X, T)$. Let $U \in T$ such that $U \subset O \subset \text{Cl}(U)$. Then $\text{Cl}(O) = \text{Cl}(U)$, which implies $\text{Ext}(O) = \text{Ext}(U)$. Thus $\{\text{Ext}(O) \mid O \in \text{SO}(X, T)\} \subset \{\text{Ext}(O) \mid O \in \text{SO}(X, T)\}$. Since $\text{SR}(X, T) \subset \text{SO}(X, T)$, then $\{\text{Ext}(O) \mid O \in \text{SR}(X, T)\} \subset \text{RO}(X, T)$. Let $O \in T$. Since $\text{SR}(X, T) = \{U \subset X \mid \text{Int}(\text{Cl}(\text{Int}(U))) \subset U \subset \text{Cl}(\text{Int}(U))\}$ ([14]), then $\text{Int}(\text{Cl}(O)) \in \text{SR}(X, T)$ and $\text{Ext}(O) = \text{Ext}(\text{Int}(\text{Cl}(O))) \in \{\text{Ext}(V) \mid V \in \text{SR}(X, T)\}$. Thus $\text{RO}(X, T) \subset \{\text{Ext}(O) \mid O \in \text{SR}(X, T)\}$, which implies $\text{RO}(X, T) = \{\text{Ext}(O) \mid O \in \text{SR}(X, T)\}$.

Let (X, T) be a space and let $A \subset X$. Then A is semi-regular closed, denoted by $A \in \text{SRC}(X, T)$, if and only if $X \setminus A$ is semi-regular.

THEOREM 2.2. Let (X, T) be a space. Then $\text{SR}(X, T) = \text{SRC}(X, T) = \{O \subset X \mid \text{Int}(\text{Cl}(U)) \subset O \subset \text{Cl}(U) \text{ for some } U \in T\} = \{O \subset X \mid \text{scl} A \subset O \subset \text{Cl}(A) \text{ for some } A \in \text{FO}(X, T)\} = \{O \subset X \mid \text{scl} A \subset O \subset \text{Cl}(A) \text{ for some } A \in \text{SO}(X, T)\} = \{O \subset X \mid \text{Ext}(A) \subset O \subset \text{Cl}(\text{Ext}(A)) \text{ for some } A \in \text{FO}(X, T)\} = \{O \subset X \mid \text{Ext}(A) \subset O \subset \text{Cl}(\text{Ext}(A)) \text{ for some } A \in \text{SO}(X, T)\} = \{O \subset X \mid \text{Ext}(A) \subset O \subset \text{Cl}(\text{Ext}(A)) \text{ for some } A \in \text{SR}(X, T)\}$.

The proof is straightforward using the definitions and results above and is omitted.

Since for a space (X, T), $\text{RO}(X, T) = \text{RO}(X, \text{FO}(X, T))$ ([10]), then the next result follows immediately from the results above.

COROLLARY 2.1. Let (X, T) be a space. Then $\text{RO}(X, T) = \{\text{Int}_{\text{FO}(X, T)}(\text{Cl}_{\text{FO}(X, T)}(O)) \mid O \in \text{FO}(X, T)\}$.

437
Corollary 2.1 raised the question of whether or not for a space \((X, T)\) the characterization of \(RO(X, T)\) given in Corollary 2.1 is the same as one of the characterizations given earlier. Also, since for a space \((X, T)\), \(SO(X, T) = SO(X, FO(X, T))\), and thus \(SR(X, T) = SR(X, FO(X, T))\), the question of whether or not new characterizations of \(RO(X, T)\) and \(SR(X, T)\) could be obtained using the topology \(FO(X, T)\) was raised. These questions are resolved by the next result.

THEOREM 2.3. Let \((X, T)\) be a space and let \(A \in FO(X, T)\). Then \(scl_T A = Int_T(Cl_T(Int_T(A))) = scl_{FO(X,T)} A = Int_{FO(X,T)}(Cl_{FO(X,T)}(A))\), \(Cl_T(A) = Cl_{FO(X,T)}(A)\), and \(Ext_T(A) = Ext_{FO(X,T)}(A)\).

Proof. Since \(A \in FO(X, T)\), then \(scl_T A = Int_T(Cl_T(Int_T(A))) ([15])\). Thus, since \(A \in FO(X, T) = FO(X, FO(X, T))\),

\[
scl_{FO(X,T)} A = Int_{FO(X,T)}(Cl_{FO(X,T)}(Int_{FO(X,T)}(A)))
\]

\[
= Int_{FO(X,T)}(Cl_{FO(X,T)}(A)) .
\]

Since \(scl_T U = scl_{FO(X,T)} U\) for each \(U \subseteq X\) \([8]\), then \(scl_T A = scl_{FO(X,T)} A\). Since \(A \in FO(X, T)\), then \(Cl_T(A) = Cl_{FO(X,T)}(A) ([16])\), and \(Ext_T(A) = X \setminus Cl_T(A) = X \setminus Cl_{FO(X,T)}(A) = Ext_{FO(X,T)}(A)\). \(\square\)

Thus the characterization of \(RO(X, T)\) given in Corollary 2.1 is not a new characterization of \(RO(X, T)\), and no new characterizations of \(RO(X, T)\) or \(SR(X, T)\) can be obtained using the topology \(FO(X, T)\).

3. Extremally disconnectedness

The investigation of semi open sets has led to numerous characterizations of extremally disconnectedness. Below many more characterizations are given for extremally disconnectedness.

Theorem 3.1. Let \((X, T)\) be a space and let \(T_n\) be the topology on \(X\) obtained by repeating the semi open set generated topology process \(n\) times starting with \((X, T)\), where \(n \in \mathbb{N}\), the set of natural numbers. Then the following are equivalent:

(a) \((X, T)\) is extremally disconnected.
(b) \((X, T_n)\) is extremally disconnected, and \(T_n = SO(X, T)\) for each \(n \in \mathbb{N}\).
(c) \(T_n \subseteq SO(X, T)\) for each \(n \in \mathbb{N}\).
(d) \(T_{SO} \subseteq SO(X, T)\).
(e) \((X, T_n)\) is extremally disconnected, and \(T_n = SO(X, T)\) for some \(n \in \mathbb{N}\).
(f) \(T_n = SO(X, T)\) for some \(n \in \mathbb{N}\).
(g) \(T_n \subseteq SO(X, T)\) for some \(n \in \mathbb{N}\).
Proof.

(a) implies (b): Let \(n \in \mathbb{N} \). Then \(T_n = SO(X,T) \) ([7]) and \(SO(X,T) = T_n \subseteq SO(X,T_n) \subseteq T(n+1) = SO(X,T) \) ([7]), which implies \(SO(X,T_n) = T_n \) is a topology on \(X \), and thus \((X,T_n)\) is extremally disconnected ([20]).

Clearly, (b) implies (c) and (c) implies (d).

(d) implies (e): Since \(SO(X,T) \subseteq TSO \), then \(SO(X,T) = TSO \) is a topology on \(X \), which implies \((X,T)\) is extremally disconnected. Then (e) follows from the argument above.

Clearly, (e) implies (f) and (f) implies (g).

(g) implies (a): For each \(n \in \mathbb{N} \), let \(S(n) \) be the statement \(SO(X,T) \subseteq T_n \). Since \(SO(X,T) \subseteq TSO = T_1 \), then \(S(1) \) is true. Assume \(S(k) \) is true. Then \(SO(X,T) \subseteq T_k \subseteq SO(X,T_k) \subseteq T_kSO = T(k+1) \). Thus \(S(k+1) \) is true. Hence by mathematical induction \(SO(X,T) \subseteq T_n \) for each \(n \in \mathbb{N} \). Let \(n \in \mathbb{N} \) such that \(T_n \subseteq SO(X,T) \). Then \(SO(X,T) = T_n \) is a topology on \(X \), which implies \((X,T)\) is extremally disconnected. \(\Box \)

Theorem 3.2. Let \((X,T)\) be a space and let \(T_{RC} \) be the topology on \(X \) with subbase \(RC(X,T) \). Then the following are equivalent:

(a) \((X,T)\) is extremally disconnected.
(b) \(RC(X,T) \) is a base for \(T_s \).
(c) \(T_{RC} = T_s \).
(d) \(T_{RC} \subseteq T_s \).
(e) \(RC(X,T) \subseteq T_s \).
(f) \(T_{SR} = T_s \).
(g) \(T_{SR} \subseteq T_s \).
(h) \(SR(X,T) = RC(X,T) \).
(i) \(SR(X,T) \subseteq RC(X,T) \).

Proof.

(a) implies (b): Since \((X,T)\) is extremally disconnected, then \(RO(X,T) = RC(X,T) \) ([13]), which implies \(RC(X,T) \) is a base for \(T_s \).

Clearly, (b) implies (c), (c) implies (d), and (d) implies (e).

(e) implies (f): Let \(O \in RC(X,T) \). Then \(O = Cl(\text{Int}(O)) \), and since \(O \in T_s \subseteq T \), then \(O = \text{Int}(Cl(\text{Int}(O))) \in RO(X,T) \). Thus \(RC(X,T) \subseteq RO(X,T) \), which implies \((X,T)\) is extremally disconnected ([13]). Then \(RO(X,T) = RSO(X,T) \) \(\supseteq \) \(SR(X,T) \), which implies \(T_{SR} = T_s \).

Clearly, (f) implies (g).

(g) implies (h): Since \(T_s \subseteq T_{SR} \) ([7]), then \(T_{SR} = T_s \). Let \(O \in RC(X,T) \). Then \(O = Cl(\text{Int}(O)) = Cl(\text{Int}(Cl(\text{Int}(O)))) \in T_{SR} = T_s \). Thus \(RC(X,T) \subseteq T_s \), and, by the argument above, \((X,T)\) is extremally disconnected. Then \(SR(X,T) = RSO(X,T) = RO(X,T) = RC(X,T) \) ([13]).
Clearly, (h) implies (i).

(i) implies (a): Since \(RO(X,T) \subset SR(X,T) \subset RC(X,T) \), then \((X,T) \) is extremally disconnected ([13]). \(\square \)

Theorem 3.3. Let \((X,T) \) be a space and, for each \(n \in \mathbb{N} \), let \(TSn \) be the topology on \(X \) obtained by repeating the semi-regular set generated topology process \(n \) times starting with \((X,T) \). Then the following are equivalent:

(a) \((X,T) \) is extremally disconnected.
(b) For each \(n \in \mathbb{N} \), \((X,TSn) \) is extremally disconnected, and \(TSn = T_s \).
(c) For each \(n \in \mathbb{N} \), \(TSn \subset T_s \).
(d) For each \(n \in \mathbb{N} \), \(TSn \subset T_s \).
(e) \(TSn \subset T_s \) for some \(n \in \mathbb{N} \).
(f) \(TSn = T_s \) and \((X,TSn) \) is extremally disconnected for some \(n \in \mathbb{N} \).

Proof.

(a) implies (b): The proof is by mathematical induction. Since \((X,T) \) is extremally disconnected, then \(TS1 = TSR = T_s \) and \(TSR = TSR_s = TSRSR \) ([7]), which implies \(TS1 = TS1_s = TS1SR \), and thus \((X,TS1) \) is extremally disconnected. Assume the statement is true for \(n = k \). Then \((X,TSk) \) is extremally disconnected, which implies \(TS(k+1) = TSkSR = TSk_s = TSk = T_s \) and \((X,TS(k+1)) = (X,(TSk)s1) \) is extremally disconnected. Thus the statement is true for \(n = k + 1 \). Hence, by mathematical induction, the statement is true for each \(n \in \mathbb{N} \).

Clearly, (b) implies (c), (c) implies (d), and (d) implies (e).

(e) implies (f): For each \(n \in \mathbb{N} \), \(n \geq 2 \), let \(S(n) \) be the statement \(TS1 \subset TSn \). Since \(TSR = TS1 \subset TSRSR \) \([7]\) \(TS2 \), then \(S(2) \) is true. Assume the statement is true for \(n = k \geq 2 \). Then \(TS1 \subset TSk = TS(k-1)SR \subset TS(k-1)SRSR = TS(k+1) \). Hence \(S(k+1) \) is true. Thus, by mathematical induction, \(TS1 \subset TSn \) for each \(n \geq 2 \). Let \(n \in \mathbb{N} \) such that \(TSn \subset T_s \).

Since \(T_s \subset TSR = TS1 \subset TSn \subset T_s \), then \(TSR = T_s \), which implies \((X,T) \) is extremally disconnected. Then (f) follows from the argument above.

 Clearly, (f) implies (g).

(g) implies (a): Since \(TSn = T_s \) for some \(n \in \mathbb{N} \), then \(TSn \subset T_s \) for some \(n \in \mathbb{N} \), and, by the argument above, \((X,T) \) is extremally disconnected. \(\square \)

Theorem 3.4. Let \((X,T) \) be a space and, for each \(n \in \mathbb{N} \), let \(TRn \) be the topology on \(X \) obtained by repeating the regular closed set generated topology process \(n \) times starting with \((X,T) \). Then the following are equivalent:

(a) \((X,T) \) is extremally disconnected.
NEW CHARACTERIZATIONS OF REGULAR OPEN SETS, ...

(b) \((X, TR_n)\) is extremally disconnected, and \(TR_n = TS_n = T_s\) for each \(n \in \mathbb{N}\).

(c) \(TR_n = T_s\) and \((X, TR_n)\) is extremally disconnected for each \(n \in \mathbb{N}\).

(d) \(TR_n = T_s\) for each \(n \in \mathbb{N}\).

(e) \(TR_n \subseteq T_s\) for all \(n \in \mathbb{N}\).

Proof.

(a) implies (b): The proof is by mathematical induction. Since \((X, T)\) is extremally disconnected, then \(TSR = TS1 = T_s\) and \(TRC = TR1 = T_s\) and \((X, TS1) = (X, TR1)\) is extremally disconnected. Thus the statement is true for \(n = 1\). Assume the statement is true for \(n = k\). Then \((X, TR_k)\) is extremally disconnected and \(TR_k = TSK_s = T_s\), which implies \((X, TS(k + 1))\) is extremally disconnected and \(TS(k + 1) = TSKSR = TSK_s = (T_s)_s = T_s\). Hence, by mathematical induction, the statement is true for each \(n \in \mathbb{N}\).

Clearly, (b) implies (c), (c) implies (d), and (d) implies (e).

(e) implies (a): Since \(TR_n \subseteq T_s\) for all \(n \in \mathbb{N}\), then \(TRC = TR1 \subseteq T_s\), which implies \((X, T)\) is extremally disconnected.

Corollary 3.1. If \((X, T)\) is extremally disconnected, then \((X, T_n), (X, TS_n), \) and \((X, TR_n)\) are extremally disconnected for each \(n \in \mathbb{N}\).

The following example shows that the converse of Corollary 3.1 is false.

Example 3.1. Let \(X = \{a, b, c\}\) and \(T = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}\). Then for each \(n \in \mathbb{N}\), \((X, T_n), (X, TS_n), \) and \((X, TR_n)\) are extremally disconnected, but \((X, T)\) is not extremally disconnected.

Theorem 3.5. Let \((X, T)\) be a space. Then the following are equivalent:

(a) \((X, T)\) is extremally disconnected.

(b) \(\text{scl}_{FO(X,T)}O = \text{Cl}_{FO(X,T)}(O)\) for each \(O \in FO(X,T)\).

(c) \(\text{scl}_T O = \text{Cl}_T(O)\) for each \(O \in FO(X,T)\).

(d) \(\text{scl}O = \text{Cl}(O)\) for each \(O \in T\).

(e) \(\text{Int}(C) = C\) for each \(C \in RC(X,T)\).

(f) \(\text{Cl}(\text{Ext}(O)) = \text{Ext}(O)\) for each \(O \in T\).

(g) \(\text{scl}O = \text{Cl}(O)\) for each \(O \in RO(X,T)\).

(h) \(\text{scl}O = \text{Cl}(O)\) for each \(O \in SR(X,T)\).

(i) \(\text{Cl}(O) = \text{scl}O = \text{Int}(\text{Cl}(O))\) \(\in RO(X,T)\) for each \(O \in SR(X,T)\).

Proof. Since \((X, T)\) is extremally disconnected, then \((X, FO(X,T))\) is extremally disconnected ([20]) and \(\text{scl}_{FO(X,T)}U = \text{Cl}_{FO(X,T)}(U)\) for each \(U \in SO(X, FO(X,T))\) ([5]). Since \(FO(X,T) \subseteq SO(X, FO(X,T))\), then for each \(O \in FO(X,T), \text{scl}_{FO(X,T)}O = \text{Cl}_{FO(X,T)}(O)\).

441
By Theorem 2.3, (b) implies (c), and since \(T \subset \text{FO}(X,T) \), then (c) implies (d).

(d) implies (e): Let \(C \in \text{RC}(X,T) \). Then \(C = \text{Cl}(\text{Int}(C)) = \text{scl}(\text{Int}(C)) = \text{Int}(\text{Cl}(\text{Int}(C))) = \text{Int}(C) \).

(e) implies (f): Let \(O \in T \). Then \(\text{Int}(\text{Cl}(O)) \subset \text{RO}(X,T) \) and \(X \setminus \text{Int}(\text{Cl}(O)) = \text{Cl}(\text{Ext}(O)) \) is regular closed. Thus \(\text{Cl}(\text{Ext}(O)) = \text{Int}(\text{Cl}(\text{Ext}(O))) = \text{Ext}(O) \).

(f) implies (g): Let \(O \in \text{RO}(X,T) \). Let \(U \in T \) such that \(O = \text{Ext}(U) \). Then \(\text{Cl}(O) = \text{Cl}(\text{Ext}(U)) = \text{Ext}(U) = O \). Since \(O \subset \text{scl}O \subset \text{Cl}(O) = O \), then \(\text{scl}O = \text{Cl}(O) \).

(g) implies (h): Let \(O \in \text{SR}(X,T) \). Let \(U \in \text{RO}(X,T) \) such that \(U \subset O \subset \text{Cl}(U) \). Then \(\text{scl}U \subset \text{scl}O \subset \text{Cl}(O) \subset \text{Cl}(U) = \text{scl}U \), which implies \(\text{scl}O = \text{Cl}(O) \).

(h) implies (i): Let \(O \in \text{SR}(X,T) \). Then \(\text{Cl}(O) = \text{scl}O \). Let \(A \in T \) such that \(\text{Int}(\text{Cl}(A)) \subset O \subset \text{Cl}(A) \). Since \(\text{Int}(\text{Cl}(A)) \in \text{RO}(X,T) \subset T \subset \text{FO}(X,T) \) and \(\text{RO}(X,T) \subset \text{SR}(X,T) \), then \(\text{Int}(\text{Cl}(A)) = \text{Cl}(\text{Int}(\text{Cl}(A))) = \text{scl}(\text{Int}(\text{Cl}(A))) = \text{Cl}(\text{Int}(\text{Cl}(A))) = \text{Cl}(A) \). Then \(\text{Int}(\text{Cl}(A)) \subset \text{Cl}(\text{Cl}(A)) \subset \text{Cl}(O) \subset \text{Cl}(A) = \text{Int}(\text{Cl}(A)) \) and \(\text{Int}(\text{Cl}(A)) \subset \text{Cl}(\text{Cl}(A)) \subset \text{Int}(\text{Cl}(O)) \subset \text{Cl}(\text{Cl}(A)) \) = \(\text{Int}(\text{Cl}(A)) \), which implies \(\text{scl}O = \text{Cl}(O) = \text{Int}(\text{Cl}(O)) = \text{Int}(\text{Cl}(A)) \in \text{RO}(X,T) \).

(i) implies (a): Since \(\text{RC}(X,T) \subset \text{SR}(X,T) \), then, for each \(O \in \text{RC}(X,T) \), \(\text{Cl}(O) = O \in \text{RO}(X,T) \). Thus \(\text{RC}(X,T) \subset \text{RO}(X,T) \), which implies \((X,T) \) is extremally disconnected. \(\square \)

Theorem 3.6. Let \((X,T)\) be a space and let \(U \in \text{SO}(X,T_s) \). Then \(\text{scl}_T U = \text{scl}_{T_s} U \) and \(\text{Cl}_T(U) = \text{Cl}_{T_s}(U) \).

Proof. Since \(\text{SO}(X,T_s) \subset \text{SO}(X,T) \) ([11]), then \(U \in \text{SO}(X,T) \) and \(\text{scl}_T U = \text{scl}_{T_s} U \) ([17]). Let \(O \in T_s \) such that \(O \subset U \subset \text{Cl}_{T_s}(O) \). Then \(O \in T \) and \(\text{Cl}_T(O) = \text{Cl}_T(O) \) ([2]). Thus \(\text{Cl}_{T_s}(U) = \text{Cl}_{T_s}(O) = \text{Cl}_T(O) \) and \(\text{Cl}_T(U) = \text{Cl}_T(O) \), which implies \(\text{Cl}_{T_s}(U) = \text{Cl}_T(U) \). \(\square \)

Combining the results above with the fact that, for a space \((X,T)\), \(\text{SRO}(X,T) = \text{SRO}(X,T_s) \) [12] gives the last result in the paper.

Corollary 3.2. Let \((X,T)\) be a space. Then the following are equivalent:

- (a) \((X,T)\) is extremally disconnected.
- (b) \(\text{Cl}_T(\text{Ext}_T(O)) = \text{Ext}_T(O) \) for each \(O \in \text{FO}(X,T) \).
- (c) \(\text{scl}_{T_s} U = \text{Cl}_{T_s}(U) \) for each \(U \in \text{SO}(X,T_s) \).
- (d) \(\text{scl}_T U = \text{Cl}_T(U) \) for each \(U \in \text{SO}(X,T) \).
- (e) \(\text{scl}_{\text{FO}(X,T_s)} O = \text{Cl}_{\text{FO}(X,T_s)}(O) \) for each \(O \in \text{FO}(X,T_s) \).
- (f) \(\text{scl}_{T_s} O = \text{Cl}_{T_s}(O) \) for each \(O \in \text{FO}(X,T_s) \).
- (g) \(\text{scl}_T O = \text{Cl}_T(O) \) for each \(O \in \text{FO}(X,T) \).
- (h) \(\text{scl}_T O = \text{Cl}_T(O) \) for each \(O \in T_s \).
NEW CHARACTERIZATIONS OF REGULAR OPEN SETS, ...

(i) $\text{Cl}_T(\text{Ext}_T(O)) = \text{Ext}_T(O)$ for each $O \in T_s$.
(j) $\text{scl}_T, O = \text{Cl}_T(0)$ for each $O \in \text{SR}(X, T)$.
(k) $\text{Cl}_{T_s}(O) = \text{scl}_{T_s} O = \text{Int}_T(\text{Cl}_T(O)) \in RO(X, T)$ for each $O \in \text{SR}(X, T)$.
(l) $(X, \text{FO}(X, T_s))$ is extremally disconnected.
(m) $\text{SO}(X, T_s)$ is a topology on X.
(n) $T_sSR = T_s$.
(o) $T_sRC = T_s$.
(p) $T_sSO = \text{SO}(X, T_s)$.

REFERENCES

Received June 7, 1993

Department of Mathematics and Statistics
College of Arts and Sciences
Louisiana Tech University
P.O. Box 3189
Ruston, Louisiana 71272-0001
U. S. A.