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A NOTE ON THE DIFFERENTIAL EQUATION
yOx) + f(x)y*(x)=0, 0<a<l

JOZEF ELIAS

Dedicated to Academician Stefan Schwarz on the occasion of his 70th birthday

In this paper we shall consider the nonlinear differential equation
yPx)+f(x)y*(x)=0, n>1, 0<a<l, 1)

where a = p/q and p, q are odd natural numbers and the function f(x) is con-
tinuous in the considered interval.

In the following part of the paper we shall need the following lemma.

Lemma. Let y(x) be a solution of equation (1) defined on the interval
(x1, x2)(x1 = x,) such that it satisfies the initial conditions:

yO(x)=y, i=n-1,n-2,..,2,1,0 )

where y; are arbitrary real numbers and y‘“(x) = y(x). Then

yow) = S - [ G20 sy an 3

holds for x=Zx;=Zxo and i=n—1,n-2,...,1,0.
Proof. Integrating (1) from x; to x(x =x,;) we have

Y‘"‘”(x)=y""”(x1)=J f(H)y*(1) dt.
According to (2), y"~"(x,) = y._1, then the last equality has the form
Y =y [0y (0 .

Integrating the last equality from x, to x and utilizing the initial condition
y" ?(x1) = y.-» we obtain

_ x 2
YOP(X) = Yoz Yaou %“I dEL fEye(s) ds.
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Changing the order of integration we get

(x—x|) f (x

YOP() =Y 2F Y D f(1yy“ (1) d.

If we repeat the above argument we obtain that Lemma holds for i=n—1,
n—2,...,1,0.

Theorem 1. Let the function f(x) be continuous on the interval {x,, ©). Then
every solution of the differential equation (1) can be extended to the whole interval
(x4, ®).

Proof. Let y(x) be the solution of equation (1), defined on the interval

(x1, x2)(x1 = x,) such that it satisfies the initial conditions (2). From (3), for i =0,
we have

(x=x),  (x—x) (x—x)" "
TR TR R e T

y(x)=yo+y

(n—l)'f (x =0 f(0)y“(1) dt.

From here, for x —x, =1, we get
IS 0= x) Uyl + Iyl + v+ [ @Iy an. @)

In case x — x, <1, we get the following estimate

Y= yol + |yi| + ...+ | yn II+J:X IF(OIly ()] dt

and then we proceed in the same way as in the case x —x, 2 1.

From inequality (4), if we raise both its sides to the power a and multiply them
by f(x), we obtain

@Iyl
Iyl + Il et Dyl + [ 1Ol O1" do)

= (x—x)" ().

Integrating the last inequality from x, to x, we get
(Iya|+ly-l+-~-+|yn-nI+J' IfOIly(O1" do)' “=

S(=a)[ (=x)" IO e Al + Il + o+ D
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and finally we obtain the inequality
@S- {a-a [ @=x) ol
/l—-a
+(|yn|+|ynl+---+lyn-nl)"“”} .

Since the right side of the last inequality is defined and continuous for all x = x,,
the solution y(x) is bounded in the interval (xi, x2).
Now we prove that y(x), i=n —1, ..., 2, 1*are bounded. From (3) it follows

ly©O(x)| = Zka (x = x;))! i+ : ((:::):—1';| IF(DIy(D)] dt,

fori=n—-1,n-2,...,2,1.

Hence y“(x),i=n—1, ..., 2, 1, is bounded for all x Zx,. Since y(x) and y*’(x)
are bounded for all x = x,, the solution y(x) can be extended to the whole interval
(x1, ©) (see [2], page 24—27). In the interval (xi, x.), the consideration is
analogous. The proof of Theorem 1 is completed.

Corollary 1. If n=2, we get Theorem 1 from paper [1].
Remark. The following estimate follows from inequality (5). We suppose that

j x**7Y|f(x)] dx <, then for every solution y(x) of equation (1) there exists

a constant K such that |y(x)|=Kx""' for all x2x,.

Theorem 2. Let the function f(x) be continuous on the interval (xo, ) and

J x4 D) f(x)] dx <. Then for every solution y(x) of equation (1) there exist

lim y(x), i=1,2,..., n—1 and

i—1 i—-2

y" N (x)=rc, (i{- 01 +c (i{- 2)!+ ot aax+a+o(l), (6)

where i=1,2,...,n and c,, ..., ¢; are suitable constants.

Proof. First we prove that lim y®(x) exists. Let y(x) be a solution of equation

(1). From (3) for i, i=1,2, ..., n—1, we have

)= S - [ =X oy )

137



According to Remark, [v(x)|=Kx" ' for all xZx,, because

‘1

“Z,‘(-“’)" @y df)éK"fxx" UL D dx =

:Kuj ,’(x)lxu(n Dt(n ”dX<OO,
From here it follows that the integral

‘X ((:%):;)!f(f)y”(t) dt

exists and from (7) it follows that lim y(x) exists, i=1,2, ... n—1.
Now we prove the second part of Theorem 2. According to the first part

lim vy "(x) exists. We denote it by ¢,. Integrating (1) from x to o, we obtain

v =t [ @y
Integrating the last equality from x, to x, we obtain
vUx) =y () Fex = ax, +j‘ [jmf(f)y"(t) dt, ds.
It we change the order of integration in the last integral, we get

v =y Mx)Foax—aox + [X(f =x)f(D)y“ (1) de+

+| =Dy (1) dr.

Since

U (1= x) /(DY (1) df‘éK”f:x”‘" D10 dx < oo,

the integral

f (r=x)f()y"(r) dt
exists for x, = x,. If we denote
y A x) = cix, +f (t=x)f()y“(t) dr = ca,

then we can write

138



Yo (x)=cix + e+ r(x —0f()y*(¢) dr.

Suppose that it has been proved that (6) holds for i = j — 1, where j is some fixed
integer such that 2=j—1=n i.e.

- x'? X x—t)"? «
y" () =¢ (],_2)!+c2(]._3) +...+¢- .+f ( 2)), f(Oy“(e) dr.
Integrating the last equality from x, to x we get
X! xi! xi~2

G-D1 “G-D1 2G=2)1

(‘z( xi_;)’+...+cj_.x—c,-.x, J “’ (x t)l 2f(t) “(1) dt]

YO A(x) =y (x) + e

If we change the order of integration we get

-1 xi? xi~2
+C2( 2)' Cz(]_z)""'

x'! e X
G-n! “G-n!

YO (x) =y (x) + ¢

+...F+Gox—cioixy f % (t)y“(t)dt+J (= tl))'l f(H)y“(¢) dt.

Since

[ =y sy a sk 3@l ax

— K(lj lf(x)lxu(nAI)*(j~l) dx

then jm(x —t)"'f(t)y*(t) dt converges and Jw(x —t)7'f()y*(t) dt=0(1).

If we denote

y(n—i)(xl) —

(]."_1)! ~Gixy f (ox) 1), {0y (1) di =

then we obtain

j-1 i-2

X
G-Dit @G-

forj=1, 2, ..., n—1, n. This completes the proof of the second part of Theorem 2.

y("fj)(x)zcl +...+C,-_|x+C,~+O(1)

Corollary 2. If n=2, we get Theorem 2 from paper [1].
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O INdPEPEHUUUAIILHOM YPABHEHWUA
VO + ()Y (x) =0, 0<a<]

Jozef Elias
Pesiome

B paGote pacemaTtpupaeTes auddepeHiinanbHoe ypaBHeHHE
YO X+ Hx)y " (x)=0, 0<a<l )

e f(x)e C[{xo. ®)], a=p/q, p, ¢ — HCUCTHBbIE HaTypajibHble uucaa. JJOKA3BIBAETCA, UTO KAKIOE
peuicnue ypaienus (1) MoxeT 6bITh NPOROMKEHO HA HHTEpBan (x,, ©). [TpHBCACHbI JOCTATOUHBIC
yCnoBus, 4TOObI AN KaXA0Tro peluenus ypasuenus (1) cyuiectBoBan

lim y "(x).

Jlas kaxjoro petienns ypasenust (1) Gbula HaljleHa ero acUMNToTHYecKas Popmi
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