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ON LEBESGUE PSEUDONORMS ON C«(T)

IVAN DOBRAKOV

Let T be a locally compact Hausdorff topological space and let 0(%;) denote
the o-ring of all Baire measurable subsets of T. Denote by Cy(T) the Banach space
of all continuous functions on T tending to zero at infinity with the usual supremum
norm |- ||r. Let further Y be a Banach space and Y* its dual. (All considered
Banach spaces are either real or complex.)

Definition. We say that a mapping p: Cy(T)—[0, +») is a Lebesgue
pseudonorm on Co(T) if it has the following properties :

1) p(f)=p(fD)
2) Ifl=lgl=> p(N=p(9),
3) p(af)=|a|:p(f) for each scalar a,

4) p(f+9)=p(f)+p(9), and i
5) if g, f,e C(T), n=1,2, ..., and D, |f.|=|g| then p(f.)—O.

There is a remarkable result, see [7, 24H], which is valid in the more general
context of arbitrary Riesz spaces with a linear space topology such that every
order-bounded set is bounded, that condition 5) may be replaced by the following
“disjointness” condition:

5d) if g, f,e C(T), n=1,2, ..., fu: fn=0 for n¥m, and |f.|=|g| for each n,
then p(f.)—0.

(For more information about Lebesgue topologies on a general Riesz space see
[7, section 24] and also [8].) :

According to the Lebesgue Dominated Convergence Theorem each countably
additive Baire measure u: o(%,)— the scalars of Co( T), induces by the equality

an=[ 11 v, y=sop {|[ 9 au: e cum. la1 =11}, re cum,

a Lebesgue pseudonorm on G(T). Hence by the Riesz Representation
Theorem each bounded linear functional Fe G(T)* = ca(0(%.)) — the Banach
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space of all countably additive scalar valued Baire measures on 0(%.) with the total
variation norm, induces by the equality

F(=sup (IF(@)]; g € AT, lg| =1l = [ 171 duue, ), Fe (D)

where ue is the representing Baire measure of F, a Lebesgue pseudonorm on
G(T).

Let U: G(T)— Y be a bounded linear operator and for y* € Y* let y,. denote
the representing Baire measure of the linear functional y*U.

For fe C(T) put Uf=sup {|Ug|; g€ C(T), |g|=<|f|}, and for E € o(%RBo) put

’2(5)=|s‘f£, v(4ye, E).
y.
Then clearly U=|U]<+%, and U has the properties 1), 2) and 3) of the

Definition above. Further, by the Hahn—Banach Theorem and the Riesz Rep-
resentation Theorem we have the equalities

Of=sup {I§‘:£' {ly*Ug|; ge G(T). |g|=|f1}} =
= sup {sup {|y*Ugl; g€ C(T). lg| =|f]}} =

=sup | |f| dv(w-, )
ly*ls1 JT
for each fe G(T), hence U is also subadditive.

Obviously £i(#)=0, g is monotone and countably subadditive. Since each
measure v(f4,~, ), y* € Y* has the Fatou property, i.e., E, € 0(%n),n=1, 2, ... and
E./ E > v(y,-, E,)/v(u,., E), fi also has the Fatou property.

Let U*: Y*— C(T)* = ca(0(%B,)) be the conjugate of U. Then

A(T)= sup v(py, T)=sup |y*U|=sup |U*y*|=|U*|=|U|<+e.
lysls1 lys|s1 Iy*|=1

According to Theorems VI. 4.8, IV. 9.1 and IV. 9.2 in [6] (for a short proof of
IV. 9.2 see [9]) U is weakly compact <> U* is weakly compact <>fi: 0(%Bo)—
[0, |U]] is continuous, i.e., E,€0(%), n=1,2, ... and E,\@ => A(E,)—0<«
there is a countably additive measure A: a(%,)— [0, 1] such that j is absolutely
A-continuous <>f is exhaustive, i.e., if E.€0(%.), n=1,2,... are pairwise
disjoint, then fi(E,)—0.

Let U be weakly compact. Then from the exhaustivity of 2 on o(%,) it is easy to
see that U has the property 5d) stated above, hence U is a Lebesgue pseudonorm
on Cy(T). The converse is also true, see Theorem 3.3 in [11], where a lot of other
characterizations of weak compactness of U is proved.

Let of c27. We say that a set function v: sf/— Y has the property (p), or better
that v is uniformly exhaustive, if for each £>0 there is a positive integer N, such
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that for any collection of pairwise disjoint sets A,, ..., A~, € o there is at least one
ne{l, ..., N.} for which |v(A,)| =g, see [5, Def. 4]. We say that f, g € Co(T) are
orthogonal if f-g=0.

In [3] we announced the following characterization of weak compactness of U:

Theorem 1. For a bounded linear operator U: G(T)— Y the following
conditions are equivalent :

1) U is weakly compact,

2) f: o(B0)—[0, |U|] is uniformly exhaustive, and

3) U has the following property (p): for every € >0 there is a positive integer N,
such that for any collection f, ..., fx, € C(T) with ||f.|lr=1 and f, fu=0 for
n¥m, n, m=1, ..., N, there is at least one ne {1, ..., N,} for which |Uf,|=e.

We now prove this result, and in Theorem 2 below we give an extension of it.
(Theorem 2 from [3] will be proved elsewhere.)

Proof. 1)=>2). Let £>0 and let A: 0(%Bo)—[0, 1] be a countably additive
measure such that g is absolutely A-continuous. Then there is a >0 such that
E e o(%,) and A(E)<d > fi(E)=¢. Take a positive integer N,z[%] + 1. Then
for any collection of pairwise disjoint sets E,, ..., Ex, € 0(%o) there must be at least
one ne(l, S N,} for which A(E,) < é, since otherwise we have the contradiction

1ZA(DH) = E.A.(E.)> 1. Thus A(E,)= ¢ for at least one n€ {1, ..., N}, hence fi is
i=]

uniformly exhaustive on o(%,).

2)=>3). Let £>0 and take a positive integer N, so that for any collection of
pairwise disjoint sets Ej, ..., E, € 0(%.) there is at least one ne ({1, ..., N,} for
which g(E,)=<e. Take arbitrary f,, ..., f, € Co(T) with ||f]|r=1 and f-f,=0 for
i+j, i, j=1, ..., N,. Since by the Hahn—Banach Theorem and the Riesz Rep-
resentation Theorem

[ #ome|=sup [ 151 dvu, )=
T lyels1 JT

= sup v(pe, (15 € T, f()£0) = A({t; t T, () #0))
»
for each i=1, ..., N,, and since the sets E;={¢; te T, fi(t)#0}, i=1, ..., N, are
pairwise disjoint, there must be at least one ne{l, ..., N.} for which |Uf,|=
A(E)=e.

3) = 1). Clearly U has also the property (p). Denote by % the lattice of all open
Baire subsets of T and by %, the lattice of all compact G; subsets of T. Let Ve %
and let y*e Y*. Then

|Uf.| = sup |y*Ufi| = sup
Iysl1 Iy 1=

v(py, V)=sup { L Ifl dv(wys, -); fe CAT), If] §xv}
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by the regularity of the Baire measure v(y,-, -) and Theorem B in § 50 in [10],
hence f(V)=sup {Uf; fe C(T), |f|<xv}. The last equality implies that g:
%—[0, |U]] is uniformly exhaustive. Since any finite collection of pairwise
disjoint compact G, sets can be mutually separated by the same number of pairwise
disjoint sets from %, see Theorem D in § 50 in [10], g: %— [0, |U]] is also
uniformly exhaustive. Since v(y,., E) = sup {v(y,:, C); Ce €, Cc E} for each
y* € Y* and each E € (%) by the regularity of the Baire measure v(u,-. *), g(E)
= sup {4(C); Ce%, CcE)} for each E€o(B,). Thus fi :0(Bo)—[0, |U]] is
uniformly exhaustive, hence U is weakly compact. The theorem is proved.

Remark 1. Let X be a Banach space and consider the Banach space Cy(T, X)
of all X-valued continuous functions on T tending to zero at infinity with the
supremum norm. It is well known that G(T, X)* = cabv(o(Pn), X*) — the
Banach space of all countably additive X*-valued Baire measures with bounded
variations. Since reflexive Banach spaces have the Radon—Nikodym property,
a subset M c cabv(a(AB,), X*) is relatively weakly compact if and only if the subset
{v(u, *); ue M} cca(a(%Ry,)) is relatively weakly compact, see [1], [2] and [4].
Hence for reflexive Banach spaces X Theorem 1 remains valid if Co(T) is replaced
by Go(T, X). We note that the implications 1) = 2)<>3) of Theorem 1 hold for
G(T, X) for any Banach space X, see [1], [2] and Theorem 3 in [4] in this
connection. In fact, above we proved that for any bounded linear operator U:
Co(T, X)— Y, X being an arbitrary Banach space, the following conditions are
equivalent:

1) g (=the semivariation of the representing measure of U) is continuous on
o(Ro),

2) f is uniformly exhaustive on o(%,), and

3) U has the property (p) in Theorem 1.

Theorem 2. Let p: Co(T)— [0, + =) have the properties 1)—4) of the Definition
above, let p(1)=sup {p(f); fe G(T), |f|£1} <+, and let p have the property
(p) from Theorem 1. Then for every € >0 therf‘ is a positive integer M, such that

for any collection fi ..., fu,€ G(T) with 2|f,.|§1 there 1s at least one
n 1

ne{l, ..., M.} for which p(f.)=¢
Proof Suppose the contrary. Then there is an £ >0 such that for each positive
integer M there are M functions fi, ..., fue Co(T)" = {f; fe G(T), f=0} such

M
that > f.=1 and p(f.)>¢ for each n=1,.., M
n 1

£k
22

If now fe Co(T)", f=1 and p(f)> ¢, then %<marx f()=|fll+ (otherwise we have
the contradiction

Let k be the smallest positive integer for which p(1)<5-5.Since p(1)>¢, k=5.
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2 0 Zp(lflnZp(0> o).

In this proof let N, for 6 >0 denote the smallest positive integer corresponding
to & according to the property (p) of p. Put M=N,s +...+ N, . Then by
M
assumption there are functions fi, ..., fu € G(T)" such that 2 f.=1and p(f.)>¢
n 1
for each n=1, ..., M. To each f, we construct two functions @, and . in the
following way: We put

E...o={r: teT, f..(t)é%} , E,.,|={t: teT, fn(t)§4—6k} s
F,.,o={t: teT, f,.(t)%%} , and F;.,,={t: teT, f,.(t)é4—7k} .

Then E, onE, =0, E, . +0 (%< [JA IIT) , E,.ois a closed and E, , a compact subset

of T. We put @ =1if E, o=0. If E, o# @, then according to Theorem B in § 50 in
[10] we take a function @, € Co(T)" such that @, =1, @.(¢)=0 for te E, o, and
@.(t)=1for te E, ,. Similarly we put y, = 1if F, =@, and if F, o # @, then we take
a function ¢, € Go(T)* such that ¥, =1, ¢.(t)=0 for te F, o, and y.(¢)=1 for
teF...

Clearly
1
teT, @.()>0=>f.()>7, (1-@)yu=0,
and

2
=t (L= 9 <Unfi 43
The last inequality implies that

e<p(f)SP(WS)+ 5 PSP +5,

hence p(w..f..)>§ for each n=1,.., M.
Put ni.1=1. Let n, , be the first ne {1, ..., M} for which

P(1— @ JWf)>7 5,

if it exists. Let n, 3 be the first ne {1, ..., M} for which
£
P((1 = @ay (1 = @) P n)>ﬁ,
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if it exists. In general, let n, , be the first ne {1, ..., M} for which

P(=gn ) (1=, J0f)>7 5

if it exists. Since the functions Y., ., (1 = @ )Wu 2o . 1= @n ) ... 1 = @, I P,
are pairwise orthogonal elements of Co(T)* with values in [0, 1], continuing in this
manner, owing to the property (p) of p we may arrive only to some r <N,

Put
Ji={n,...,m,}, and

=@, (1 =@ )@u+ ...+ —@n ))...(1 =@,y )Py e
Since

l—a=(1-@,,)....(1—-@. ), p((1 _a‘)w"f")sz%

for each ne ({1, ..., M} —J,. Thus

-<p(wnf Y= plap.f) + p((1— a) Yuf.) = p(aif. )+4 X

hence p(a11,v,,f)>2 2 2 for each ne {1, ..., M} —J,.

Let n,, be the smallest number from {1, ..., M} —J;. Let n,, be the first
ne{l, ..., M} —J, for which

£
p((1 = @n Y ynf)> 373,

if it exists. Let n, ; be the first ne {1, . ., M} —J; for which

p((l — Pn, n)(l PDn,, 2) alw"fn)> 22,

if it exists etc. Since the functions ., ,, (1= @u, )W¥n s -, (1—@n ) -...r (1=
@n, . )P, are pairwise orthogonal elements of Gy(T)" with values in [0, 1],
continuing in this manner, owing to property (p) of p, we may arrive only to some
rn<Ngx.

Put

-,2= {nl‘h ceey n2-'2}1 and

az:q’"zl + (l_w'ﬁ I)qj"ll +"'+ (l_w"zl) Teedt (l_w"n r2 l)(p"ﬂ 2*

Then J,n),=@, {1, ..., M} — (JiuJ;)#0, and similarly as above
p(azay.f, )>§‘“4—2“;.—22
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for each ne (1, ..., M} —(Jivlz).

Continuing in this way we obtain pairwise disjoint sets Ji, ..., Jk 1< {1, ..., M}
such that 1=card J,< N foreachi=1, ..., k—1, hence {1, ..., M} — (Jiu...u
Ji 1)#8, and functions ai, ..., ax—; of the form

a=@,, +(1-@ ). +..+(1=@.,) ..o A= @u.. )Pn.r

i=1, ..., k—1, such that

£ £ £ €
p(ak 10k-2" “-.al"pnfn)>§_ﬁ_..._4_7_l>z

for each ne {1, ..., M} —(Jiu...uJi ).
Take some mpe {1, ..., M} —(Jiu...uJi 1). Then by the last inequality there
must be a point f € T such that

(o |(to)' el al(to)wm(to)>0.

But then ¥.,(%)>0, hence f,.,(t0)>%. Further a,(%)>0 for each i=1, ..., k—1,
hence by the definition of a, there exists an #n,,, € J, such that ¢, ,(%)>0. But then

fa ”(to)>%. Hence

DIE S fos0) + fult)>1,

M
which contradicts the assumption ., f,=<1. The theorem is proved.
n 1

Corollary. Let p: Co(T)— [0, +) have the properties 1)—4) of the Definition
above, and let, for each g € C(T)* and € >0, there exist a positive integer N, , such
that for any collection fi, ..., fn, .€ Co(T)"* of pairwise orthogonal functions with

N'l
> f. =g there is at least one n € {1, ..., N, .} for which p(f.)=< ¢. Then the same is
n 1

true without assumng pairwise orthogonality.

Proof. For g € Cy(T)" it is enough to put p,(f) =p(g Alf]), fe Go(T), and apply
the theorem.

Remark 2. Let T be an arbitrary set and let & c 27 be a ring. Then it is easy to
prove that Theorem 2 and its Corollary remains valid if G(T) is replaced by S(®)
— the space of all # — simple scalar valued functions on T. There are many other
spaces for which the assertion of Theorem 2 and its Corollary are valid. Neverthe-
less the author was unable to solve the following
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Problem. Does Theorem 2 hold if Co(T) is replaced by an arbitrary Riesz space ?

Remark 3. In a forthcoming paper the assertion of Theorem 2 will be proved
for arbitrary Lebesgue pseudonorm on G(T) or on S(R). The proof essentially
uses the Hahn—Banach theorem, see section 5.3 in [8].

Remark 4. By a slight modification of the proof of Theorem 2 we can achieve
that the assertion of Theorem 2 remains to hold if the property 3) of p:

p(af)=|al-p(f) for each scalar a, is weakened to 3w): lim p (5) =0, and the

subadditivity of p is weakened to 4w): for each £>0 there is a 6 >0 such that
p(f+g) = p(f)+ ¢ whenever p(g)<4. The same is true if G(T) is replaced by
S(R). We note that for so weakened p the validity of the result in Remark 3 is an
open question.

Remark 5. The given method of proof of Theorem 2 may be applied to prove
that condition 5) in the Definition above may be replaced by condition 5d),
compare with 24H in [7] Namely, suppose 5d) 3 5). Then there are ge G(T)",

£>0 and a sequence f,€ Co(T)*, n=1,2, ... such that > f,=1 and p,(f,)=
n 1

p(gnf.)>eforeach n=1, 2, .... Take a positive integer k so that %'p,(l)<§ and

construct the functions @. and y., n =1, 2, ... as in the proof of Theorem 2. Since
the functions ¢, (1- @)y, ..., (1—@: -...- (1 =@, 1)¥n, ... are pairwise ortho-
gonal elements of Co(T)"* with values in [0, 1], by 5d) there is a positive integer
ri=1 such that !

p((1—@)-...-(1— (P”)w"f")ér.gz

for each n>r. Put es=:+(1—@)g+...+(1— @) ...-(1 — @, 1)@.. Then

£ £
plannf.) >3~ 75

for each n>r,. Since the functions W,+1, (1= @ne1)Prizy ooy (1 —@ra1) -...
(1 = @n4n 1)Ph+n, ... are pairwise orthogonal ... etc. Continuing in this way we

obtain a contradiction with the assumption D f, =1.
n 1
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OB TOJYHOPMAX JIEBETA HA C(T)
HBan o6pakos
Pe3iome

Mycte T ecTh NOKANbLHO KOMNAKTHOE XaycAopdoso mpoctpancTso. O6osnaymm Co(T) Ganaxoso
NPOCTPAHCTBO BCEX HEMPEPHIBHBIX CKANAPHBIX hyHKuWA Ha T CTPEMALIMXCA K HYJIO B GECKOHEHHOCTH
¢ pasHomepHo#t Hopmoli. Jlanee, mycts Y ecth Ganaxoso mnpocTpakcTso. B pabore nokaszana
H PacLIMpeHa CACAYIOILaA XapaKTepH3aLua cabo KOMNaKTHbIX AMHEHHLIX onepaTopos U: Co(T)— Y,
aHoHcHposaHHasa 8 [3, Teopema 1]: )

Teopema 1. Orpannycnnnnt nnnedinnii oncpatop U: G(T)— Y amnserca ¢n1abo KoMNaKTHbIM
TOIZa H TOJIBKO TOTAA, KOIRA OH HMCCT CIefyiolee CBOACTBO
(P) ann kaxporo >0 cywectnyet HaTypanbHoe dncao N, Takoe, 410 gas moboro Habopa fi, fs, ...,
fu € CAT) ¢ |Ifl+=1 ot fo-fu=0 gnx n#m, n, m=1,2, ..., N, cymecrsyer xota 6bl OIHO
ne(1,2, .., N.}, ans xoroporo |Uf.|Se.
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