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ON CONSEQUENCES OF THE
BANACH-KURATOWSKI THEOREM FOR STONE
ALGEBRA VALUED MEASURES

ZDENKA RIECANOVA
1. Introduction, definitions, notation

The aim of this paper is to present for Stone algebra valued measures or
submeasure an analogy of the classical Banach problem of the existence of a
nontrivial g-additive real-valued measure on the family of all subsets of the
interval {0, 1) which is zero in all one point subsets ([17], p. 141).

The theory of Stone algebra valued measures has been developed in [4, 5, 6,
7, 8,9, 10 and 11]. A compact Hausdorff space S is Stonean if the closure of
every open set is open. We let C(S) denote the space of all continuous real-
valued functions on S with the usual linear structure, norm and order. Such
C(S)is called a Stone algebra. M. H. Stone [3] showed that each bounded subset
of the vector lattice C(£2) of real continuous functions on a compact Hausdorff
space 2 has a least upper bound in C(£2) if and only if the closure of each open
subset of £2is open. So in this event we call C(£2) a Stone algebra.

We recall that, in any topological space a set is nowhere dense if its closure
has an empty interior. Also, a set is meagre if it is contained in the union of a
sequence of nowhere dense sets.

A few preliminary remararks and notation. C(S) always denotes a Stone
algebra and @e C(S) is the zero function with value 0 at each point of S. We
write \/ a, for the least upper bound and /\ a, for the greatest lower bound of

xel xel

the set {a,},.,, When these exist. a, T @ means that {g,};"_ | is a monotone increas-
ing sequence with the least upper bound a, and b, | b meaning that {b,};"_, is a
monotone decreasing sequence with the greatest lower bound 4. Note that if in
C(S) a, 1 a, then a,(s) T a(s) except on a meagre subset of S ([11], lemma 1.1). If
a, be C(S), then we write a <bifa< b and a # b.
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2. Finite C(S)-valued submeasure

Definition 2.1. Let X be a nonempty set and & be a o-ring of subsets of X. Let
"C(S) be a Stone algebra. A C(S)-valued submeasure is defined to be a map
m: . — C(S) such that

(1) m(E) = O for each Ee ¥,

(1)) A < B implies m(A) < m(B) for all A, Be &,

(i) m(A v B) £ m(A) + m(B) for all A, Be &,

(iv) if {E,}r_, is a monotone decreasing sequence of elements of & such that

ﬁ E, =0, then ;\ m(E,) = 6.

n=1 n=1

Theorem 2.1. Let X be a non-empty set and let & be a o-ring of subsets of X.
Let C(S) be a Stone algebra such that each meagre subset of S is nowhere dense.
Let m: & — C(S) be a finite C(S)-valued submeasure. Let us assume the con-
tinuum hypothesis. If card (E) = ¢ and {A,}, ¢ is a family of pairwise disjoint sets
in & such that \ ) A,e & for all F < E, then

xeF
m(U AX) =V m(U A)
x<k It(.rjrﬁ'le xel

Proof. It follows from the property (ii) of the submeasure that for every

<U x) = (U x)
xel xeE

and hence
v, ()= m(a)
IcE xel xeE
1 is finite
We now define a map 4: 2 —» C(S) by A(F) = m(U A,f> forall Fc E. Itis
xeF

easy to see that A is a C(S)-valued submeasure defined on 2.

Since card (E) = ¢, it follows from the Banach —Kuratowski theorem ([1],
p. 27) that there exist the subsets F,, c E(k=1,2, ...;r=1,2,..)

(@): YreN: |J F, =E, .

(b): VkeNVkrEgN: F,<cF.,
(c): Vf: N> N: ﬁ Fj. » 1s a countable set.
Choose the seque:;:és
F,1E
FinF,1F,
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FyynFTF,

FianFynFEsTFynF,
FhoFynFstFynE,

FynFonFEsTFynF,
FyynFynFgt Fyn Fy

We get countable many sequences. The submeasure 4 of the members of each
sequence converges pointwise except on a nowhere dense subset of S. Let 4 = S
be the union of these countable many nowhere dense sets. Then A4 is a meagre
set and so, by the assumption 4 and also A are nowhere dense subsets of S. Thus
for each point se S\A there exists a non-empty clopen set K, = S\A4 such that
s€ K. Choose £ > 0. Since K| is compact and A(F},,) (k=1,2,....r=1,2,..)
are continuous functions, we can find (by Dini's theorem) positive integers
k,, k,, ... such that

AMFE NFan . .0 F )@ > AME)G) —¢
for all §e K, and all positive integers n. Since

FinFon..nF,l 0 Fin

n=1

it follows from the properties of the submeasure that

MF 0 Fipn .0 F )l a(ﬂ Fkn,,).

n=1

So
lim A(F, ;0 ... 0 F ) (8) = /1< ﬁ Fk",,> ()

n— % n=1
except a nowhere dense set B.
x aX
Since (") F, , is a countable set, () F, , = {%,, %, ..., %, ...} and thus for all

n=| n=1

se K\B there holds

ME) () — £ < A(ﬁ F) @) = M, . -G =
(0o (7)< ()
"= =t v LsGme

Since B is a nowhere dense set
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ME)(S) — e < ( \VJ m(U AX>) ()
lck xel
I is finite

for all §e A, and each £ > 0. Hence

ME)(s) £ < \ m(U Ak)) ()

I< E xel /
11s finite

for all se S\A4 and thus for all se S.

Theorem 2.2. Let X be a non-empty set and let & be a o-ring of subsets of X.
Let C(S) be a Stone algebra such that each meagre subset of S is nowhere dense.
Let us assume the continuum hyvpothesis. Let card (X) = ¢. Let m: . — C(S) be
a C(S)-valued submeasure such that m({x}) = O for all xe X. If there exists u set
Ee S such that m(E) > O, then there exists F < X such that F¢ .

Proof. Let us assume that for every set E = X there holds Fe &. If Ee .,
then card (E) £ ¢ and hence by theorem 2.1

m(E) = m(U {\}> = \/ m(U {\}) = 0.
veE AcE veA
A is fimte

3. o-finite C(S)-valued submeasure

It is convenient to adjoin an object + oc, not in C(S) and extend the partial
ordering and addition operation of C(S) to C(S) u {4+ oo} in the obvious way
by defining ¢ < + oc for all ae C(S). Further, when {a,},., is an unbounded
set in C(S). we define \/ a, be + .

xe £

Definition 3.1. Let C(S) be a Stone algebra. Let X be a non-empty set and let
S be a o-ring of subsets of X. A o-finite C(S)-valued submeasure is a map
m: S — C(S)u{+ o} such that

(i) m(E)= O for each Ec ¥,

(i) A < B implies m(A) < m(B) for all A, Be &,

(ii1) m(A v B) £ m(A) + m(B) for all A, Be &,

(iv) if {E,}r_, is a monotone decreasing sequence of elements of & such that

b

m(E\) < +w and () E, =0, then )\ m(E,) = O,

n=1 n=1

(v) for every E€.¥ there exist E,€e &, m(E,) < + oo, n =1, 2, ... such that

E = O E, and m(E) = \7/m<o EA>-
n=1 k=1

n=1
Theorem 3.1. Let X be a non-empty set and let & be a o-ring of subsets of X.
Let C(S) be a Stone algebra such that each meagre subset of S is nowhere dense.
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Let m: ¥ — C(S) u {+ o} be a o-finite C(S)-valued submeasure. Let us assume
the continuum hypothesis. Let {A}.r be a family of parwise disjoint sets in &
such that card (E) = ¢ and \ ) A,€ ¥ for all F < E. Then

xe F
' /
m(U A,{) =\ m(U Ax>.
xe k! IcE xel
1is finite
Proof. This is a trivial consequence of theorem 2.1 if m(UAk> < + 0.
xe E
If m(U AX) = + o0, then there exist the sets E,e ¥, m(E,) < +oc, n =
xel: /
= 1. 2, ..., such that
(J4,=JE, and m(U A,,) =\/ m<U Ek)-
xe E n=1 xe E n=1 k=1

Denote B, = | ) E;. n =1, 2, .... Then for each positive integer n there is
A=
m(B,) < + oo and by Theorem 2.1 we have

m(B,) = m(U (4,0 b’,,)) =\ m(U (4,0 B,,)) = \/ m(U Ai).

xe F IcE el Ic E xel
1 is finite 1 is finite

Hence

m(}ejﬁA,) = \I/ mB) s \/ m(U Ax>.

n=1 IcE xel
[ is finite

Evidently also

v, () sm(ye)

1 is finite

Theorem 3.2. Let X be a non-empty set and let & be a o-ring of subsets of X.
Let C(S) be a Stone algebra such that each meagre subset of S is nowhere dense.
Let m: & — C(S) u{+ o} be a o-finite C(S)-valued submeasure. Let us assume
the continuum hypothesis and let card (X) = ¢. Let m({x}) = O for all xe X. If
there exists a set E€ % such that m(E) > @, then there exits F <= X such that
F¢ .

Proof. A trivial consequence of Theorem 3.1 is that if Ee & for all E < X,
then m(E) = @ for all E€.%. This proves the theorem.
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4. Examples and remarks

We can obtain two special cases of a C(S)-valued submeasure when the
properties (i) and (iii) are replaced by one of the following stronger properties:

(1) m(4 v B) = m(A) + m(B) for all disjoint sets A, Be.¥ or

(2) m(A v B) = m(A) v m(B) for all sets A, Be &.
In this way we obtain in the case (1) a o-additive C(S)-valued measure. which is
defined to be a map m: ¥ — C(S)u {+ oo} and such that m(E) = @ for each

Ee¥, m@®) =@ and m(U E) \/ Z m(E,) whenever {E)/_, is a
n=1 n=1h=1
sequence of pairwise disjoint elements of & (see [4]—[11]). In the case (2) we

obtain the continuous from above o-maxitive C(S)-valued measure which is
defined as a map m: ¥ — C(S) U {+ oo} such that m(E) = @ for each Ee ¥,

m(0) = 6, m(U A,,) \/ m(A,)'whenever {4,};_, is a sequence of elements

n=1 n=1
of &, and m has the property (iv). (See [12], [13].)

A positive linear functional y on C(S) is normal if, whenever a, | @, we have
w(a,) | 0. S is Hyperstonean if the normal positive linear functionals on C(S)
separate points. See [11]. If S is Hyperstonean, then C(S) is weakly (o, oo )-distri-
butive and C(S) is weakly (o, oo)-distributive iff every meagre subset of S is
nowhere dense. See [10], p. 281. J. Dixmier [14] gives an example of a Stone
algebra C(S) such that each meagre subset of S is nowhere dense but C(S) has
not a separating family of normal functionals and hence S is not Hyperstonean.
Kelley [15] gives another examples.

A vector lattice V' is boundedly complete if each subset of V, which is
bounded, has a least upper bound. For each positive element e of V let

Vie] = {be V| —re < b < re for some positive re R}.

By the fundamental Stone—Krein—Kakutani—Yosida vector lattice re-
presentation theorem (see Theorem 4.1 of Kadison [16]), there exists a compact
Hausdorff space S such that V[e] is isometrically and vector lattice isomorfic to
C(S). Since V is boundedly complete then also is V[e] and thus C(S) is a Stone
algebra. Further, V is weakly (o, c0)-distributive iff V[e] is weakly (o, o0)-distri-
butive for each e > 0 and this implies that C(S) is such that every meagre subset
of S is nowhere dense ([10], p. 279 and 281).
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O CJIEACTBUSAX TEOPEMbI BAHAXA —KYPATOBCKOI'O [IJ11 MEP
MPUHUMAIOIINX 3HAUYEHUA B AJITEBPE CTOVHA

Zdenka Rie¢anova
Pe3iome
J10Ka3bIBACTCA TEOpEMa O HECYLIECTBOBAHHM HETPHBHAJIBLHOW Mepbl, 3a1aHHO Ha BCEX MOA-

MHOXCCTBAX MHOXCTBA MOLIHOCTH KOHTHHYYMa M NpUHHMatolleil 3Hauenus B anrebpe CtoyHa,
PABHBIC HYJIFO BO BCEX OJHOIEMEHTHBIX MOAMHOKECTBAX.
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