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INDIVIDUAL ERGODIC THEOREM ON A LOGIC
SYLVIA PULMANNOVA

A generalization of the individual ergodic theorem on a logic, formulated and
proved by Dvuredenskij and Rie¢an [1], is given. It is shown that x-measurabi-
lity is not a necessary condition for the validity of the individual ergodic theorem.

Let & be a logic, that is, let £ be a g-lattice with the first and last elements 0 and
1, respectively, with an orthocomplementation 1 : a—a*, a, a* € £, which satisfies
(i) (aY)*=aforall ae %, (i) if a<b, then b <a*, (iii) ava'=1forall ae ¥;
and with the orthomodular law: if a<b, then b=av(baa®).

Two elements a, b € & are orthogonal (aLb)if a<b™; and they are compatible
(a < b) if there are mutually orthogonal elements ai, b:, c€ & such that a=a;,v ¢
and b=b,vc. Let & and % be logics with the last elements 1, and 1.,
respectively. A map 1: % — % is a o-homomorphism if (i) ©(1,) =1, (if) if aLb,
then t(a)L1(b),a,be L, (i) t(a) =t (V a,) for any sequence {a,} c %.

=1 1

An observable on £ is a 0-homomorphism from the Borel o-algebra 8(R,) into
&. If f: Ri—> R, 1s a Borel measurable function, then fox: E— x(f '(E)),
E € B(R,) is an observable. Two observables x and y are compatible if x(E)<«>
y(F) for any E, Fe B(R)).

A subset Sc L is a sublogic of X if (i) a € S implies a* € S, (ii) {a} = § implies
V a, € S. A sublogic of £ which is distributive is a Boolean sub-o-algebra of £.

t=1

The range R(x) = {x(E): E € B(R,\)} of an observable x is a sub-o-algebra of Z.
The state on £ is a map m: ¥—|[0, 1] such that (i) m(1)=1, (i) m (\../ a,)

= > m(a)if @, La, i#j. If x is an observable, then the expectation m(x) of x in

a state m is defined by the equality

if the integral exists, where m,(E)=m(x(E)), E € B(R,).
413



Let m be a state and 7: £—> £ be a o-homomorphism. We say that 7 is
m-preserving if m(t(a))=m(a) for any a € £. An m-preserving o-homomorph-
ism 1: > & is ergodic in m if t(a)=a implies m(a)e {0, 1}.

Let x be an observable. A o-homomorphism 7. ¥— % is x-measurable if
T(R(x)) = R(x) (see [1]). If we set t x(E)= 1(x(E)), E € B(R,), then the map
Tox: B(R)— £ is an observable.

Let m be a state. We say that a sequence of observables {x.} converges to the
null observable o(o{0} =1) almost everywhere in m (a.e. [m], see [2]) if

m (lim sup x.({—¢, €)))=0 forany £>0.
The following theorem was proved in [1].

Theorem 1. Let x be an observable, 1: ¥— ¥ an x-measurable o-homomorph-
ism of the logic ¥, ergodic in a state m. Let m(x)=0. Then

lnl
=31 x>0 ae [m].
n o

Theorem 1 was generalized for the case in which m(x) #0 and t is m-preserving
but not necessarily ergodic [S]. The following theorem generalizes the result of [5]
by relaxing the condition of x-measurability. We require only that the range of x be
contained in an invariant countably generated sub-o-algebra of £. This we beliewe
may become useful as soon as we intend to apply the theorem in the realm of
quantum theories.

Theorem 2. Let B be a countably generated sub-g-algebra of ¥. Let m be a state
on % and let T be an m-preserving o-homomorphism of ¥ such that t(B)c B. Let x
be an observable such that R(x) = B and m(x) <. Then there is an observable x*
such that R(x*)c B, tox*=x* a.e. [m], m(x)=m(x*) and

lnl
-1 x—x*>0 ae [m]
n .o

Proof. By [6] there is an observable y such that R(y)=B. As R(x)< R(y),
there exists a Borel measurable function f: R, — R, such that x=f y [6]. Now by
the proof of Theorem 1 there is a Borel measurable transformation T: R,— R,
such that Toy=Toy, i.e. Toy(E)=y(T '(E)), E e B(R)). Then we have

tox(E)=t(foy(E)) = 1(y(f '(E))) = Toy(f'(E))=
=y(T'(F(E))=y((f-T) (E))-
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Let us set
n 1
Sn = 'znfor

In view of the definition of the sum of compatible observables [6], the observables
¥Ya=Saoy are the sums

n 1
1 S tex
n =o :

Since T is the measure m, — preserving transformation from R, into itself, from
the validity of the individual ergodic theorem (see [3]) on the dynamical system
(R:\, B(R)), m,, T) applicated to the function f(¢), r€ R\, we get that there is
a Borel measurable function f* which is T — invariant,

[F(@)m, ()= [ f()m, (dr)=m(x),
s(t)>f*(r) ae. [m)].

and

Since it may be shown that s,oy — f*cy— o0 a.e. [m] if and only if s.(r)— f*(1)
a.e. [m,] (see [2]), we finish the proof by setting x*=f*.y.
Q.E.D.

Lemma 3. Let M < ¥ be such that t(M) < M, where t is a o-homomorphism of
& Let &, be the minimal sublogic of £ containing M. Then 1(%) c %.
Proof. Let S={be %: t(b)e %}. It can be easily checked that § is a sublogic
of ¥, and Mc S. From this we get S=%,.
QED

Theorem 4. Let m be a state on &, T be an m-preserving o-homomorphism of ¥,
and let x be an observable such that m(x) <o and t'cx are pairwise compatible.
Then there is an observable x* such that tox*=x* a.e. [m], m(x*)=m(x) and

n-—1

=Y tex—x*—>o0 ae [m]
n -o

Proof. Let us set M=L-JR(t'ox). As 7(M)c M, we obtain by Lemma 3 that
=0

(%) = Yo, where % is the sublogic of £ generated by M. For any a, be M we
have a e b in Z. Since % is a lattice, a & b also in %. By the proof as in [4], % is
a Boolean sub-o-algebra of £. As each R(t'ox) is countably generated, % is also
countably generated. The statement of the theorem follows from Theorem 2 if we
set B=Y%,. Q.E.D.
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UHOWUBUIOYANBHAS IPTOOJUYECKAA TEOPEMA HA JIOTHKE
Coutna ITynmaHHOBa
Pe3omMe
B cTaTbe MccnenyeTcs MHHIMBHIYabHAs 3pToAMYEcKas TeopeMa Ha noruke. [TpuBoauTcs o6o6use Hue

pe3ynbTraTa [IBypeueHckoro # PueuaHa, nokaspiBamouiee, YTo X-H3MEPUMOCTb FOMOMOPH3Ma NOTHKH
He ABNISETCS HEOOXOAMMBIM YCTIOBHEM [UIS 3TOM TEOpEMBL.
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