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A NOTE ON THE MAXIMAL SEMILATTICE 

OF AN J**2VC-SEMIGROUP DECOMPOSITION 

FRANTlSEK KMEf 

Let S be a semigroup with an ideal J. By an ideal we mean a two-sided ideal. The 
principal ideal generated by an element a e S we denote by J(a). 

An element x e S is called nilpotent with respect to J if xn e J for some positive 
integer n. An ideal I of S is called a nilideal with respect to J if each element of I is 
nilpotent with respect to J. 

An ideal P cz S is called completely prime if for any a, b of S, ab eP implies that 
either a e P or b e P. A subsemigroup U of S is a filter of S if xy e U implies xeU 
and y eU. We consider the empty set a filter and a completely prime ideal of S. By 
N(J) we denote the set of all nilpotent elements of S with respect to J. The Luh 
radical C(J) is the intersection of all completely prime ideals of S which contain J. 
The Clifford radical R*(J) is the union of all nilideals of S with respect to J. A 
commutative semigroup, each element of which is idempotent, is called a semilat-
tice. A Congruence g on S is a semilattice congruence if the factor semigroup S/g 
is a semilattice. By a maximal semilattice decomposition of a semigroup S we mean 
a partition of S belonging to a minimal semilattice congruence on S. A semigroup S 
is semilattice indecomposable if the only semilattice congruence on S is the 
universal congruence. 

A semigroup S is called archimedean [6] if for any a, b of S there exists 
a positive integer n for which an e SbS. 

We define a relation 77 on a semigroup S as follows: ar\b if and only if 
aeN(J(b)) and b eN(J(a)). 

A semigroup S is called an R *NC-semigroup if for each ideal J of S, 
R *(J) = N(J) = C(J) holds. 

It is known [2] that S is an R *NC-semigroup if and only if for an arbitrary ideal J 
of S the set N(J) is an ideal of S. 

In this note we prove that in an R *NC-semigroup S the relation 77 is equal to the 
minimal semilattice congruence and S is a semilattice of archimedean semigroups. 

In an arbitrary semigroup S we denote by U(x) the smallest filter of S containing 
an element JC, by Ux = {y e S\U(y) = U(x)} a U-class of S and by Y the set of all 
distinct L/-classes of S with the multiplication UxUy= Uxy. 
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Let T be the family of all completely prime ideals of S. Define an equivalence 
relation ST on S as follows: x^fy for x, y e S if and only if x, y e I, or x, y £ I for all 
I e T. The equivalence relation :T is a congruence on S ([7], [10]). 

Let M be the set of all filters of S without the empty set. Define an equivalence 
relation M as follows: xMy for x, yeS if and only if U(x)= U(y). 

The following is known. 

Lemma 1 (M. Petrich [7, Theorem 3, 2]). Y is the maximal semilattice 
decomposition of S. 

Lemma 2 (R. Sulka [10, Theorem 1]). The fulfilment of the following conditions 
for elements x, y of a semigroup S is equivalent: 

a) x&'y, 
b) xMy, 
c) U(x)=U(y), 
d) C(x)=C(y), 
e) C(J(x)) = C(J(y)). 

Lemma 3. In an R *NC-semigroup S for elements a, b we have anb if and only if 
N(J(a)) = N(J(b)). 

Proof. Suppose anb, i.e. aeN(J(B)) and beN(J(a)). Then aeN(J(b)) 
implies J(a)^N(J(b)) and from this by R. Sulka [9, Lemma 2] we obtain 
N(J(a)) c N(N(J(b))) = N(J(b)). Similarly, from b e N(J(a)) we obtain 
N(J(b))<zzN(J(a)). From both inclusions N(J(a))czN(J(b)) and N(J(b))cz 
N(J(a)) we have N(J(a)) = N(J(b)). 

Conversely, if N(J(a)) = N(J(b)), then evidently aeN(J(b)) and beN(J(a)), 
therefore flr/b holds. 

Corollary 4. In an R*NC-semigroup S for elements x, y we have xny if and only 
if x?Ty. 

Proof. If xny, then N(J(x)) = N(J(y)). However, S is an R*NC-semigroup and 
so N(J(x))=C(J(x)) = N(J(y)) = C(J(y)) which by Lemma 2 gives xJy. Con
versely, if x&'y, then by Lemma 2 and by the definition of an R*NC-semigroup we 
obtain C(J(x)) = N(J(x)) = C(J(y)) = N(J(y)), which means by Lemma 3 that 
xny. 

R e m a r k 1. In general in a semigroup S we have only n cz :T. For example, let 
Si = {0, en, ei2, e2i, e22} be a semigroup with the multiplication e£j;• e]k = eik, 
eijemk=0emk = eij0 = 0, j±m, i, j , k, m e {1, 2}. Then we have 0ne12, ei2r/en, 
however Orjeu does not hold. Therefore n is not an equivalence relation on Si and 
r jc=T=SiXSi , rj^ZT. 

Theorem 5. Let S be an R*NC-semigroup. Then to the congruence n there belongs 
the maximal semilattice decomposition of S. Moreover, each n-class is an archime-
dean semigroup. 
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Proof. The first statement follows from Corollary 4 and Lemmas 1 and 2. Let 
now A be an rj-class and any a, b eA. Then a eN(J(b)) implies that an = xby for 
some positive integer n and x, yeS1. Then an+2 = (ax)b(ya). Evidently 
an+2eJ(ax), an+2eJ(ya), thus a eN(J(ax)) and aeN(J(ya)). The set N(J(a)) is 
an ideal of S and so ax e N(J(a)) and ya e N(J(a)). Therefore ax, ya e A. From 
the preceding we obtain an+2 = (ax)b(ya)e AbA, which means that A is an 
archimedean semigroup. 

R e m a r k 2. A non-commutative archimedean semigroup can contain more than 
one idempotent. This is shown by the next example. 

Let S2 = {a, b) be a semigroup of left-hand zeros, i.e. the semigroup with the 
multiplication ab = a2 = a, ba = b2=b. Evidently, S2 is an archimedean semigroup 
with two idempotents. 

A semigroup S is called a C2-semigroup if for all x, y, z of S, xyzyx = yxzxy 
holds. A C2-semigroup is an JR*NC-semigroup [3]. 

Theorem 6. Let S be a C2-semigroup. Then S is a semilattice of archimedean 
semigroups each of which contains at most one idempotent. 

Proof. Suppose, that idempotents e, f belongs to some n-class A. Then 
N(J(e)) = N(J(f)), i.e. e = xfy and f = set for some x, y, s, teS1. Since S is 
a C2-semigroup we have e = e3 = xfyxfyxfy = fyx3(fy)2 = fu and f = f3 = setsetset = 
ets3(et)2 = ets3ete3t = ets3(et)2e = ve, where u, v eS. Using the preceding we obtain 
e = fu= f2u =fe = ve2 = ve=f. 

We note that the next theorem is valid in commutative ([1], [8]) and in 
quasicommutative semigroups ([4], [5]). 

Theorem 7. Lef S be an R*NC-semigroup and suppose that in S the idempotents 
commute with all elements. Then S is a semilattice of archimedean semigroups each 
of which has at most one idempotent. 

Proof. Suppose, that idempotents e, f belong to some rj-class A . Then 
N(J(e)) = N(J(f)), i.e. em = xfy and fn = set for some positive integers m, n and x, 
y, s, teS1. From this it follows that e = xfy = xyf2 = ef = eset = se2t = f. 
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ЗАМЕТКА К МАКСИМАЛЬНОМУ ПОЛУСТРУКТУРНОМУ РАЗБИЕНИЮ 
Д * ^ - П О Л У Г Р У П П Ы 

РгапП8ек К т е ! 

Р е з ю м е 

Полугруппа 5, в которой радикалы Клиффорда и Луга относительно произвольного идеала 
равны, названа К*МС-полугруппой. В статье доказано, что К*М7-полугруппа является полус
труктурой архимедовых полугрупп. 
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