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ON EXTENSION OF BAIRE SUBMEASURES

IVAN DOBRAKOV

Let T be a locally compact Hausdorff topological space. It is well known and
important, for example in harmonic analysis, that each Baire measure on T can be
uniquely extended to a regular Borel measure on T, see § 54 in [6], or §65 in [1].
The extension procedure described therein consists of the generation of a regular
Borel content and its extension to a regular Borel measure. This procedure was
modified in [3, § 3] to obtain the analogous result for the so-called submeasures
(non additive set functions having many common properties with measures, see
later). For measures, and especially for submeasures, this method is rather
technical. The purpose of this note is to propose a more simple and transparent
method of extension. It was inspired by the following simple observation. If u is
a regular Borel (sub)measure, then to each Borel set A there is a Baire set E such
that A = EAN, where N is a Borel u-null set, see §68 in [1] and Theorem 17 in
[3]. Hence to obtain the required extension we have to add to Baire sets by
symmetric difference a suitable class of null sets, and make the obvious extension
which neglects in value these null sets. In this note this method will be described in
details. Since we consider finite, hence bounded (sub)measures, we in fact obtain
the extension to the so called weakly Borel sets (=the o-algebra generated by all
open subsets of T), see [2]. (Recently for most authors these are the Borel sets.)

For convenience let us remind the notions of submeasures. Let & be a ring of
subsets of a non empty set T. According to Definition 1 in [3] we say that a set
function pu: R—[0, .+ ©) is a submeasure if it is 1) monotone, 2) continuous:
A.eR, n=1,2, ..., and A.\\@ implies u(A,)—0, and 3) subadditively con-
tinuous: For every A € R and € >0 there is a 6 >0 such that Be R and u(B)<é
implies u(A)—e=u(A—-B) = u(A) = u(AuB) = u(A)+e. If the 6 in
condition 3) is uniform with respect to A € ®, then we say that y is a uniform
submeasure. It is easy to verify, see page 68 in [4], that subadditive continuity is
equivalent to the following property 3)*: If A, A.e®, n=1, 2,... and
u(A.,AA)—0, then u(A.)— u(A). Similarly, the uniform subadditive continuity
is equivalent to the following one: 3u)*: for each £ >0 there is a 6 >0 such that
A,Be®R and u(AAB)<d=>|u(A)—u(B)|<e. If instead of 3) we have
u(AuB)=u(A)+ u(B)forevery A, Be R, or uy(AuB)=u(A)+ u(B) for every
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A, B e R such that AnB =, then we say that u is a subadditive or an additive
submeasure, respectively. Obviously subadditive, and particularly additive subme-
asures (i.e., countably additive measures) are uniform.

For our next general result we need Theorem 12 from [5] According to this
theorem, if <27 is a 8-ring (a ring closed with respect to the formation of
countable intersections) and & <27 is a hereditary o-ring, then the smallest §-ring
containing both @ and A is the class AN ={A: A=DAN, De 9, Ne N}.

Theorem 1. Let & =27 be a 8-ring, let N = 2™ be a hereditary o-ring and let
u: 2—[0, + ©) be a submeasure. Suppose u(E)=0 for E€e NN, and for
A =DAN, where D € @ and N € N put ux(A) = u(D). Then uy: DAN - [0, + ©)
is an unambiguously defined submeasure of the same type as u, which extends u to
the smallest 6-ring AN containing both & and N.

Proof. Throughout this proof all D-s belong to 9 and all N-s to N. The
unambiguity and monotonicity of uv follows by standard methods, see the proof of
Theorem 13 B in [6] on the completion of a measure.

Let A,=D,AN,\#, n=1,2,.... Then (1D.~ N, = (1(D.-N,) <
n=1 n=1 n—1
ﬁ A, =90, hence u(ﬁ D,.) =0. However, u(ﬁ D, - ﬁ D.)—> 0 by continuity of u,
n=1 n=1 i=1 i-1

hence u(ﬁD,)—»O by subadditive continuity of u. Clearly D,.—ﬁD.c
i=1 i=1

U(D.—-D.). Since A,cA; for i=n, u(D,—D,)=0 for i=n. Thus u(D,)=

i=1

u(D,.—ﬁlD.-) U ﬁD,») = u(ﬁlD,-)—+0. Hence us: AN —[0, + ) is con-
i= i=1 i=
tinuous.

Let A=DAN, let A.=D,AN,, n=1,2, ... and let uy(A,AA)—0. Then
ux(AAA) = uy(D.ADAN,AN) = uy(D.AD), hence u(D.AD)— 0. But then
pur(An) — ux(A) = u(D,)— n(D)— 0 by subadditive continuity of u. Thus uy is
subadditively continuous on DAN.

Clearly pv is uniform or subadditive, respectively if u is such. Suppose finally
that u is additive. Let A =D;AN,, B=D,AN,, and let AnB=@. Then
(DinD;)AN;=@ for some N;eN. Hence u(DinD;)=0. Thus ux(AUB)=
u(D1uD2) = u((D:— D2) v (D2~ Dy) U (DinD;)) = u(Dy— D;)+ u(D;— D»)
= u(D1—DinDz)+ u(D:— DinDz) = u(D1)+ u(D2) = uv(A)+ uv(B) by the
additivity of u. Hence uy is additive on DAN. The theorem is proved.

In the following T will be a locally compact Hausdorff topological space. By
%o (€) we denote the lattice of all compact Gs (compact) subsets of T.
(%) (0(%)) denotes the smallest o-ring over 6o (6), and its elements are called
Baire (Borel) subsets of T. By % (%) we denote the lattice of all open (open
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Baire) subsets of T. g(%) denotes the o-algebra of the so-called weakly Borel
subsets of T, see [2].

Lemmal. Let U, Ve, let Ce% and let CcUuV. Then there are
C,, C,€ %6, such that Cic U, C,c V and C=Cu(C,.

Proof. By Urysohn’s lemma there is a continuous function f:C— [0, 1] such
that f(t)=0 for te C—V, and f(t)=1 for te C— U. Now it is enough to put
Ci={teC, f(1)=2""} and C;={teC, f(t)=27"}.

Let now wo: 0(%0)— [0, + <) be a Baire submeasure. According to Theorem 11
in [3] po is regular, i.e., for each A € 0(%,) and each £ >0 there are U e %, and
C e %o such that Cc Ac U and uo(U - C)<e.

For Ue€ % put

ux(U)=sup {u(C), Ce 6, Cc U},
for A< T put

p*(A)=inf {ux(U), Ue %, A c U},
and define

N={N:NcT, u*(N)=0).

Clearly pu*(U) = ux(U) for any U € %, and u* is monotone on 27 and u*(T)<
+ o by Theorem 4 in [3]. According to Theorem 3-b) in [3] the submeasure uo (as
well as any submeasure on a o-ring) has the following property: for each € >0
there is a 6 >0 such that A, B € 0(%o) and po(A), uo(B) < é implies uo(AuB)<e
(the so-called pseudometric generating property, see [4]). From this fact we
immediately obtain.

Lemma 2. For each €¢>0 there is a >0 such that U, Ve % and ux(U),
ux(V)<é implies ux(Uu V)<e.
Using this we easily have

Lemma 3. There is a sequence of numbers 6, k=1, 2, ... such that 0< 5, =27*
for each k, 6\0, and U.e % and ux(U,) <« for each k=1,2, ... imply
u*( D U,)éék for each k.

imk+1

Proof. Let 0<&,=2"'. By Lemma 2 there is a §:=27'6, such that U, Ve %
and ux(U), ux(V)<¥6, implies pux(UuV)<¥d;. Again by Lemma 2 there is
a 6:=27'5, such that U, Ve % and ux(U), ux(V)<¥s; implies ux(Uu V) <$8,.
Continuing in this way we obtain a sequence &, 0<6«=2"* foreach k=1, 2, ...,
6:.\\0, and such that U, Ve % and ux(U), ux(V) <8+, implies ux(Uu V)< &«
foreach k=1, 2, .... Take a sequence Uv e %, k=1, 2, ... so that ux(Ui) < b« for
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each k, and let Ce %, and Cc 0 U:.. Then by compactness of C there is

1—k+1

a positive integer p such that C U U.. But then we easily compute that

k+1

o

K+
uo(C)éu*( u U.)<6k. Since C e %,, Cc_U U: was arbitrary, we have the

i=k+1 i=k+1
required inequality u*( U U,-)éé
tok+1

Lemmad4. N is a hereditary o-ring and Yo={E: Ee€d(%), w(E)=0}
= ,Vﬂo((@o).

Proof. The first assertion of the lemma immediately follows from Lemma 3 and
the definition of .

Let E € o(%,). Then u (E) =inf {uo(U): Ue U, E < U} =
inf {u+x(U): Ue %, Ec U} = u*(E) by regularity of the Baire submeasure uo, see
Theorem 11 in [3]. Hence No< a(%o)nN.

Let E € a(%o)n V. Since uo(E) =sup {uo(C): C € %o, C c E} by regularity of o,
it is enough to show that uo(C) =0 for any C € 6,, C c E. Let C be such a set. Then
owing to Theorem D in §50 in [6] and the regularity of u, we obtain the required
equality 0= pu*(C) = inf {ux(U): Ue %, Cc U} = inf {ux(U): Ue U, Cc U}
= inf {uo(U): U€ %, Cc U} = uo(C).

Before the next lemma and theorem let us recall that o(%,)A.V is the smallest
o-ring containing both ¢(%,) and A, see Theorem 12 in [5].

Lemma 5. o(%)c o(60)AN and uv(U) = ux(U) for each U e ¥, where p, is
defined on a(%6,)AN as in Theorem 1.

Proof. Let Ue %. If ux(U)=pu*(U)=0, then Ue N. If ux(U)>0, then take
Ci€ 6o, Cic U so that uo(Ci) > 27 'ux(U). If ux»(U— C1)=0, then U—C, €.V,
hence U e o(€)AN, and uv(U) = puo(Ci) = ux(U). If ux(U — C,) >0, then take
C,e %y, Coc U—C,; so that u(C,)>2"'ux(U — C,). Continuing in this way we

k k
either arrive at a k such that u*(U—UC,-)=O, or u*(U—UG)>O for each
i=1 1

k
k=1,2,.... In the first case U—UC,-EN, hence Uea(6o)AN, and u,(U)

k
= uo(U C,-) ux(U). In the second case u*<U UC) u*(U UC)
i=1
2uo(Cr1) for each k=1,2, .... Since G, k=1,2, ... are pairwise disjoint sets,
to(C)— 0 by exhaustivity of uo, see Theorem 1-c) in [3]. Thus U — UC EN,

-1

hence U € 0(%60)AN. Further, uy(U) = HO(U C,-) = lim uo<U C,) ux(U) by
i=1 ndad [

Theorem 1 in [3]. Since a(%0)AN is a o-ring o(%) < 6(%o)AN, and the lemma is
proved.
Now we are prepared to prove our main
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Theorem 2.Let uy: 0(%6o)AN —[0, + ) be defined as in Theorem 1. Then
M={E: E€ea(€)AN, wuv(E)=0}=N, and puv: 0(%)AN—>[0, +x) is
a (€, U)-regular and complete submeasure of the same type as po: 0(%6o)—
[0, + ©). Further, its restriction uy: o(%) — [0, + ®) (o(%) < o(%o)r.\ by
Lemma 5) is the unique (€, %)-regular submeasure which extends po: o(%,) —
[0, + ), and o(%6o)A.V is the completion of uy: o(%) — [0, + ).

Proof. N c . by definition of uy. Let E € M. Then E = AAN with A € o(%,),
po(A)=0 and N e N. But then A e N by Lemma 4, hence Ee N. Thus 4 =.V.
Since N is a hereditary class, py: 0(60)AN — [0, + ») is complete. According to
Theorem 1 pu: 0(6o)AN — [0, + ) is a submeasure of the same type as
to: 0(6o) — [0, + ).

To prove the (€, %)-regularity of uy on a(%6o)AN, let A € 0(%o)A.V and let
€>0. According to Lemma 2 take 6 >0 so that U, Ve % and ux(U), ux(V)<¥é
implies ux(UuV)<e. Suppose A =EAN with Eeo(%) and NeN. Then
E—-NcAcEuUN.Since po: 0(6o) — [0, + =) is regular, see Theorem 11 in [3],
there are U,;eU, and C;e% such that Ci,cEc U, and ux(U, - C)
= u(U;—Ci)<d. Since 0=pu*(N)=inf {ux(U): Ue %, Nc U}, there is
a Uye U such that Nc U, and ux(U;)<d. Clearly C,— U,e ¥, Ci— U,cAc
UvwU;e U, and (U,uU,)—(C,— U,) = (U,— C;)uU,. Thus using Lemma 5 we
have the inequalities uy((U;,0U;) — (Ci— U,)) = ux((U,0U;) — (Ci—Uy)) =
ux((U,— C)uU,)<e. Hence wuy: 0(6o)AV — [0, + ») is (€, %)-regular.

If w, uz2: 0(€)AN — [0, + ») are two (€6, %)-regular submeasures both
extending o: 0(%o)— [0, + »), and if A € 0(6o)AN, then their (€, %)-regularity
and Theorem D in § 50 in [6] imply the existence of a sequence C, € 6o, n =1, 2, ...

such that u;(A) = lim uo(C,) = u(A). Hence py: 0(6o)AN — [0, + ) is the

unique (€, %)-regular extension of .

Denote by & the completion of uy: o(%)— [0, + ©). Since uy: o(€)AN —
[0, + ) is complete, ¥ = a(6o)AN. To prove the converse inclusion it is enough
to prove that N¥c &%. Let Ne N. Then by Lemma 5 0=pu*(N) = inf {ux(U),

" Ue%U NcU} = inf {ux(U), Ue %, N= U}. Since % is a lattice and uy: o(%)
— [0, + =) is monotone, there is a non-increasing sequence U, e %, n=1, 2, ...
such that Nc U, foreachn=1, 2, ... and uv(U,)—0. Thus Nc () U, € o(%) and

n=1

W(ﬁ U,.) =0. Hence ¥ = &. The theorem is proved.

n=1

The author wants to thank Professor Jaroslav Luke§ for the short proof of
Lemma 1 and other valuable comments.

41



REFERENCES

[1] BERBERIAN, S. K.: Measure and Integration, New York—London 1965.

[2] BERBERIAN, S. K.: On the extension of Borel Measures, Proc. Amer. Math. Soc. 16 1965,
415—418.

[3] DOBRAKOV, I.: On submeasures I, Dissertationes Math. 112, Warszawa 1974.

[4] DOBRAKOV, 1., FARKOVA, J.: On submeasures II, Math. Slovaca 30 1980, 65—81.

[S] DOBRAKOV, I.: A concept of measurability for the Daniell integral, Math. Slovaca 28 1978,
361—378.

[6] HALMOS, P. R.: Measure Theory. New York 1950.

Received June 28, 1982
Matematicky ustav SAV

Obrancov mieru 49
814 73 Bratislava

O PACIIMPEHUU BIPOBCKHX CYBMEP
Ivan Dobrakov
Pe3iome
IMycts po—6eposckas cy6Mepa (HeagauTHBHOE 0606IeHHe 63pOBCKO# Mephl, cM. [3]) Ha noKanbHO
KOMMNAaKTHOM TonojorydeckoM npocrpaHctee T. IIpucoenuHss K 63pOBCKMM MHOXECTBaM Hajjiexa-

LM KJIACC HYJIEBBLIX MHOXKECTB, MbI MOJIyYHUM €[MHHCTBEHHOE perysipHoe 6opesieBCKOe paciIipeHHeE (lo.
3TOT MeToA HarjasifHee OOBLIYHOrO MeTOfa, UCMOJB3YIOLEro paclIMpeHue cy6o6beMoB.
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