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A REMARK ON ALMOST CONTINUOUS
MULTIFUNCTIONS

LUBICA HOLA

The term ““almost continuity’’ is used here in the sense of Husain. The notion
of almost continuity of a function was studied by Blumberg, Banach, Ptak and
by several other authors ([1], [6], [10]). We investigate ‘‘upper almost continuity™
of multifunctions. In this paper we give a characterization of upper almost
continuity. We show that under some assumptions on spaces for each compact-
valued multifunction F there is a dense set A in domain, such that F/A4 is upper
semicontinuous.

We introduce some definitions which we shall use. By a multifunction F of
X to Y (F: X— Y) we mean a function which to every point xe€ X assigns a
nonempty subset F(x) of Y. For any 4 < Y we denote F~(A) ={velX:
F(x)n A #0}and F*(4) = {xe X: F(x) c A}.

All topological spaces considered in this paper are supposed to be Hausdorff.
For a subset A of a topological space X, 4 and Int A4 denote the closure or the
interior of A respectively.

A multifunction F: X — Y is called upper (lower) semicontinuous at a point
x if for any open set V < Y such that xe F*(V)(xe F~(V)) there exists a
neighbourhood U of x such that U < F*(V)(U = F~(V)).

A multifunction F: X — Yis upper (lower) almost continuous at a point xe X
if for every open set V in Y, xe F*(V)(F~(V)) implies xelIntF*(V)(xe
eIntF~(V)).

By a graph of a multifunction F: X — Y we mean the set Gr F = {(x,r): xe X,
ye F(x)}.

If a single-valued function f: X — Y is given, then it is considered as a
multifunction which associates {f(x)} to any xe X. Thus f is upper (lower)
almost continuous exactly if it is almost continuous in the sense as introduced
in [1].

A subset A of a topological space X is called almost open (or nearly open [8])
if A < Int A and almost closed if X\ 4 is almost open. If for some xe X and an
almost open set 4 = X we have xe 4, we say that 4 is an almost-neighbourhood
of x.

Remark 1. The following properties of almost open sets are evident:
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(a) A4 set A = Xis almost open if and only if there is an open set U such that
A < Uand 4 is dense in U.

(b) The intersection of an open set and an almost open set is almost open.

(c) If A < X is almost open in X and B < A4 is almost open in A (with the
induced topology), then B is almost open in X.

(d) The union of almost open sets is almost open.

The following remark is a trivial exercise. We will frequently use it without
a specific reference.

Remark 2. The following conditions on a multifunction F: X — Y are
equivalent:

(a) Fis upper (lower) almost continuous at xe X;

(b) for any open set V <= Y such that xe F7(V)(xe F~(V)) there exists an
almost neighbourhood G of x such that G =« F*(V)(G < F (V));

(c) for any open set V' such that xe F*(V)(xe F~(V)) there exists an open
neighbourhood U of x such that F*(V)(F~(V)) is dense in U.

The proofs of the following two propositions are based only on the topologi-
cal properties of the domain of multifunctions. We give proofs only for single-
valued functions since their generalization for multifunctions is evident.

Proposition 1. Let f/: X — Y be a function. Let 4 be an almost open set and
f/A be almost continuous. Then f'is almost continuous at every xe 4.

Proof. The proof is clear from Remark 1 (c).

For 4 dense in X and f'such that fj 4 is continuous, Proposition 1 is proved
in [1].

If f: X - Y is almost continuous and A4 is an almost open set, then f/4 need
not be almost continuous. (See Example 3 in [1]) But the following proposition
1s true.

Proposition 2. Let f: X — Y be a function. Let M = G\ R, where G is a
nonempty open set in X and R is a nowhere 'dense set in X. Then fis almost
continuous at x€ M if and only if f/M is almost continuous at x.

Proof. Let f/M be almost continuous at xe M. Since R is nowhere dense
in X, G\ R is almost open. By Proposition 1 fis almost continuous at x.

Now let f'be almost continuous at xe M. Let I be an open set in Y such that
f(x)e V. There is an open set U in X such that xe U and f~'(V) is dense in U.
Put H= U~ M. H is open in M. We show that (f/M)~'(V) is dense in H. Let
H, be a nonempty open set in M such that H, <« H. Then H, = V, n M for some
open set ¥, in X. V,n Un G is a nonempty open set in X. Since R is nowhere
dense in X there exists a nonempty open set G, in X' such that G, <«  nUnNG
and G, < X R. The density £~ '(V) in U implies that f "(V)n G, # 0, i.e.
FU(V)yn H, #0.

Remark 3. Let F: X — Y be a multifunction. Denote the set of points of
upper (lower) almost continuity by 4,(F)(A4,(F)). In the paper [2] it is proved
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that if Y is a second countable space, then for any multifunction F: X - Y,
A, (F) is a complement of a set of the first category. If F is a compact-valued
multifunction of X to a second countable space Y, then the same is true for the
set A, (F). Thusif X is a second category space and Y a second countable space,
the sets 4,(F), A,(F) are nonempty and in spaces in which any set of the first
category is nowhere dense the restrictions F/A4,(F) and F/A.(F) are lower or
upper almost continuous respectively. (See Proposition 2) But in general the
restriction F/A,, (F/A,(F)) need not be lower (upper) almost continuous.
Example 1. Let X be the unit interval with the usual topology and Y be
the set of real numbers with the usual topology. Let {x,} be a sequence of
different real numbers convergent to 2. For any ne N let 4, be the set of rational
numbers in the open interval (1/(n + 1), 1/n) and f, be a bijection from A4, onto
the set {x,, : m = n}. Define the function f as follows: f(0) = 2, f(x) = f,(x) for

S

xe A, and f(x) = x otherwise. It is easy to verify that 4,(/) = X\ ) 4, and

n—1
f1A,(f) is not almost continuous at 0.

Proposition 3. Let X be a Baire space and Y be a second countable space. Let
F: X — Y be a multifunction. There is a dense set D in 4,(F) such that F/D is
lower almost continuous. If F is a compact-valued multifunction, then there
exists a dense set T in A,(F) such that F/T is upper almost continuous.

Proposition 3 is stated here for reference. The case of lower almost continuity
is proved in [10] and the proof of upper almost continuity is similar.

The following theorem gives a characterization of upper almost continuity.

Theorem 1. Let X, Y be topological spaces, F: X —» Y, xe X. Let there exist
a countable base of neighbourhoods of F(x) and a countable family of closed
neighbourhoods of x the intersection of which is the set {x}. Then F is upper almost
continuous at x if and only if there exists an almost neighbourhood A of x such that
F/A is upper semicontinuous at x.

Proof. Let A be an almost-neighbourhood of x such that F/A4 is upper
semicontinuous at x. By Proposition 1, F is upper almost continuous at x.

Now let F be upper almost continuous at x. If {x} is open, then the theorem
is proved. Suppose {x} is not open. Let {G,} be a non-increasing base of open
neighbourhoods of F(x) and {V,} be a sequence of closed neighbourhoods of x

such that () ¥, = {x}.

n=1

{F*(G,)} is a non-increasing sequence such that xe F*(G,) and F*(G,) is a
neighbourhood of x for n =1, 2, .... There exist open neighbourhoods U,, H,
of xsuch that U, « F*(G))nV,, H, c U,and U,\ H, # 0. By induction we can
construct sequences {U,}, {#,} of open neighbourhoods of x such that for any
neN H,c U, U,cF*'(G)nV, U, , cH, and U\ H, #0.
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Put 4 = U F*(G,)n (U, U, )ui{x}. Then 4 is the searched set.

n=1

Notice that if Fin Theorem 1 is upper almost continuous at every x € X, then
F/A is upper almost continuous.

Let —e A\ {x} and U be an open set in Y such that ze F*(U). There is ne N
such that ze F*(G,) n (U,\ U, . ,). The upper almost continuity of Fat z implies
that there is an almost-neighbourhood H of - such that H < F*(G,n U), i.e.
HA(UN\U,. ) is asubset of 4. By Remark | the set Hn (U,\ U, ,) is almost
open in X and thus in A4.

For a single-valued function and X, Y metric spaces, Theorem 1 is proved in
[8].

The following examples show that the assumptions in Theorem 1 are essen-
tial.

Example 2. Let X be the set of all ordinal numbers less than or equal to
o, with the topology {{Ae X: A > v} yeX}u{X, 0 u{{heX: A # 0, A > v}
veX} and Y = R with the usual topology. Then for any sequence {V,} of

neighbourhoods of w, (1) ¥, # {®,}. If L is an ordinal number, there are a unique
n=1

non-negative integer n and a limit number B such that A =  + n. Define the
single-valued function f: X —» Y by f(A) = l/nif X is a non-limit ordinal number,
f(A) =11if A < w, is a limit ordinal number and f(w,) = 0.

It is easy to verify that fis almost continuous at ,.

Suppose that A is an almost-neighbourhood of ®, and f/4 is continuous
at ®,. For any neN there is a neighbourhood U, of ®, such that

fUNA)c{yeY: vy < 1/n}.PutU= ﬂ U,. Then U is a neighbourhood of o,

n=1
and f(Un A) = {0}, hence Un 4 = {»,}, thus o, ¢ Int 4, which is a contradic-
tion.
Example 3. Let {B,} be a sequence of mutually disjoint countable dense
sets in [0, 1]V {1, 1/2, ..., 1/n, ...}. PutX = (U B”>u{0} with the induced

n=1

topology. Let Y be the set of real numbers with the usual topology.

Let for every k€ N. {x}}, be a sequence of different real numbers in the open
interval (k.k + 1) convergent to k and {f}'}, be a sequence of bijections from
B~ (1i(k + 1). 1/k) to the set {x}: n > j}. Define Fby F(0)=1{1,2, ...,n, ...}
and F(x) = {1, 2, ... (k = 1). fF(x), (k + 1), ...} for xe B, (1/(k + 1), 1/k).

It is easy to verify that F is upper almost continuous at 0.

Suppose A4 is an almost-neighbourhood of 0 and F/A4 is upper semicontinuous
at 0. There exists re€ N such that 4 is dense in X n (0, 1/r). For any / = r choose
xeAn (1.(I+1), 11). Let j, be such that x,e B,. Put V=Y {f)(x): [ =>r}.

Then F~ (V) is not a neighbourhood of 0 in 4 and that is a contradiction.
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The following simple example shows that for F: X — Y the lower almost
continuity does not imply the existence of an almost-neighbourhood 4 of x such
that F/A is lower continuous at x.

Example 4. Let X = Y = R, where R is the set of real numbers with the
usual topology. Let F be defined as F(0) = {1, 2}, F(x) = {1} for x rational and
F(x) = {2} for x irrational. Then F is lower almost continuous at 0 and there is
no almost open set A containing 0 for which F/A is lower semicontinuous at 0.

Theorem 2. Let X be u topological space with a o-discrete base. Let F: X —» Y
be upper almost continuous. Let there exist for any xe€ X a countable base of
neighbourhoods of F(x). Then there exists a dense set D in X such that F|D is upper
semicontinuous. '

Proof. Let {#,: ne N} be discrete systems of nonempty open sets such
that v~ = u{¥, : ne N} is a base for X. For any Ve Y] choose x, €} and put
D, = {x,: Ve¥;}. For any x, € D, denote 4, an almost-neighbourhood of x,
such that 4, < V and F/A,, is upper almost continuous and upper semicon-
tinuous at x,. (See Theorem 1) Put 4, = U{4,: xeD,} and X, = (X\4,)U 4,.
Then X, is dense in X. Since 7] is a discrete family, F/X, is upper almost
continuous and upper semicontinuous at every xe€ D,.

By induction we will construct sequences {D,}, {X,} with the following
properties: (a) X, is a dense subset of X, _,, (b) D, < X,, (c) D,_, = D,, (d) for
any Ve{¥{:i=1,2,...,n} Vn D, # 0, (¢) there exists a pairwise disjoint locally
finite family of open neighbourhoods of points of D,, (f) F/X, is upper almost
continuous and upper semicontinuous at every xe D,.

Suppose D,, D,, ..., D,_,, X,, X,, ..., X,_, were constructed. Put
B,=9\{Ve?,:VnD,_, #0}. Forany Ve, choose x,e Vn X, _, and put
C,={x,:Ve4,}. Forany xe D, _, there exists an open neighbourhood U, such
that U.n C, = 0 and such that the family {U,: xe D, _,} is pairwise disjoint. By
assumption there exists a pairwise disjoint locally finite family {V,: xe D, _,} of
open neighbourhoods of points of D,_,. Let xe D, _,. Since 4, is a discrete
family in X there exists an open neighbourhood O of x such that O n V' # 0 for
at most one member V from 4,. Since X is Hausdorff, there exists an open set
0, such that xe 0, < O and x,¢0,. Put U, = V.n O,.

Forany x,eC,put U, = Vn(X\v {U,: xeD,_,}). Since {U,} is a locally
finite family, we have U{U,: xe D,_,} = u{U,: xe D, _,} and thus U,, is an
open neighbourhood of every x, from C,. Put D, = D, _, u C,. The family {U.:
x€ D,} is pairwise disjoint and locally finite. D, < X, _, and F/X, _, is upper
almost continuous. For any xe D, denote A4, an almost open set in X, _, such
that xe 4., A, < U, and F/A, is upper almost continuous and upper semicon-
tinuous at x.

Put 4,=u{A4,: xeD,} and X, = (X,_,\A4,) U A4,. It is evident that X, is
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dense in X, |, and F/X, is upper almost continuous and upper semicontinuous

XL
atevery xe D,. It follows from the construction that D = U D,1sdensein XY and

=1
F D is upper semicontinuous.

Remark 4. Notice that the set D constructed in the proof of Theorem 2
is an Fj-set and in spaces without isolated points, D 1s a set of the first category.
The following example shows that this recult is the best possible.

Example 5. Let X be the set of real numbers with the usual topology
and Y be the set of real numbers with the discrete topology. For any irrational
number p put C, = p + Q, where Q is the sct of rational numbers. Choose ¢,
from C, for any irrational p. (¢, = ¢, for any gep + Q)

Define f: X » Yas f(x) = 0forxe Q and f(x) = ¢, for ve C,. Itis easy to see
that f'is almost continuous. If D 1s a set in X such that f D 1s continuous, then
D is countable. Suppose that p is uncountable. Then there exists x € D such that
for every neighbourhood V of x, V" D is an uncountable set. [t is clear that f D
is not continuous at x.

Theorem 3. Let X be a spuce with a 6-disc ete buse and Y be a second countablec
space with infinitely many powats. The following statements are equiralent.

(1) X is a Baire space,

(2) for every compact-valued multifunction F : X — Y there is a dense set D in
X such that F|D is upper semicontinuous.

Proof. Suppose that X is a Baire space Then the assertion is clear from
Remark 3, Proposition 3 and Theorem 2.

Now assume that X is not Baire and choose a nonempty open set U which
is of the first category. Let C,, C,, ... be a sequence of mutually disjoint nowhere
dense sets with U {C,: ne N} = U. Let L be an infinite discrete subset of Y and
let (¢,: n = 0) be an enumeration of L. Define f: X - Y by f(C,) = ¢,,n > 1 and
f(X\U) = ¢,. There is no set D dense in & for which the restriction f D 1s
continuous. Suppose that there is a dense set D in X such that the restriction f D
is continuous. Choose xe D n U. There is n = | such that f(x) = ¢,. Since L is
a discrete set and f/D is continuous at x there is an open neighbourhood V of
x in X such that f{(WAnUnD)=c, Thus C,=f "(¢,) 2 VnUAND, ie.
C,> VU and that is a contradiction since , is nowhere dense.

Remark 4. The question is, whether the assumption on X in Theorem 2
is essential?
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3AMEYAHHUE K INOYTU HEIPEPBIBHBIM OTHOIIEHXAM

LCubica Hola

Pe3romMme

B 3Toii cTaThe M3y4aeTCs IOYTH HENPEPHLIBHOCTb OTHOLUEHHH, JaHA XapaKTEPUCTHKA CBEPXY
MOYTH HENPEPBIBHBIX OTHOLLEHHUIA.
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