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A REMARK ON ALMOST CONTINUOUS 
MULTIFUNCTION 

LUBICA HOLA 

The term "almost continuity" is used here in the sense of Husain. The notion 
of almost continuity of a function was studied by Blumberg, Banach, Ptak and 
by several other authors ([1], [6], [10]). We investigate "upper almost continuity" 
of multifunctions. In this paper we give a characterization of upper almost 
continuity. We show that under some assumptions on spaces for each compact-
valued multifunction F there is a dense set A in domain, such that F/A is upper 
semicontinuous. 

We introduce some definitions which we shall use. By a multifunction F of 
X to Y (F: X-> Y) we mean a function which to every point xeX assigns a 
nonempty subset F(x) of Y. For any A cz Y we denote F~(A) = {xeX: 
F(x)nA ?- 0} and F+(A) = {xeX:F(x) cz A}. 

All topological spaces considered in this paper are supposed to be HausdorfT. 
For a subset A of a topological space X, A and Int A denote the closure or the 
interior of A respectively. 

A multifunction F: X-* Yis called upper (lower) semicontinuous at a point 
x if for any open set V cz Y such that xeF+(V)(xeF~(V)) there exists a 
neighbourhood U of x such that U cz F+(V)(U cz F~(V)). 

A multifunction F: X -» Yis upper (lower) almost continuous at a point xe X 
if for every open set V in Y, xeF+(V)(F~(V)) implies xeIntF+(V)(xe 
GlntF-(V)). 

By a graph of a multifunction F: X-> Ywe mean the set G r F = {(x, v):xeX, 
yeF(x)}. 

If a single-valued function/: X-* Y is given, then it is considered as a 
multifunction which associates {f(x)} to any xeX. Thus / is upper (lower) 
almost continuous exactly if it is almost continuous in the sense as introduced 
in [1], 

A subset A of a topological space Xis called almost open (or nearly open [8]) 
if A cz Int A and almost closed if X\A is almost open. If for some xeX and an 
almost open set A cz Xwe havexe^ , we say that A is an almost-neighbourhood 
of x. 

Remark 1. The following properties of almost open sets are evident: 
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(a) A set A cz X is almost open if and only if there is an open set U such that 
A a U and A is dense in U. 

(b) The intersection of an open set and an almost open set is almost open. 
(c) If A a X is almost open in X and B a A is almost open in A (with the 

induced topology), then B is almost open in X. 
(d) The union of almost open sets is almost open. 
The following remark is a trivial exercise. We will frequently use it without 

a specific reference. 
R e m a r k 2. The following conditions on a multifunction F: X-> Y are 

equivalent: 

(a) Fis upper (lower) almost continuous at xeX; 
(b) for any open set V a Y such that xeF+ (V)(xeF~(V)) there exists an 

almost neighbourhood G of x such that G cz F+(V)(G a F (V)); 
(c) for any open set V such that xeF+ (V)(xeF~(V)) there exists an open 

neighbourhood U of x such that F+(V)(F~ (V)) is dense in U. 
The proofs of the following two propositions are based only on the topologi­

cal properties of the domain of multifunctions. We give proofs only for single-
valued functions since their generalization for multifunctions is evident. 

Proposition 1. Letf: X—• Ybe a function. Let A be an almost open set and 
f/A be almost continuous. Then fis almost continuous at every xeA. 

Proof . The proof is clear from Remark 1 (c). 
For A dense in X and /'such that f/A is continuous, Proposition 1 is proved 

in [1]. 
Iff: X-> Yis almost continuous and A is an almost open set, then f/A need 

not be almost continuous. (See Example 3 in [1]) But the following proposition 
is true. 

Proposition 2. Let f: X-> Y be a function. Let M = G\R, where G is a 
nonempty open set in X and Iv is a nowhere dense set in X. Then fis almost 
continuous at xe M if and only iff/A/ is almost continuous at x. 

Proof . Le t f /M be almost continuous at xeM. Since R is nowhere dense 
in X, G\R is almost open. By Proposition 1 fib almost continuous at x. 

Now letfbe almost continuous at x e M. Let V be an open set in Y such that 
f(x)e V. There is an open set U in X such that xeU andf_ 1(V) is dense in U. 
Put H = Ur\ M. H is open in M. We show that (f/M)~x(V) is dense in H. Let 
H! be a nonempty open set in M such that Hi c: H. Then H] = Vxr\M for some 
open set Vj in X. Vj n U n G is a nonempty open set in X. Since R is nowhere 
dense in X there exists a nonempty open set G, in X such that G, c Vj n U n G 
and GxaX R. The density f_1(V) in U implies that f_1(V) n G, # 0 , i.e. 
f-\V)nH^0. 

R e m a r k 3. Let F: X-> Y be a multifunction. Denote the set of points of 
upper (lower) almost continuity by AL(F)(AL(F)). In the paper [2] it is proved 
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that if Y is a second countable space, then for any multifunction F: X-» Y, 
AL(F) is a complement of a set of the first category. If F is a compact-valued 
multifunction of X to a second countable space Y, then the same is true for the 
set AV(F). Thus if X is a second category space and Ya second countable space, 
the sets AL(F), AV(F) are nonempty and in spaces in which any set of the first 
category is nowhere dense the restrictions F/AL(F) and F/AL(F) are lower or 
upper almost continuous respectively. (See Proposition 2) But in general the 
restriction F/ALiF) (F/AV(F)) need not be lower (upper) almost continuous. 

Example 1. Let X be the unit interval with the usual topology and Y be 
the set of real numbers with the usual topology. Let {xn} be a sequence of 
different real numbers convergent to 2. For any n e N let An be the set of rational 
numbers in the open interval (\/(n + 1), \/n) andf, be a bijection from An onto 
the set {xm: m ^ n}. Define the function fas follows :f(0) = 2,f(x) = fn(x) for 

xeA„ andf(x) = x otherwise. It is easy to verify that AL(f) = X\[J A„ and 
// - 1 

f/AL(f) is not almost continuous at 0. 
Proposition 3. Let Xbe a Baire space and Ybe a second countable space. Let 

F: X-> Y be a multifunction. There is a dense set D in AL(F) such that F/D is 
lower almost continuous. If F is a compact-valued multifunction, then there 
exists a dense set T in AV(F) such that F/T is upper almost continuous. 

Proposition 3 is stated here for reference. The case of lower almost continuity 
is proved in [10] and the proof of upper almost continuity is similar. 

The following theorem gives a characterization of upper almost continuity. 
Theorem 1. Let X, Y be topological spaces, F: X-+ Y, xeX. Let there exist 

a countable base of neighbourhoods of F(x) and a countable family of closed 
neighbourhoods of x the intersection of which is the set {x}. Then F is upper almost 
continuous at x if and only if there exists an almost neighbourhood A ofx such that 
F/A is upper semicontinuous at x. 

Proof. Let A be an almost-neighbourhood of x such that F/A is upper 
semicontinuous at x. By Proposition 1, Fis upper almost continuous at x. 

Now let Fbe upper almost continuous at x. If {x} is open, then the theorem 
is proved. Suppose {x} is not open. Let {Gn} be a non-increasing base of open 
neighbourhoods of F(x) and {Vn} be a sequence of closed neighbourhoods of x 

x 

such that p | V„ = {x}. 
n= 1 

{F+(Gn)} is a non-increasing sequence such that xeF+(Gn) and F+(G„) is a 
neighbourhood of xfor n = 1, 2, .... There exist open neighbourhoods Ux, Hx 

ofx such that [/, cz F+(G,) n VX,HX cz Ux and UX\HX # 0. By induction we can 
construct sequences {[/„}, {H„} of open neighbourhoods ofx such that for any 
neN H„cz u„9 U„^F+(Gn)^Vn, U„+, cz//„, and U„\H„*0. 
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Put A = (J F+(Gn) n (Un\ Un + ])u {x}. Then A is the searched set. 
n= 1 

Notice that if Fin Theorem 1 is upper almost continuous at every xeX, then 
F/A is upper almost continuous. 

Let zeA\{x} and U be an open set in Y such that zeF+(U). There is neN 
such that zeF+(Gn)n (Un\ On + ,). The upper almost continuity of Fat z implies 
that there is an almost-neighbourhood H of z such that H a F+(Gnn £/), i.e. 
H n (Un \ On + ,) is a subset of A. By Remark 1 the set H n (Un \ On + ,) is almost 
open in X and thus in A. 

For a single-valued function and X, Y metric spaces, Theorem 1 is proved in 
[8]. 

The following examples show that the assumptions in Theorem 1 are essen­
tial. 

Example 2. Let X be the set of all ordinal numbers less than or equal to 
co, with the topology {{XeX: X > y}: yeX} u {X, 0} u {{XeX: X ^ co,, X > y}: 
yeX} and Y=R with the usual topology. Then for any sequence {Vn} of 

x 

neighbourhoods of co, P) Vn ^ {co,}. If X is an ordinal number, there are a unique 
n = 1 

non-negative integer n and a limit number P such that X = P + n. Define the 
single-valued functionf: X-> Yby f(X) = \/n if X is a non-limit ordinal number, 
f(X) = 1 if X < co, is a limit ordinal number andf(cO]) = 0. 

It is easy to verify thatfis almost continuous at co,. 
Suppose that A is an almost-neighbourhood of co, and f/A is continuous 

at co,. For any neN there is a neighbourhood Un of co, such that 
x 

f(Un nA) a {ye Y: y < \/n}. Put U = f] Un. Then [/is a neighbourhood of co, 
n=\ 

and f(Un A) = {0}, hence Un A = {co,}, thus CO] <£IntA, which is a contradic­
tion. 

Example 3. Let {Bn} be a sequence of mutually disjoint countable dense 

sets in [0, 1]\{1, 1/2, ..., 1/n, . . .}. PutX = ( (J Bn) u {0} with the induced 

topology. Let Y be the set of real numbers with the usual topology. 
Let for every keN, {xn}„ be a sequence of different real numbers in the open 

interval (k, k + 1) convergent to k and {/*},- be a sequence of bijections from 
Bin(\i(k+ 1), Vk) to the set {x,f: n^y}. Define F by F(0) = {1, 2, ..., n, ...} 
and F(x) = {1, 2, ..., (k - l).fjk(x), (k + 1), ...} for xeByn (l/(k + 1), 1/k). 

It is easy to verify that F is upper almost continuous at 0. 
Suppose A is an almost-neighbourhood of 0 and F/A is upper semicontinuous 

at 0. There exists reN such that A is dense in Xn (0, 1/r). For any / ^ r choose 
xleAn(\l(l+ 1), 1 I). Let j/ be such that x{eBJr Put V = Y {f^x,): / ^ r}. 

Then F'(V) is not a neighbourhood of 0 in A and that is a contradiction. 
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The following simple example shows that for F: X—> Y the lower almost 
continuity does not imply the existence of an almost-neighbourhood A of x such 
that F/A is lower continuous at x. 

E x a m p l e 4. Let X = Y = R, where R is the set of real numbers with the 
usual topology. Let Fbe defined as F(0) = {1,2}, F(x) = {1} for x rational and 
F(x) = {2} for x irrational. Then Fis lower almost continuous at 0 and there is 
no almost open set A containing 0 for which F/A is lower semicontinuous at 0. 

Theorem 2. Let X be a topological space with a a-discrete base. Let F: X-• Y 
be upper almost continuous. Let there exist for any xeX a countable base of 
neighbourhoods ofF(x). Then there exists a dense set D in X such that F/D is upper 
semicontinuous. 

Proof . Let {ir: neN} be discrete systems of nonempty open sets such 
that TT = u {Yn : n EN} is a base for X. For any Vei<^ choose xve V and put 
Dx = {xv: Veir}. For any xveDx denote Ax an almost-neighbourhood of xv 

such that Ax a V and F/A is upper almost continuous and upper semicon­
tinuous at xv. (See Theorem 1) Put Ax = u {Ax: xeDx} and X, = (X\AX) u A , . 
Then X, is dense in X. Since ir is a discrete family, F/X, is upper almost 
continuous and upper semicontinuous at every xeDx. 

By induction we will construct sequences {/)„}, {Xn} with the following 
properties: (a) Xn is a dense subset of X„_ ,, (b) Dn a X„, (c) D„_ , c: D„, (d) for 
any Ve{%:i= 1, 2, ..., n} VnD„^Q, (e) there exists a pairwise disjoint locally 
finite family of open neighbourhoods of points of D„, ( f ) F/Xn is upper almost 
continuous and upper semicontinuous at every xeD„. 

Suppose Dx, D2, ..., D„_x, X,, X2, ..., X„_x were constructed. Put 
j ^ _ - irn\{Vz-r„\ VnDn_x 7-=0}. For any Ve@n choose xve Vn Xn_ , and put 
C„ = {xv: VE&„}. For any xeDn_x there exists an open neighbourhood Ux such 
that Uxr\Cn = 0 and such that the family {Ux: xeDn_ ,} is pairwise disjoint. By 
assumption there exists a pairwise disjoint locally finite family {Vv: x e Dn _ ,} of 
open neighbourhoods of points of Dn _ ,. Let x e Dn _ ,. Since 3&n is a discrete 
family in X there exists an open neighbourhood O of x such that O n V y- 0 for 
at most one member V from 3ftn. Since X is HausdorfT, there exists an open set 
Ox such that xeOx cz 0 and xv£6x. Put C/v = VxnOx. 

For any ^ e C „ put UXy = Vn(X\u{Ux: xeDn_x}). Since {Ux} is a locally 
finite family, we have u{U v : xeDn_x} = u{Ux: xeDn_x} and thus Ux is an 
open neighbourhood of every xv from C_. Put D„ = D„_XKJ C„. The family {f/v: 
xeD„} is pairwise disjoint and locally finite. Dn a X„_x and F/X„_x is upper 
almost continuous. For any xeD„ denote Ax an almost open set in X„_, such 
that XEAX,AXCZ Ux and F/Av is upper almost continuous and upper semicon­
tinuous at x. 

Put A„ = u{Ax: XED„} and X„ = (X„_ x\An) u A„. It is evident that Xn is 
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dense in Xn , and F/Xn is upper almost continuous and upper semicontinuous 
X 

at every xe Dn. It follows from the construction tha tD = [J D, is dense in Xand 
/ - i 

F D is upper semicontinuous. 
R e m a r k 4. Notice that the set D constructed in the proof of Theorem 2 

is an F^-set and in spaces without isolated points, D is a set of the first categorv. 
The following example shows that this result is the best possible. 

E x a m p l e 5. Let X be the set of real numbers with the usual topology 
and Y be the set of real numbers with the discrete topology. For any irrational 
number p put Cp — p + Q, where Q is the &et of rational numbers. Choose cp 

from Cp for any irrational p. (cp = cq for any qep -+ Q) 
Definef: X -+ Yasf(x) = 0 for xeQ andf(x) = c^for xeCp. It is easy to see 

that f is almost continuous. If D is a set in Xsuch that f D is continuous, then 
D is countable. Suppose that D is uncountable. Then there exists xe D such that 
for every neighbourhood Vof x, V n D is an uncountable set. It is clear that / D 
is not continuous at x. 

Theorem 3. Let X be a space with a o-disc ete base and Y be a sec ond c ountabk 
space with infinitely many points. The following statements are equivalent. 

(1) X is a Baire space, 
(2) for every compact-valued multifunction t: X —> Y there is a dense set D in 

X such that FID is upper semicontinuous. 
Proof . Suppose that X is a Baire space Then the assertion is clear from 

Remark 3, Proposition 3 and Theorem 2. 
Now assume that X is not Baire and choose a nonempty open set U which 

is of the first category. Let C l5 C2, ... be a sequence of mutually disjoint nowhere 
dense sets with u {Cn: neN} = U. Let L be an infinite discrete subset of Y and 
let (cn: n ^ 0) be an enumeration of L. Define/: X-> Ybyf(C„) = cn, n ^ 1 and 
f(X\ U) = c0. There is no set D dense in X for which the restriction f D is 
continuous. Suppose that there is a dense set D in Xsuch that the restriction/' D 
is continuous. Choose xeD n U. There is n ^ 1 such tha t j (x ) = cn. Since L is 
a discrete set andf/D is continuous at x there is an open neighbourhood V of 
x_ in X such that f(Vn Un D) = cn. Thus Cn=f \c„) => VnUnD, i.e. 
Q D Vn U and that is a contradiction since Cn is nowhere dense. 

R e m a r k 4. The question is, whether the assumption on X in Theorem2 
is essential? 
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ЗАМЕЧАНИЕ К ПОЧТИ НЕПРЕРЫВНЫМ ОТНОШЕНИЯМ 

ЕиЫса Но1а 

Резюме 

В этой статье изучается почти непрерывность отношений, дана характеристика сверху 

почти непрерывных отношений. 
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