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BISEMILATTICES WITH FIVE ESSENTIALLY
BINARY POLYNOMIALS

J. GALUSZKA

0. Introduction. An algebra A = (4, +, -) of type (2,2) is said to be a bise-
milattice if it satisfies the following identities:

X+ X=X, XX =X,
X+y=y+x X-y=y-x,
x+»+z=x+0+2), (xy)z=x(-2)

(cf. [8], [9]). In the sequel we shall write xy instead x-y.
Let A be a bisemilattice. Similarly as in [1] and [2] we define two partial orders
on A:

df
X<, yexty=y,

df
XK.y Xy=X.

Each finite and nonempty subset of 4 has a least upper bound with respect
" to the first order and a greatest lower bound with respect to the second. And
conversely on each set 4 with two partial orders satisfying the last conditions
we can define two binary operations + and, such that A = (4, +,-) is a
bisemilattice andd the orders <, and <. are identical with the initial orders
respectively.

An essentially binary polynomial of a bisemilattice is a binary polynomial
depending on both its variables (see p. 38 of [6]). In the sequel the cardinality of
the set of all esentially binary polynomials of a bisemilattice 2 is denoted by
pA(A), the variety of all bisemilattices is denoted by 4. If I is a set of identities
for bisemilattices, then £ (1) denotes the subvariety of # defined by I. We say
that a bisemilattice is trivial iff its underlying set has one element only, it is a
semilattice iff its fundamental polynomials are equal, and it is proper iff its
fundamental polynomials are distinct. Evidently a proper bisemilattice is nontri-
vial. We say that a binary polynomial f(x, y) is commutative iff f(x, y) = f(y, x).
We can easily see that in a nontrivial bisemilattice every binary and com-
mutative polynomial is essentially binary.
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Essentially binary polynomials play an important réle in a research of the
variety # (see e.g. [3] or [4]). The main purpose of this paper is to extend the
main theorem of [4] (we quote this theorem in Section 1 — Theorem 1.1) and to
characterize bisemilattices with five essentially binary polynomials.

1. In this section we state without proof a few results concerning bisemilat-
tices, used in this paper.

The following identities and their duals play an important réle in the sequel:

(1) (x+y)y=y,

(2) (x+y)y=xy+y,
(3) (x+y)y=x+y,
4) Xy+x+y=x+y,
©) (xy + Y)ox + x) = xy,

(6) (xy + y)x + x) =x + y.

Dual identities will be denoted by (1d), (2d), etc.

Theorem 1.1 ([4]). If U is a bisemilattice, then:
(1) pA(W) =0 iff Wis trivial,
(i) p-(A) = 1 iff W is a nontrivial semilattice,
(i) pA(A) = 2 iff W is a nontrivial lattice,
(iv) there are no bisemilattices for which p,(A) = 3,
(r) pA(W) = 4 iff W is a nontrivial, non-semilattice, non-lattice member of one of
the varieties B (1,4, 5), B(1d,4d, 5d), B (3,4,6), B(3d,4d, 6d), B (2).

Lemma 1.2 ([3]). Let A be a nontrivial bisemilattice. The following conditions
are equivalent:
(i) Wis a lattice,
(i) (xy + y)(x + y) is not essentially binary.

Lemma 1.3 ([3]). In a nontrivial bisemilattice (x + y)y + x and xy + y + x.

Lemma 1.4 ([3]). Let U be a bisemilattice. Then the following statements hold:
(i) The following identities are equivalent in WA: (3), (x+y)y =@ + x)x,
(x+py)xy=x+y.
(it) If W is a proper bisemilattice and (x + y)y is commutative, then xy + y is
essentially binary and noncommutative.

Lemma 1.5 ([S]). Let f(x,y) be a polynomial over a nontrivial bisemilattice.
Then both the polynomials f(x,y) + y and f(x,y)y depend on y.

Lemma 1.6 ([4], [5]). If W is a nontrivial member from 2B (3), then every binary
polynomial in W is essentially binary.
Evidently the dual versions of Lemmas 1.2, 1.4, 1.6 are also true.
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2. In this section we formulate the main theorem of this paper (Theo-
rem 2.1). Besides the identities (1)—(6) we need the following identities:

0 xy+y)x+y)=xy+y,

®) xy+»)x+x)=xy+x+y,

9 xy+y)x+y)=xy+x+y,

(10) xy+y)x+x)+x=x+y,

(1) Cy+y)x+x)+xy=x+y,

(12) (xy + )x + x) + xp = (xy + Y)(yx + x).

Theorem 2.1. Let U be a bisemilattice. Then p,(N) = 5 iff W is a member of
one of the classes #(1,5,7)\%#4), #(d,5d,7d)\%(4d), B (6)\Z 4),
B(6d)\ B (4d), #(3,8,9)\#(4), £ (3d,84,94)\% (4d), % (3,10,11)\ A (6),
2 (3d,10d,11d)\ B (6d), # (3,10, 12)\ & (6), % (3d,10d, 12d)\ % (6d).

Before proving this theorem we formulate and prove needed lemmas.

Lemma 2.2. If the identity (x + y)y = yx + x holds in a bisemilattice U, then
A is a semilattice.

Proof. If the identity (x + y)y =yx+ x holds in 2, then we have
x+»)y=((x+y)+y)y=y(x+y)+(x+y)=yx+x+y Hence, the
polynomials (x + y)y and xy + y are both commutative. By (ii) of Lemma 1.4
we obtain that U is a semilattice.

Lemma 2.3. If in a bisemilattice W the polynomials (x + y)y and xy + y are

both essentially binary, noncommutative and distinct, then p,(2) > 6.

Proof. Evidently U is proper. By the assumption and Lemma 2.2 the
polynomials x + y, xy, (y + x)x, (x + y)y, xy + y, yx + x are all essentially
binary and distinct. Hence we get p(U) = 6.

Lemma 2.4. If U is a bisemilattice such that p,(N) = 5, then W is in one of the
classes (1), B (1d), % (3), % (3d). ‘

Proof. If p,(A) = 5, then by Lemma 2.3 and Lemma 1.3 we get that one
of the identities (1), (1d), (3), (3d), (2) holds in A. By Theorem 1.1(v) the identity
(2) does not hold in .

Lemma 2.5. If U is a nontrivial bisemilattice from % (1), then the following

Statements are true:
(i) the polynomial (xy + y) x is essentially binary,

(ii) the polynomials xy + y, yx + x, (xy + y) x are all distinct,
(iii) the polynomial (xy + y)(x + y) is noncommutative,
(iv) the polynomials xy + y and (yx + x)(y + x) are distinct.

Proof. (i) By Lemma 1.5 the polynomial (xy + y)x depends on x. Ass-
ume that the polynomial (xy + y) x does not depend on y. Then the identity
x = (xy+y)x holds in UA. Hence, putting x+ y for x we get x+y=
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=({(x+y)y+y)x+y)=y(x+y)=y,a contradiction with the assumption
that A is nontrivial.

(ii) Evidently U is proper. Then by Lemma 1.4(ii) we infer that the polyno-
mials xy + y and yx + x are distinct. Assume that the identity xy + ) =
=(xy+y)x holds in A. Then x+y=x+x+y)=x(x+))+(x+y)=
= (x(x + y) + (x + y)) x = x, a contradiction. The case yx + x = (xy + y) x
can be treated analogously.

(iii) Assume that the identity (xy + y)(x + y) = (»x + x)(y + x) holds in Q.
Then y+x=0+@+X)0+0+x)ND=00+X)+ 0+ )0+ +x)=
=((y +x)y + )y + x) + y) = y(y + x) = y, a contradiction.

(iv) If the identity xy + y = (vx + x)(y + x) holds in A, then x + y =
=(px+y)+(x+y)@+ (x+y)=(x+y)y+y=y,a contradiction.

Lemma 2.6. If U is a bisemilattice from % (1) and the polynomial (xy + y) x
is commutative in U, then

(5) (xy +y)x=xy

and (5) are satisfied in U.

Proof. Under the above assumption we have xy=(x+ xy)xy =
= ((yx + x)y) x = (xy + y) x. Thus the identity (5) holds in A. By (5') xy =
=(xy+y)x=(xy+y)x+x)(xy +y)=(xy + x)(xy + y). Thus the iden-
tity (5) holds in 2.

Lemma 2.7. Let U be a bisemilattice from % (1). Then p,(A) =5 iff W is a
member of the class % (5,7)\ % (4).

Proof. Let Ae# (1) and p,(A) = 5. By Theorem 1.1, Lemma 1.3 and the
dual version of Lemma 1.4(ii) the polynomials x + y, xy, xy + y, yx + x are all
essentially binary and distinct. Thus by (i) and (ii) of Lemma 2.5 the polynomial
(xy + y) x is commutative in 2. Hence, by Lemma 2.6, the identity (5) holds in
A. By Lemma?2.5(iii), Lemmal.2 and Theorem 1.1(iii) the polynomials
(xy + y)(x + y) and (yx + x)(y + x) are both essentially binary and distinct.
Hence, by Lemma 2.5(iv), the identity (7) holds in UA. Thus A e A (1,5,7). By
Theorem 1.1(v) A ¢ £ (4).

Assume that We A (1,5,7)\ % (4). Thus A¢ A (4). Hence the polynomials
x + y and xy + x + y are distinct. Evidently 2 is not a lattice and 2! is nontri-
vial. Hence and by Lemma 1.3 the polynomials x + y, xy, xy + y, yx + X,
xy + x + p are all essentially binary. By the dual version of Lemma 1.4 the
polynomials xy + y and yx + x are noncommutative and the polynomials xy
and xy + x + y are distinct. Hence we get that the polynomials x + y, xy,
xy +y, yx + x, xy + x + y are all essentially binary and distinct. Recall that

o0

PO) = () P?, where P = {x,y}, P&, =PPUi{p+4q, pqlp,qe P} (see

i=0
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[6]’, [7]). Hence PP = {x, y, X + y, xy, Xy + y, yx + x, xy + X + y}. Observe that
using (1) and (5) we obtain (xy +y)x=(xy+y)¥x+x)x=xp =
= (yx + x)y. By (5) and (5) PPQ) = P and p,(A) = 5.

Lemma 2.8. If W is a proper bisemilattice from % (3), then the following
statements are true:
(i) the polynomials xy + y, yx + x, (xy + y)(x + y) are all essentially binary
and distinct,
(ii) the polynomials xy + y, yx + x, (xy + y)(yx + x) + x are all essentially
binary and distinct,
(iii) the polynomials xy and (xy + y)(yx + x) are both essentially binary and
distinct,
(iv) the polynomials xy and (xy + y)(yx + x) + xy are both essentially binary
and distinct.

Proof. To prove this lemma we use the analogous methods as in the
proof of Lemma 2.5. For example we prove (i).

(i) By Lemma 1.6 the polynomials xy + y, yx + x, (xy + y)(x + y) are all
essentially binary. By Lemma 1.4(ii) the polynomial xy + y is noncommutative.
Suppose that the identity xy +y = (xy + y)(x +y) holds in A. Then
xy = x(xy) + xy = (x(xpy) + xy)(x + xy) = x + xy, a contradiction. Assume
that the identity yx + x = (xy + y)(x + y) holds in . Then xy = y(xy) +
+ xy = ((xy)y + y)(xy + y) = xy + y, a cotradiction. Hence the polynomials
xy +y, yx + x, (xy + y)(x + y) are all essentially binary and distinct.

We can easily see that the identity (6) implies the identity (3). Indeed, by (6)
(putting xy for x) we get xy +y = ((xy)y + )0 (xy) + xy) = (xy + p) xy.
Hence (x + y)y = (xy + y)(yx + x) xy. Thus the polynomial (x + y)y is com-
mutative. Hence (and by Lemma 1.4(i)) we obtain the identity (3).

Lemma 2.9. Let U be a bisemilattice from % (3)\ & (4). Then p,(A) = S iff A
is a member of one of the classes % (6) and % (8,9).

Proof. Let UeZB(3)\#(4) and p,(A)=5. Thus A ¢ A (4). Hence the
polynomials xy + x + y and x + y are distinct. By Lemma 1.4 the polynomials
xy + yand yx + x are noncommutative. By the dual version of (i) of Lemma 1.4
the polynomials xy and xy + x + y are dictinct. Hence the polynomials x + y,
xy, xy + y, yx + x, xy + x + y are all essentially binary and distinct (recall that’
2 is nontrivial). By Lemma 2.8(iii) one of the identities (6) and (8) holds in 2.
Let A € 2 (8). By Lemma 2.8(i) the polynomial (xy + y)(x + y) is commutative.
Hence and by (8) and (9) we obtain that (xy + y)(x + y) = (xy + y)(x + »)-
Ox+x)y+x)=xy+x+y)(x+y)=xy+ x+y. Thus Ue % (8,9).

Assume that We B (6)\ # (4). Then as above we can prove that the polyno-
mials x + y, xy, xy +y, yX+ x, xy + x + y are all essentially binary and
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distinct (recall that (6) implies (3)). By (6) we have (xy+ y)(y +y) =
= (xy + y)(xy + »)(yx + x) = x + y. Hence and by (3) we conclude that
PP ={x,y, x+y, xy, xy +y, yx+ x, xy + x + y} and PP(A) = PP. Thus
p(W) = 5.

Now, assume that e #(3,8,9)\# (4). Then the polynomials x + y, xy,
Xy + ¥, yX + X, xy + x + y are all essentially binary and distinct. By (8) and (9)
we have that POQA) = {x, y, x +y, xy, xy + ¥, yx + x, xy + x + y}. Hence
pAA) = 3.

Lemma 2.10. Let U be a bisemilattice from 7 (3,4)\ % (6). Then p(N) = S iff
A is a member of one of the classes % (10, 11) and % (10,12).

Proof. We can easily see that Z(3, 4, 10, 11) = £ (3, 10, 11) and 2 (3, 4,
10, 12) =%(3, 10, 12). Indeed, if AeRB(11), then x+y = ((xy + »)-
Ox+x)+xy)+xy=x+y+xpIf We#(10,12), then x + y = ((xy + »)-
Ox+x)+xp)+x=((xy+»)x+x)+x)+xy=x+y + xp.

Let p,(™A) = 5. By Lemma 1.4(ii)) and Lemma 2.8(iii) the polynomials x + y,
xy, xy + ¥, yx + x, (xy + y)(yx + x) are all essentially binary and distinct.
Hence p@(A) = {x, y, x + ¥, xp, xy + », yx + x, ()x + y)(»x + x)}. By Lem-
ma 2.8(ii) the polynomial (xy + y)(yx + x) + xis commutative in 2. Hence and
by 4 we get (+Ox+x)+x=xy+y)0x+x)+(x+y)=
= (y+Y)x+x)+xy+x+y=xy+y)x+x)+xy+y)+(x+x) =
= xy + x + y = x + y. Thus the identity (10) holds in 2. By Lemmas 1.4(ii)
and 2.8(iv) we conclude that one of the identities (11) and (12) holds in 2.

Assume that Ae# (3, 10, 11)\#(6). The polynomials x + y, xy, xy + y,
yx + x, (xy + y)(yx + x) are all essentially binary and distinct. By (3) xy + y =
= (xy + y) x. Hence and by (3) and (4) we infer that P{® = {x, y, x + y, xy,
xy+y, yx+x, (xy+y)px+x)}. By (10) and (11) PP = P{®. Hence
POQA) = P® and p,(A) = 5.

Now assume that We & (3, 10, 12)\ & (6). As above we obtain that P{® = {x,
Y, X+, xy, xy +y, yx + x, (xy + y)(yx + x)}. By (3), (4), (10) and (12) we
infer that P{? = P®. Hence PO(A) = P{? and p,(A) = 5.

Proof of the main theorem. We get Theorem?2.1 as a consequence
of Lemma 2.4, Lemmas 2.7, 2.9, 2.10 (and their duals) and Theorem1.1.

3. In this section we describe the free bisemilattices on two generators in the
varieties £ (1,5,7), 8 (6), % (3,8,9), 4 (3, 10, 12). By duality we obtain the free
bisemilattices on two generators in the dual varieties.

1) The free bisemilattice on two generators in the variety £ (1, 5, 7) has seven
elements in the form presented in Figure1 (cf. Figure 6 in [2]).
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XYy +X+Yy

XY+ Xy
X+y
yx+x Xy+y
yX+X Xy+Yy
X Xy Yy x y
Xy
llg;l ” <. ”

Fig. 1

2) The free bisemilattice on two generators in the variety 4 (6) has seven
elements in the form presented in Figure 2.

X y
XY +X+y
Xy
yX+X Xy+y
YX+ X Xys+y
X Xy Y
X+y
XYy+Xx+y
s+ lls. ”
Fig. 2
Xy+xX+y 3
Y X+ X Xy+y U
yX+X Xy+y
X Xy Y
XYy+X+y
", "
Fig. 3
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3) The free bisemilattice on two generators in the variety % (3, 8,9) has seven
elements in the form presented in Figure 3.

4) The free bisemilattice on two generators in the variety 4 (3,10, 11) has
seven elements in the form presented in Figure4.

X+y 5
yX+X X Xy
(xy+y)(yx+x add
YX+X Xy+y
X Xy Yy
(Xy+y) (y X+X)
x+y
“$¢" ‘<.

Fig. 4

5) The free bisemilattice on two generators in the variety 4 (3,10, 12) has
seven elements in the form presented in Figure 5.

X+Yy X Y

YX+X ; Xy+y Xy

(Xy+y yx+x)
yX+X Xy+y
X xy Y
(x y+y)lyx+x)
X*y
", "=,
Fig. 5
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Corollary 3.1. The classes 2 (1,5,7)\%(4), #(6)\%#4), B(3,8,9)\ % (4),
(3,10, 11)\% (6), & (3, 10, 12)\ 2 (6) are all nonempty.

For a given class # of bisemilattices we denote by N,(#") the set of all k for
which there exists a bisemilattice A from 4 such that po(U) = k (see [3]).

Corollary 3.2.
N,(#(1,5,7) ={0,2,4,5},
N,(% (6)) = N,(%(3,8,9)) = N,(#(3,10,11)) =
N,(#(3,10,12)) = {0, 1,4, 5}.
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