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A BOUND FOR THE STEINER TREE PROBLEM
IN GRAPHS

JAN PLESNIK

1. Introduction

Given a graph G with edge lengths, find a tree S in G which interconnects
a prescribed subset B of vertices and has the least possible total length. This is the
Steiner problem in graphs and S is called a Steiner minimal tree for B. As the
Steiner problem is very difficult, one is usually satisfied with an approximate
solution obtainable by an effective method. In this paper, two polynomial
algorithms are considered for finding a tree T for B to approximate the lengthof S.
One of these algorithms computes a minimal spanning tree T for B. We show that
in both cases the ratio of the lengths of T and S never exceeds 2 and in the worst
case tends to 2.

At the beginning of the 19-th century, J. Steiner raised and solved the following
problem: Given three points in the Euclidean plane, find a connecting network of
the minimal total length. The generalization for n=3 points has been studied by
Jarnik and Kossler [17] and now is known as the Steiner problem in the
Euclidean plane (or, generally, in a Euclidean space). As any solution looks like
a tree, one calls it a Steiner minimal tree. Many properties of such trees are
reviewed by Gilbert and Pollak [12].

A later version of this problem, known as the rectilinear Steiner problem, was
first suggested by Hanan [15] in connection with routing wires on printed circuit
boards for electronic components (only horizontal and vertical lines may be used).

The Steiner problem in graphs has been proposed and studied by Hakimi [14]
and by Dreyfus and Wagner [9]. It can be stated as follows: Let G be an
undirected graph with vertex set V(G) and edge set E(G), where each edge
e € E(G) has a positive length L(e); given a set B < V(G) of so-called basic (or
regular) vertices, find a tree S in G containing B and having the least possible total
length L(S) (the sum of the lengths of the edges of S). One can see [15] that this
problem involves the rectilinear Steiner problem as a special case and has also
other applications in problems concerning network design [14]. A connected
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subgraph H of G containing all the basic vertices is usually called a Steiner graph;
if H is a tree, it is called a Steiner tree ; if H has the least possibl- total length, then
H must be a tree and is called a Steiner minimal tree.

All the presented problems are very difficult. More precisely, certain discretized
versions of these problems are NP-complete (see Karp [18] for the problem in
graphs, Garey and Johnson [11] for the rectilinear problem, and Garey,
Graham and Johnson [10] for the problem in the Euclidean plane). Such results
give strong evidence for the impossibility of efficient algorithms for these problems.
Up to the present time, only some special cases have been solved effectively [1, 14,
17].

Here we discuss two heuristic methods. The fiist one is based on finding
a minimal spanning tree of a derived graph. The second method is recurrent. It
consists of a sequence of contractions and is related to a minimal spanning tree too.

2. Steiner trees by spanning trees

Given a Steiner problem with the set B (of the basic points or vertices), we can
easily compute the distance d(u, v) for every two points or vertices u, v e B (for
graphs, see, e.g. [4, Chap. 8]). We obtain a complete graph K(B) with the vertex
set B, where each edge uv has the length L (nv) = d(u, v). Then we can easily find
a minimal spanning tree T of K(B) [4, Chap. 7]. Finally, in the ca e of the
rectilinear or graph problem, the conversion of T to a tree in the original structure
is necessary but it is straightforward. For every edge uv of T in K(B) we choose a
u—v path P, in G with L(P,)=L(uv). The union of all such paths form
. asubgraph H of G, which is connected and contains B (all the basic vertices). Thus
H is a Steiner graph, from which one can choose a Steiner tree T'. Obviously, for
any Steiner minimal tree S we have: L(S)<L(T')<L(H)<L(T). Sometimes
L(T')<L(T), but in the worst case (as we shall see) the equality can occur and
therefore the value L(T) is considered. Excepting the trivial case when |B|=1,
there is L(S) >0 and we can ask for the ratio of L(T) and L(S). More precisely, let
a denote the minimal number such that for all examples of a Steiner problem the
ratio L(T)/L(S)< a. The symbol is specified by an index and we write a,,, OT Q;ecr,
OF Og.pn for the Steiner problem in the m-dimensional Euclidean space, or the
rectilinear problem, or the problem in graphs, respectively Graham and Hwang

[13] have shown that a,, <V3 — 1.73... and examples of Chung and Gilbert [6]
show that a,, = (4 —\/E)/‘\/gz 1.49. .. if m tends to infinity. Further, Chung and
Hwang [7] have proved that a,<3/(2V3+2 — V7+2V3)=1.34. .. Obviously,

a,=2/V3=1.16..., which is the conjectured value for a, [12] Finally, Hwang
[16] has determined @...—3/2. As for graphs, we havc
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Theorem 1. dtyupn=2.

Proof. To prove that ag..n<2, consider a Steiner minimal tree S for a basic set
B in a graph G, where |B| =k > 1. Note that every endvertex of S must be basic.
Choose a basic vertex and denote it by u,. Consider a walk W in S beginning at u;,
containning all the vertices of S, including every edge of S at most twice, and
ending in a basic vertex. Such a walk W can be easily found by using the classical
Tarry or Trémaux algorithm [2, Chap. 4], or a modern version of the latter called
the depth-first search [20]. Let u,, u,, ..., ux be the sequence of basic vertices
ordered in accordance with the first appearance in the walk W. (See Fig. 1, where
the basic vertices are depicted by squares, the tree S is depicted by heavy lines, and
the slight line with arrows shows a walk W in S.) The u; —u, walk W can be
decomposed into k — 1 paths: u; — u, path P, u,— u, path P, ..., ux-1 — ux path
P,_,. The distance dg(u:, 4;+1) does not exceed the length L(P) (i=1, ..., k—1).
Let T be a minimal spanning tree in K(B) and let T’ be the spanning tree of K(B)
consisting of the edges uiu,, uus, ..., u_1ux. Then we can write

L(T)sL(T')=ZL(uith+1) = Zdo (i, i) SZL(P)= L(W)<2L(S).

Hence agaph=<2.

To prove that a.,n=2, it is sufficient to consider the example in Fig. 2, where
we have a graph G with 2m vertices, m basic vertices v, v, ..., V. (depicted as
squares) and each edge has the length 1. The edges of a Steiner minimal tree S are
depicted by continuous lines while those of a minimal spanning tree T by dashed
lines. We see that L(S)=m and L(T)=2m — 2. Hence the ratio L(T)/L(S) tends
to 2 if m tends to infinity. This completes the proof.

Remark. One could suggest the following stronger version of the spanning tree
method: For a fixed q form all K(BuQ) with Q< V(G)- B and |Q|<gq, and
solve the corresponding minimal spanning tree problems. However, a bit more
complicated examples than that of Fig. 2 show that also now the ratio of lengths of
a shortest obtained tree and a Steiner minimal tree tends to 2.

3. A method of contractions

The following observation is obvious.

Lemma 1. If some basic vertices x, y of G are joined by a shortest edge, then
there is a Steiner minimal tree containing the edge xy.

If such an edge exists, then we can shrink it to a basic vertex and we obtain
a smaller graph to consider. Here we shall give another idea of shrinking. In fact,
the well known Kruskal algorithm for minimal spanning trees (see, e.g. [4,
Chap. 7]) uses the same observation. However, in the case of Steiner trees it may
happen that Lemma 1 is not applicable. (Note that the first known minimal
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spanning tree algorithm is due to Bordvka [3]. A good historical survey can be
found in [8].)

Let G be a graph. If G is considered as a (e.g., road) network, then the distance
ds(x, y) of two points x, y € G is defined in the obvious way. (Note that x and y
may be not only vertices, but any points from edges thought as simple curves.)

Fig. 1 Fig. 2

Given a basic vertex v € B and a number r >0, we define the neighbourhood N(v)
of v with radius r to be the set {xe G|ds(v,x)<r}. A point ye G with
ds(v, y)<r is called an interior point of N(v). The set of all points of all
neighbourhoods N(v), v € B, with the same radius r, can be divided into classes as
follows. Two points x € N(u) and y € N(v) belong to the same class C whenever
there is a sequence of neighbourhoods N;, N,, ..., N; such that N(u)=N,,
NinN,#0, ..., No.inN;#0, and Nyj=N(v). A pomt x € C is called an interior
point of C whenever it is an interior point of a neighbourhood included in C; in the
opposite case x is called a boundary point of C. In Fig. 3, we have illustrated an
example, where the basic vertices are depicted as squares, the other vertices as
circles, the boundary points as crosses, and each class for r=1 is in a dotted
covering. (The heavy, wavy, or crossed lines should not be distinguished this time.)

The contraction f(G) of a graph G in a set of vertices B ¢ V(G) with the radius r
is a graph or pseudograph G formed as follows (cf. Fig. 3). Every class C is
contracted to a new basic vertex f(C), i.e. f(u)=f(C) for all y € C. Such vertices
together with those vertices u not belonging to any class of G form the vertex set of
G (here, f(u)=u). An edge v,v, of G generates a new edge f(v,v;) or no edge, in
accordance with the following rules:

(a) If neither v, belongs to a class nor v, belongs to a class, then the edge v,v,
remains unchanged for G with the original length, i.e. f(v,v;) =v,v,.

(b) One of the vertices, say v,, belongs to a class C and the other, i.e. v,, belongs
to no class. Then the edge v, v, contains a boundary point x of C and changes to the
edge xv, of G with the length L(xv,) = L(v,v:)— ds(v, X).

(c) Let v, belong to a class C and v, belong to a class D. Let x and y be the
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boundary points of C and D, respectively, with x, y € v,v,. Then the edge v,v,
changes to the edge xy of G with L(xy) = L(v,v2) — do(vi, x) — ds(y, v2) if
L(xy)>0.

After f(G) has been formed, all loops can be deleted. Analogously, from each
bundle of parallel edges only a shortest one is important and the other can be

deleted.

Fig. 3

Our second heuristic method for finding a Steiner tree of a graph G, for a basic

set B, is recurrent and a reduction to smaller graphs can be described as follows :

1. Find the minimal edge length r, of G, and form classes C,.

2. Form Steiner trees S for BinC; in G\nC, with L(S.,) < 2r,(|B:nG|-1).
(This can be done because a tree on p vertices has p — 1 edges and if for some
two neighbourhoods N(u)nN(v)+# @, then d(u, v)<2r,.)

3. If there is only one class G, stop. Otherwise make the contraction f(G,)
of G, in B, with radius r,. Put G,=f(G,), B,=f(B:) = {f(v)|veB,}, and
W1=f(G) (i=1,..., IBz') .

4. Form a Steiner tree S, for B, in G, (by applying this algorithm). Then combine
S, and the trees S, to a single tree S, by adding no more than X degs,(w.) lines
of length r,. (This can be done because each boundary point of C; has the
distance r, from a vertex of B,nC.)
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To understand this algorithm Fig. 3 can be useful. (Put G,= G and G,=f(G).)
The heavy lines in G, form a Steiner tree S, for B, (depicted as squares) in G, and
the corresponding heavy lines are also in G,. Steiner trees S,; consist of wavy lines.
Each end of a wavy line is a boundary point which in step 4 we join (if necessary) to
a vertex of S;;'by a crossed line.

Note that this algorithm allows to use any effective method which gives shorter
trees S;; or S,. Also we admit to form Steiner trees S;; for B,nC, not only in G,nC,

" (step 2) but in all G, ; sometimes this can give a shorter tree S,; (see S;. in Fig. 3).
Finally, the reader can see that a proper choice from several parallel edges in G,
can provide a shorter final tree S, (cf. edges between w; and w, of Fig. 3). We do
not study these questions. Unfortunately, if |[B,| =1, then our algorithm reduces
basically to step 2. For such cases Fig. 2 shows that the algorithm is at least as bad
as that from part 2. However, as we shall see, it is not worse. We need some
lemmas.

Lemma 2. Let S be a Steiner tree for B= {v,, ..., v«} in a graph G. If B contains
all endvertices of S, then

i degs(vi)=2(k —1).

The Proof is immediate by induction on k.
Lemma 3. Let S, and S; be Steiner trees from our algorithm. Then we have
L(S)<L(S)+ 2’1(|Bll -1).

Proof. In accordance with step 4, we can write
IB,|

L(Sl)SL(Sz) + Z[L(Sll) + n degsz(wi)]'

Using step 2 and Lemma 2, we obtain that:
1B,
L(S)<L(S)+22n(|BinG|-1)+2r(|B.]-1)=
i=1
= L(S2)+2r||B1| - 2r|lel + 2r1(|32| - 1)
and the proof follows.

Lemma 4. Let S* be a Steiner minimal tree of G, for B, and let S% be a Steiner
minimal tree of G, for B,. Then

L(ST)=L(S%)+ (|B:| - Dr..
Moreover, if |B;|>1, then
L(S%)=L(S%)+ |Bi|r.
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Proof. Let Ci, C,, ..., C: be all the classes of G, and let
A(C)=w(1<j<k).

First let |[Bz| =1. Then k =1 and L(S%) = 0. The sole class C, contains |B,|
old basic vertices. Consequently, St has at least |B,| —1 edges and therefore
L(S%)=(|B;| —1)n, as desired.

Now let |B;|>1. Consider a basic vertex w; = f(G). Let $% be the tree Wthh
arises from S% by inserting a vertex into each boundary point of G, which belongs
to S* but is not a vertex of S%. Then the part $%(C,) of $% which belongs to G is
a graph with the length of every edge at least r,. In general, $3(C) is a forest
containing, say, b; old basic vertices. Consider a connected component S%(G), of it.
For every basic vertex u of $%(G), and a fixed vertex x € C;# C, there is exactly
one path in the tree $% from u to x. Assign to u the first edge e of the u — x path.
As no basic vertex u is a boundary point, the edge e belongs to the component
$%(G).. Obviously, if u’+ u is another basic vertex of this component, then the
assigned edge e’ # e. And so, every component has at least as many edges as basic
vertices. Thus, the forest $%(C) has at least b; edges, each of which has the length
at least r, (1<j<k).

Let us denote by f(St) the subgraph of f(G,) with the vertex set f(V(S1))
= {f(v)|lve V(5§%)} and the edge set f(E(S¥)) = {f(viv.)|viv.e E(S%)}. Ob-
viously, f(S%) is connected and contains all the new basic vertices, i.e. B.c
F(V(S1)). (Note that it may contain a cycle.) Therefore, L(f(S%))=L(S%). Hence,
we can write:

k
L(ST)?LU(S?))+ ZrlblBL(Sf)'*’ |BII'1,
I-

which completes the proof.

Theorem 2. If S, is a Steiner tree obtained by the method of contractions and S*%
is a Steiner minimal tree, then

- L(S))<2L(SY).

Proof. Using Lemmas 3 and 4 t—1 times, we obtain:
—1 . -1
L(SH)+ X r(|B]—-1)<L(ST)<L(S))<L(S)+2 erl(‘Bll -1).
i=1 . i=

Supposing that S, is determined in accordance with step 2, we see that L(S,)<
2L(S*) (note that r,(|B:] —1)<L(S%) < 2r,(|B,| —1)). Consequently, we have
L(St)<L(S:)<2L(S%).

Which completes the proof.
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4. Open questions

"It is easy to show that both the presented algorithms are polynomial ones. So the
promised aim is attained. However, we have ensured only a weak approximation of
the length of a Steiner minimal tree. Therefore, a polynomial algorithm giving
better Steiner trees would be of a great interest. We believe that this task will be
solved in the affirmative. (The Euclidean travelling salesman problem can serve as
an excellent example. Namely, Christofides [5] improved the ratio bound 2 [19]
to 3/2.)

Another open question is to decide about the NP-completeness of an approxi-
mate Steiner tree problem. More precisely, does there exist such a ¢ >1 that the
problem of determining a Steiner tree T with L(T)/L(S)<p is NP-complete?
Owing to our results only o <2 are recommended for consideration.
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ONHA TPAHMIIA 119 3AJAYU NEPEBA UWITEMHEPA HA TPA®AX
An InecHuk
Pesiome
IMopn 3apayeit HaxoxnaeHus fepesa LlTeiiHepa noHuMaeTcs: [Ins JAHHOTO MOJMHOXECTBA BEPIIMH
peGepHO-B3BeLIEHHOrO rpada MOCTPOMTH KpaTyaiilyilo cBa3biBaiowyio ceth (fepeBo llITeiinepa).

anIBOIIﬂTCﬂ ABA 3BPUCTHYECCKHUE ANTOPUTMBI NI 3To# 3apayu. [TokazaHo, 4yTo 3THMM aJIrOpUTMAMH

BCEr/a MONYYAIOTCs AEPEBa, KOTOPBIX MJIMHA HE MPEBOCXOAMT ABAXAbI B3ATYIO AJIMHY MUHUMAJILHOIO
nepesa.

163



		webmaster@dml.cz
	2012-07-31T23:09:18+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




