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LEX-IDEALS OF DBi-MONOIDS 
AND GM^-ALGEBRAS 

DANA ŠALOUNOVÁ 

(Communicated by Anatolij Dvurečenskij ) 

ABSTRACT. The notion of a GMV-algebra is a non-commutative general­
ization of that of an MV -algebra. Close connections between GMV-algebras 
and DR£-monoids are used for studying lexicographic extensions of ideals of 
GMV-algebras via those of DR£-monoids. 

1. Introduction 

MV-algebras have been introduced by C. C. C h a n g in [2] as an algebraic 
counterpart of the Lukasiewicz infinite valued propositional logic. G. G e o r ­
ge s c u and A. Io r gu 1 e s c u in [4] and [5], and independently J. R a c h u n e k , 
in [11], have introduced non-commutative generalization of MV"-algebras (pseudo 
MV-algebras in [4] and [5] and non-commutative MV-algebras in [11]). We will 
use for these algebras the name generalized MV-algebras, briefly: GMV-algebras. 

Recall that an intensive development of the theory of MV-algebras was made 
possible by the fundamental result of D. M u n d i c i in [10] that gave a repre-
sentability of M"V-algebras by means of intervals of unital abelian lattice ordered 
groups (^-groups). A. D v u r e c e n s k i j in [3] has generalized this result also 
for GMV-algebras, i.e., he has proved that every GMV-algebra is isomorphic 
to a GMV-algebra introduced by the standard method on the unit interval of 
a unital (non-abelian, in general) £-group. This representation enable us to use 
essentially some methods and techniques of widely developed theory of ^-groups 
also for problems in the theory of GMV-algebras. 

This approach was applied by D. H o r t and J. R a c h u n e k in [6]. They 
described the ordered sets of prime and regular ideals of GMF-algebras in­
duced on principal ideals which are generated by additive idempotent elements 
and studied lexicographic extensions of ideals of GMV-algebras there. However, 
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this technique allowed the results excluding the case of proper lex-extensions of 
ideals of GM"V-algebras, which are comparable and different, contrary to [1] for 
^-groups. It follows from the fact that ideals of a GM"V-algebra need not be 
GM^-algebras, with the exception of principal ideals generated by an additive 
idempotent element. 

However, GMF-algebras are in a one-to-one correspondence with some type 
of bounded dually residuated lattice ordered monoids (DR£-monoids). In the 
paper, lex-extensions and lex-ideals, in a class of -Di^-monoids involving also 
all such which are induced by GMF-algebras, are studied. By methods of the 
theory of DR£-monoids, the results, already corresponding to analogous those 
for ^-groups in [1], are deduced here. Then one can obtain some propositions in 
[6] as special cases. 

2. Definitions and basic properties 

DEFINITION. An algebra A1 = (M,+,0,V, A, -* , r - ) of signature (2 ,0 ,2 ,2 ,2 ,2) 
is called a dually residuated (non-commutative) lattice ordered monoid 
(a DRl -monoid) if and only if 

(Ml) (M, + , 0, V, A) is a lattice ordered monoid (^-monoid), that is, (M, + , 0) 
is a (non-commutative) monoid, (M, V, A) is a lattice, and for any 
x,y,u,v G M , the following identities are satisfied: 

u + (x V y) + v — (u + x + v) V (u + y + v), 

u + (x A y) + v = (u + x + v) A (u + y + v); 

(M2) if < denotes the order on M induced by the lattice (M, V, A) then, for 
any x,y G M , 

x —- y is the least element 5 G M such that s + y > x, 
x -r- y is the least element t G M such that y +1 > x; 

(M3) M fulfils the identities 

((x --> y) V 0) + y < x V y, y + ((x ^- y) V 0) < x V y , 

x —- x > 0, x -— x > 0 . 

Commutative DRl -monoids (called DR£ -semigroups) were introduced by 
K. L. N. S w a m y in [13] as common generalizations of commutative ^-groups 
and Brouwerian algebras. The present definition of a non-commutative extension 
of Di?£-monoids is due to [7]. Also, for basic properties of non-commutative 
Z)i?£-monoids, see [7]. 
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F)J?£-monoids are in a close connection with generalized MF-algebras 
(briefly: GMV-algebras). Recall that GMV-algebras were introduced by J. R a -
c h u n e k in [11], and independently by G. G e o r g e s c u and A. I o r g u l e s c u 
in [5], as a non-commutative generalization of MV-algebras (non-commutative 
MF-algebras in [11] and pseudo MV-algebras in [5]). 

D E F I N I T I O N . Let A = (A,e,-»,~,0,1) be an algebra of type (2,1,1,0,0). 
Set x 0 y = ~(-*x © -iy) for any x,y G A. Then A is called a generalized 
MV-algebra (briefly: GMV-algebra) if for any x, y, z G A the following condi­
tions are satisfied: 

(Al) x © ( y © z ) = ( x © y ) © z ; 
(A2) x © 0 = x = 0ffix; 
(A3) xffil = l = l © x ; 
(A4) -.1 = 0 = ^ 1 ; 
(A5) ->(~x© ~y) = ~(->xffi-iy); 
(A6) x © (y 0 ~x) = y © (x 0 ~y) = (-.y © x) © y = ( -u O y) © a;; 
(A7) ( ^ x © y ) 0 x = y 0 ( x © ~ y ) ; 
(A8) ~-ix = x . 

If the operation © is commutative, then the unary operations -> and ~ 
coincide and A is an MF-algebra. 

If we put x < y if and only if ->x © y = 1, then < is an order on A. 
Moreover, (A, <) is a bounded distributive lattice in which x V y = x © (y 0 ~x) 
and xAy = x 0 ( y © ~ x ) for each x, y G A, and 0 is the least and 1 is the greatest 
element in A, respectively. For basic properties of GMV-algebras, see [5]. 

As shown in [11; Theorem 13], if (A, ©, -», ~ , 0,1,) is a GMV-algebra and if 
we put x —- y = -»y 0 x, and x v- y = x 0 ~ y , then (A, ©, 0, V, A, —-, T- ) is a 
bounded Di?^-monoid with the greatest element 1 (then 0 is the least element) 
satisfying the conditions 

(i) (Vx G A) (1 v- (1 --• x) = x = 1 - - (1 v- x)), 

(ii) (Vx, y G 4 ) (1 - ((1 v- x) + (1 - y)) = 1 - ((1 - x) + (1 - » ) ) ) . 

Also conversely (see [11; Theorem 12]), if (M, +, 0, V, A, —s x-) is a bounded 
DRl-monoid with the greatest element 1 satisfying the previous conditions (i) 
and (ii) and if we set ->x = 1 —- x, ~x = 1 v- x for any x,y e M, then 
(M, +, -i, ~, 0,1) is a GMy-algebra. 
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3. Ideals 

Further, for our purpose, we will consider only bounded D/?£-monoids. In 
accordance to [8], we define an ideal of such a DRi-monoid. 

DEFINITION. Let M be a bounded £it^-monoid and 0 ^ I C M. Then I is 
called an ideal of M if the following conditions are satisfied: 

(I1M) if x,y e J, then x + y el] 
(I2M) if x e / , y e M and y <x: then y el. 

LEMMA 3.1. ([8; Theorem 13]) Let M be a bounded DRi-monoid and 
0 7-= I C M. 27ien I is an ideal of M if and only if I is a convex subalgebra 
in M. 

DEFINITION. Let A be a GMV-algebra and 0 ^ H C A. Then H is called 
an ideal of A if the following conditions are satisfied: 

(I1A) if x,y e if, then x®y eH\ 
(I2A) if x e H, y e A and y < x, then y e H. 

It can be easily seen that the intersection of any family of ideals of a 
DRi-monoid M (a GMV-algebra A, respectively) is still an ideal. For any 
K C M (K C A, respectively), the smallest ideal containing K, i.e. the inter­
section of all ideals / such that K C 7, is called the ideal generated by K. We 
will denote it by I(K). In particular, for any element a of a DRi-monoid M 
(a GMV-algebra A, respectively), the ideal l({a}) =: 1(a) is said to be the 
principal ideal generated by a. 

Denote by C(M) and C(A) the set of all ideals in a Di^-monoid M and 
a GMV-algebra A, respectively. Then (C(jVl),C) and (C(A),C) are complete 
Brouwerian lattices in which infima coincide with set intersections ([8; The­
orem 14] and [5; Proposition 2.11], respectively). 

PROPOSITION 3.2. Let A be a GMV-algebra and $ ^ H CA. Then H is an 
ideal in A if and only if H is a convex subalgebra of the DR£ -monoid induced 
by A. 

P r o o f . Let A = (A, ®, -i, ~,0,1) be a GMF-algebra. Suppose H to be 
an ideal in A. Then it holds that: 

1. OGH. 
2. If a, b e H, then a—-b = - < b © a < a , hence a —- b e H. Similarly, 

ar-b = aO~b<a, therefore a T— b G H. 
3. If a, b e H, then a A b < a V b < a © b G H , hence a A b e H and 

aWbeH. 
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That means if is a convex subalgebra of the induced L)i££-monoid 

( A , 0 , O , V , A , - , v - ) -
Conversely, let I be a convex subalgebra of the DR£-monoid induced by A. 

Then 0 G f and I is closed under the operation © . If a G f, x e A and x < a, 
then x G J from convexity of I. • 

Again in accordance to [8], we define a normal ideal of a bounded J)it£-monoid. 

DEFINITION. An ideal I of a bounded Di?£-monoid .M is said to be normal 
if it satisfies the condition: 

(Vx,y e M)(x -± y E I 4=> x v- y G I). 

Recall the definition of a normal ideal of a GMV-algebra (see [5]). 

DEFINITION. An ideal i f of a GMF-algebra A is called normal if it satisfies 
the condition: 

(Vx,y e A)(-ixOy e H <=> y © ~x G H). 

The above definitions and Proposition 3.2 entail the following lemma. 

LEMMA 3.3. Let A be a GMV -algebra. A subset H C A is a normal ideal of 
A if and only if H is a normal ideal of the induced DRl-monoid. 

4. Lex-extensions of f}jR£-monoids 

An ideal i f of a GMV-algebra A is called prime (see [5]) if i f is a finitely 
meet-irreducible element in the lattice C(A). The same property of an element of 
the lattice C(M) is used for the definition of a prime ideal of an i)it!£-monoid M 
(see [9]). 

Let 0 ^ a G A and H G C(A). Then H is called a value of a if it is maximal 
with respect to the property "not containing a". Denote by val^(a) the set of 
values of a. Further, H G C(A) is called a regular ideal of A if H is meet-
irreducible in C(A). By [5], H G C(A) is regular if and only if i f G val^(a) for 
some 0 7-- a G A. Denote by V(A) the set of regular ideals of A. Then V(^4) is 
a root system and, moreover, P|V(*4) = {0}. 

If M is a Dit^-monoid, then a regular ideal and values of 0 ^ a G M will 
be defined in a similar way as in GMV-algebras. 

An ideal if of A is said to be special if H is the unique value of some 
0 ^ a G A. Such an element which has only one value is called a special element. 
We define a special ideal and a special element of a DR£-monoid M analogously. 
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Let i b e a GMI^-algebra and X C A. The set 

X1- = {a e A: a A x — 0 for each x e X} 

is called the polar of X in A. For any a e A, we write a-1 instead of {a}1-. A 
subset Y of A is a pO/ar m *4 if Y = X-1 for some I C i . 

If jVi is a Z)/W-monoid, then a pO/ar m jVf is defined in the same way. 
Further, let us consider Z)/?£-monoids satisfying the inequalities 

(x - - y) A (y - * x) < 0 , 
(*) 

(:r v- y) A (y v- x) < 0 . 

Obviously, for a bounded Z)/?£-monoid, the inequalities (*) can be written in 
the following way: 

(x - - y) A (y - - x) = 0 , 

(x v- y) A (y v- a;) = 0 . 

Any bounded DR£-monoid induced by a GMV-algebra satisfies (*). 

THEOREM 4 . 1 . /e£ jVf be a bounded DR£-monoid satisfying (*) and I e 
C(M). Then the following conditions are equivalent: 

(1) / is a prime ideal and it holds that x > y for each x e M\I and y e I. 
(2) I is a prime ideal and I is comparable with every J e C(M). 
(3) / contains all proper polars in M . 
(4) / contains all minimal prime ideals. 
(5) xL = {0} for any x e M\I. 
(6) Every element in M\I is special. 

P r o o f . 
(1) => (2): Let KeC(M), K £ I and xeK\I. Then / C I(x) CK. 
(2) ==> (3): Let B be a polar such that B <£ I. Then I C B (because 

B e C(M)). Let us consider yeB\I.lfzeyL, then z A y = 0, and hence 
z e I. That means yL C / and therefore also i?-1 C / . From this we get 
J5 1 CB. It means B = M. 

(3) :=> (4): By [9; Proposition 26], every minimal prime ideal of a 
Z)it^-monoid is a join of polars. 

(4) -=> (5): Let x £ I. If P is a minimal prime ideal in M, then P C / , 
hence x £ P , and s o ^ C P . Since the intersection of all regular ideals in M 
is {0} and every regular ideal is a prime ideal, it holds also that the intersection 
of all minimal prime ideals is {0}. Therefore xL = {0}, too. 

(5) ==> (6): Assume x e M\I and P G val(x) to be such a value for which 
/ C P . Let N e val(x), N ^ P. Consider xeP\N, y eN\P.lt holds that 

x = (x --* (x A y)) + (x A y), y = (y --- (x A y)) -f (x A y ) , 

326 



LEX-IDEALS OF DI^-MONOIDS AND CMV-ALGEBRAS 

and at the same time, 

(x -^ (x A y)) A (y - - (x A 2l)) 

= ((x - - x) V (x -* 2/)) A ((2/ - - x) V (2/ -* 2/)) 

= (0 A (2/ --• x)) V (0 A 0) V ((x - - y) A (y - - re)) V ((x - - 2/) A 0) . 

Since M fulfills the conditions (*), we have 

(x - - (x A 2/)) A (2/ - - (x A 2/)) = 0 . 

Moreover, x —- (x A y) £ IV, 21 -^ (x Ay) <£. P. Thus y -^ (x A y) <£ I, but 

(2/ —- (x A 2/)) ^ {0}, a contradiction. Therefore, each element from M \ 7 is 

special. 
(6) = ^ (5): Let x G M \ I and P be the unique value of x . Then I CP. 

Consider 2 / G x ± . I f x V 2 / G P , then 0 < x < x V y entails x G P, which is 
a contradiction. Hence x V 2/ G M \ P and therefore P C IV where IV is the 
unique value of the element x V 2/• At the same time, from x Ay = 0 and x ^ P 
we have y e P. 

If it held x V 2l ^ I(x), then it would be 7(x) C IV and therefore x V 2/ G 
7(x) V P C IV, a contradiction. Hence x V 2/ G J(x), and so also 2/ G .I(x). But 
then I(x)L = x1- C 7(x) and from this it follows that xL = {0}. 

(5) = > (1): Let x G M \ 7 , a G I. It holds that x = (x - - (xAa))-f-(xAa), 

a = (a —- (x A a)) + (x A a ) , and since x A a G / , it holds that x —- (x A a) ^ 7, 

thus (x —- (x A a)) --- {0}. Moreover, from the assumption of validity of 
the conditions (*) we obtain (x —- (x A a)) A (a —- (x A a)) = 0, and so 
a —- (x A a) --= 0. Therefore a - - - x A a < x . • 

DEFINITION. Let M be a bounded Di^-monoid with the properties (*) and 
let I e C(M) satisfy any of the conditions from Theorem 4.1. Then M is said 
to be a lex-extension of the ideal I. 

PROPOSITION 4.2. Let M be a DRl-monoid, I e C(M) and 0 ^ a e I. 
Then a is special in M if and only if it is special in I. 

P r o o f . It follows from the fact that the correspondence <p: N h-> IV Pi I 
(N G va l M (a ) ) is a bijection of vslM(a) onto val7(a). • 

For GMF-algebras, an ideal H is a GMF-algebra with the operation ©, 
which is the restriction of the operation 0 from A, if and only if H = Xe, 
where e G B(A) (i.e. the set of all additively idempotent elements in .4) and 
Xe = ([0, e ] ,0 , -ie , ~ e , 0 , e ) , -iex = -ixAe, ~ e x = ~xAe (see [12; Lemmas 6, 7]). 
For this reason, an analogy of [1; Proposition 7.1.3] could not be expressed for 
arbitrary C,D G C(A), C C D ([6]). 

For .Di?£-monoids, an ideal is a subalgebra and the following proposition 
holds. 
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PROPOSITION 4 .3 . Let M be a bounded DRi-monoid with (*), / , J G C(M) 
and J C I. Then M is a lex-extension of J if and only if M is a lex-extension 
of I and I is a lex-extension of J. 

P r o o f . It follows from Theorem 4.1 (by using the condition (6)) and from 
Proposition 4.2. D 

DEFINITION. The join of all proper polars in the lattice C(M) is called the 
lex-kernel of K)i?£-monoid M and it will be denoted by l e x M . 

Remark 4 .4 . By Theorem 4.1, it holds that: 

a) l exM is the supremum of all minimal prime ideals in C(M)\ 
b) if I G C(M), then M is a lex-extension of I if and only if l exM C I. 

DEFINITION. A Di^-monoid M is said to be lex-simple if l exM = M . 

PROPOSITION 4 .5 . In any bounded DRl-monoid M with the property (*), 
l exM is the greatest ideal in M which is lex-simple. 

P r o o f . If l exM is a lex-extension of I G C(M), then, by Proposition 4.3, 
M is also a lex-extension of / . Hence lex M C I, and therefore lex M is lex-
simple. 

Let J G C(M) be lex-simple and assume lexM C J . Then J is a lex-
extension of l exM, thus lex J C J , which is a contradiction. But lexAi" is 
comparable with every ideal of M by Theorem 4.1. For this reason, J C l e x M . 

D 

DEFINITION. An ideal / G C(M) is called a lex-ideal of M if l ex / ^ I. 

PROPOSITION 4.6. An element a G M is special if and only if 1(a) is a 
lex-ideal of M. 

P r o o f . Let a be a special element in M and N be its only value. Then 
N n 1(a) is the only value of a in 1(a) and consequently, N n 7(a) is the 
greatest proper ideal in 1(a). Hence 1(a) is a lex-extension of N n 1(a), i.e. 
lexJ(a) 7-= 1(a), by Theorem 4.1 (the condition (2)). 

Conversely, suppose lex 1(a) ^ 1(a), that is a £ lex 1(a). By Theorem 4.1 
(the condition (6)), we get a to be special in 1(a), therefore a is also special 
in M. D 

THEOREM 4.7. Any two lex-ideals in M are either comparable or orthogonal 
or their intersection is a principal ideal generated by an idempotent element. 

P r o o f . Let I and J be lex-ideals in M. li I £ J , then there exists 
0 / a G / such that a £ J U lex I. Analogously, if J $£ I, then there exists 
0 ^ b G J such that 6 £ I U lex J . Obviously, I n J G C(M), therefore I n J is 
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comparable with l e x / . If ID J C l e x / , then ID J < a. In case that lex I C J n J , 
then I is a lex-extension of In J and therefore also InJ<a. We would prove 
that I f) J < b analogously. 

However, a A b G / n J and a A b is greater or equal to every element from 
7 n J , therefore aAb is the greatest element in In J . Hence In J = (aAb], and 
so If) J is a principal ideal generated by idempotent element a A b . ( I f a A b = 0, 
then I and J are orthogonal.) • 

Remark 4 .8. Only the first two possibilities from Theorem 4.7 can arise in the 
case of ^-groups, because there does not exist any idempotent element a ^ 0 
there. 

THEOREM 4.9. Let I,Je C(M) and I C J . Then J is a lex-extension of I 
if and only if bL = JL for any b G J \ I . 

P r o o f . Suppose J to be a lex-extension of I and b G J \ I. It holds that 
J 1 C i)1 . Let z G bx. Then b A z A y = 0 for all y G J . Therefore using 
Theorem 4.1(5) we obtain z Ay = 0 for any y e J, that means z € JL and 
therefore ^ C J 1 . 

Conversely, assume b1 = J 1 for every b G J \I. Let b € J \ I , c G J and 
bAc = 0 .Then cG J n b x = J n J 1 - = {0}, whence c = 0. Therefore b1 = {0}, 
which yields, by Theorem 4.1(5), J is a lex-extension of I. • 

THEOREM 4 .10. If {0} 7- / G C(yVx) and J G C(.M) zs a lex-extension of I, 
tfien J 1 = J x . 

P r o o f . Let 0 7- a G / . Consider i G I 1 and x G J \ I. If 6 A x g 7, 
then b A x > a and hence a = b A a = 0, which is a contradiction. Therefore 
b A x G / n J-1 = {0}, thus b A x = 0. That means 7 1 C b1 = JL . • 
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