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OSCILLATION THEOREMS OF COMPARISON
TYPE OF DELAY DIFFERENTIAL EQUATIONS
WITH A NONLINEAR DAMPING TERM

S. R. GRACE

(Communicated by Milan Medved')

ABSTRACT. In this paper, we study the oscillatory behaviour of the solutions
of delay differential equations of the form

d 1 d d _1 d

:ﬁa—”_—l(t—)a...—dzmam(t)—kf(t,r(t—g),%m(t—h)} =0, n iseven

by comparing with certain differential equations of the same or lower order whose
oscillatory character is known. The obtained results can be applied to the delay
differential equation

d4_1 d_1 d.
dana @ Ao a®

+a(t) (2t — 9™ (| ot — W)™ ) sena(t — 9) = 0,

where m; and my are positive constants.

1. Introduction

We consider the functional differential equation

Lnx(t) + f(t,m(t - 9), ic(f — h)) =0, n is even, (' = —(%— ), (E)
where Loz(t) = x(t), Lix(t) = a—;@j(Lk_lm(t))’, kE=12,...,n, a, = 1,

ai: |ty,00) — (0,00), i =1,2,...,n— 1, f: [tg,00) x R? — R = (—o00,00) are
continuous, g and h are positive constants and h > g. We assume that:

oC

(1) [ai(s)ds=o0,i=12,...,n—1,
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S. R. GRACE

(2) there exist a continuous function q: [tp,oc) — (0, x) and real con-
stants m; and ms, mq > 0 and mo > 0 such that

f(t xy,ao)sgnay > q(t)(|aa|™) (Jo2]™?) for ay #0.

The oscillatory behaviour of functional differential equations has been intensivelv
studied in recent years. Most of the literature on this subject has been concerned
with equations of type (E) and/or related equations, specially when f satisfies
condition (2) with mo = 0, see [1], [5], [7] and [8], and the references cited
therein. It seems that very little is known regarding the oscillation of equation
(E) when f satisfies condition (2) with my # 0. see [2]; [1], [10] and [12]. and
the references cited therein. In this paper, we proceed further in this direction
to establish some new oscillation results for equation (E). Theorems 1 and 2
are concerned with the oscillation of equation (E) via comparison with the
oscillatory behaviour of two equations of order n and n — 1, and in Theorem 3.
we reduce the problem of the oscillation of equation (E) to the problem of
the oscillation of a certain set of first order equations and the oscillation of all
bounded solutions of certain retarded equation of order n — 1.

The domain of L, D(L,) is defined to be the set of functions
a: [Tp,00) — R such that L;z(t), j = 0.1,...,n. exist and are continuous
on [T,,00), T, > tg. In what follows, we consider only the *nonconstant™ soh-
tions in D(L,,), of equation (E). A solution of equation (E) is called oscillatory
if it has arbitrary large zeros, otherwise, it is called nonoscillatory. Equation
(E) is said to be oscillatory if all its solutions are oscillatory.

2. Main results

We begin by formulating preparatory results which are needed in proving our
main results.
For functions p;: [tg,00) = R, i =1,2,..., we define

]():l.

t

Li(t,s;pis- . p1) = /1),;('(1)1,;1('11,, SiPi ts.-.,p1) du. P=1.2.000.

S

It is easy to verify that for i =1,2,...,n -1

and

s

The following two lemmas will be needed in the proofs of the main resnlts.
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OSCILLATION THEOREMS OF COMPARISON TYPE ...
LEMMA 1. If z € D(L,), then for t,s € [ty,00) and 0 <1< k <mn

k-1
(i) Lix(t) = X2 Li—i(t,saip,. .., a5)L;(s)
j=i

t
+ [ Tpeiz1(t,wsaign, . -, ap—1)ak(u) Lypz(u) du.

k1
(i) Liz(t) = > (=)7L —i(s, t; a5, ..., aip1) Ljz(s)

Jj=t

S
(=1 [ Lcima(u, tag—1, .. aip1)ag(u) Li(u) du.
t
This lemma is a generalization of Taylor’s formula with remainder encoun-
tered in calculus. The proof is immediate.

LEMMA 2. Suppose conditions (1) and (2) hold. If x € D(L,,) is of constanl
sign and is not identically zero for all large t, then there exist a t,, >ty and an
integer m, 0 <m <n, with n+m even for x(t)L,x(t) nonnegative, or n+m
odd for x(t)L,x(t) nonpositive, and such for every t > t,

m >0 implies  z(t)Lyx(t) >0 (k=1,2,...,m),
and
m<n—1 implies (=)™ *z(t)Lyx(t) >0 (k=mm+1,...,n).

This lemma generalizes a well-known lemma of Kiguradze (see [6]) and can
be proved similarly.
Next. for t > T > #,, we put

'
AT = /L:_j(z‘,, s34, ., aim1)ai($) Ly —i— 1 (8501, ..., aiq) ds
,'I.
for 1 >j, ¢=1,2 and 1 =1,2,...,n—1,

and
!

RIt, T = / ay(s) ds.
7
In the following theorem, we give a sufficient condition for the oscillation of
the damped equation (E) via comparison with undamped equations of the form

L) + ey (ay (1= ) ™ q(t) (Ja(t = )™ ) sgnalt —g) =0 (Ey)
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find
Myny(t) + c2(ar(t — b)) q(t) (Jy(t = h)|™2) sgny(t — h) =0, (E.)

where Mo = y(t), Myy(t) = ﬁ(t)(lwkdy(t))/, k=1,2...,m;m=n-1.

'5k(t) =ar+1(t), k=1,2,...,n—1 and ¢; and cp are positive constants.

THEOREM 1. Let conditions (1) and (2) hold. If for every ¢, > 0, equation

(E1) is oscillatory, and for every co > 0, every bounded solution of equation
(E2) is oscillatory, then equation (E) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of equation (E). Assume
z(t) >0 and z(t — g) > 0 for t > t,.

By Lemma 2, there exist a t; > t, and an integer N € {1,3,....n—1} such
that

Liz(t) >0 for t>t;, (k=12,...,N),

' (3)
(DN *Lez(t) >0  for t>t;, (k=N,N+1,....n).

Suppose that N > 1. From (3), we see that Lix(t) is positive and increasing
for ¢ > t;. There exist a t5 > t; and a constant A > 0 such that

z(t —h) > Aay(t —h)  for t>ts. (4)
Using (2) and (4) in equation (E), we get
Lnz(t) + A™ (a1(t — b)) " q(t) (|z(t — 9)|) " sgna(t —g) <0 for t>1,.
But, in view of [3] and [8], it follows that the equation
Lpz(t) + A™ (a(t — h))meq(t)(lx(t - g)i)m1 sgnz(t—g) =0 for t >t
has a positive nonoscillatory solution, a contradiction.
Next, let N = 1. Since z(t) is an increasing function for ¢ > t,, there exist

a t3 > t; and a constant B > 0 so that

z(t—g) > B for t>1ty. (:

Using (2) and (5) in equation (E) we get

Lox(t) + B™q(t)(2(t —h)™ <0 for t>t5,
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or
Laz(t) + B™q(t)(ai(t — h))™* (Liz(t — h))™ <0 for t>t.
Setting y(t) = Liz(t), t > t3, we have

Moy(t) + B™q(t)(ar(t — h))™ (y(t —h))™ <0

Clearly, y(t) is a positive and decreasing function for ¢ > t3. Applying
[11; Corollary 1], we see that the equation

Myy(t) + B™q(t)(ar(t — b)) (y(t — k)™ <0,  for t>ts

has a bounded, eventually positive and decreasing solution, a contradiction. This
completes the proof.

In the following result, we replace equation (E3) in Theorem 1 by the equa-
tion

Myw(t) + (ar(t — k)™ (R[t — g, T1) ™ q(t) (lw(t — g)|™ ™) sgnw(t — g) = 0,
(E3)

where Al,, is defined as in equation (E3).

THEOREM 2. Let conditions (1) and (2) hold. If, for all ¢y > 0, the equation
(Ey) is oscillatory and for all large T with t > T + g all bounded solution of
cquation (E3) are oscillatory, then equation (E) is oscillatory.

Proof. Let z(t) be a nonoscillatory solution of equation (E), say x(t) > 0
and x(t —g) > 0 for t > t5. As in the proof of Theorem 1, there exist a t; >
and an integer N € {1,3,...,n — 1} such that (3) holds. Next, we consider the
two cases: N > 1 and N = 1. The proof of the first case is similar to that of
Theorem 1 and hence is omitted. Now, we consider the case N = 1. From (3)
we see that the function Lz is decreasing on [t;,00). Next, for ¢ > t; we have

() —x(ty) = /g(—:).llc
= ( al(s Liz(t) —/(ag(s)/ 1(u )du)Lzr( ) ds
2 Ll.l for ¢ 2 tl . |
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There exists a t, > t; so that
z(t —g) > Rt — g, t1]L1x(t — g) for 1t >12. (6)
Using (6) in equation (E) and the fact that Liz(t) is a decreasing function on

[t1,00) and h > g, we obtain

Lyr(t) + (Rlt = g,0])™ (as(t = 0)™ (Lur(t = )" "™ <00 for 1210,

Next, we set v(t) = Liz(t), t > to; we get

My v(t) + (R[t - g,tl})m1 (ar(t - hf))mz (v(t - g))mﬁ'”" < 0.

The rest of the proof is similar to that of Theorem 1 (the case N = 1) and hence
is omitted.

In the following theorem, we replace equation (E;) by a set of first order
equations

y(t) + Qilt. TI(ly(t — )" +"2) sgny(t ~g) = 0. T islarge.  (Fyo

where Q[t,T] = (ar(t — h))"* (At — g. 7)™ (Auilt = h T 7 =35,
...,n — 1, and obtain the following oscillation criterion for equation (k).

THEOREM 3. Let conditions (1) and (2) hold. If for all large 1" with t > T~y .
the equations (Eq;1), i = 3,5,....n—1 arc oscillatory and all bounded solutions

of equation (E3) (or equation (Ez), ¢ > 0) are oscillatory. then equation (17
1$ oscillatory.

Proof. Let x(t) be a nonoscillatory solution of equation (L. say r(f) > 0
and 2(t —g) > 0 for ¢t > {y. As in the proof of Theorem 1, there exist a | > 1.
and an integer N € {1,3....,n — 1} so that (3) holds. We consider the twao
cases: N =1 and N > 1. The proof of the case N = 1 is similar to that of
Theorem 1 (or Theorem 2) and hence is omitted. Next. we consider the case
N > 1. From Lemma 1 (ii) , we get

n—2

Lyw(s) = Z( »L)-"“‘\‘/., A{tostagooo Gy VLot
—

n
i

) SN -
(=1 { / TN —oluosia,, oo ooy ydi, o d, et d

for 1 >s52>1,.
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Using (3) and the fact that L, _,x is decreasing function on [t1,00), we obtain

1

Lye(s) > / Ty—n_o(u,s;a,_o. ... yaN41)an—1(u) du L, _yx(t)

S

or

L‘\',I'(h’) 2 17,71’\,7[(t7S;(lr”__l,. .. ,(I,N+1)L,,,1.'If(t), t Z S Z "l . (7)

On the other hand, from Lemma 1 (i), we have

N—-1
r(t) =" It tisar,. .. a;)Lie(ty)

=0
t
+ / In_i(t,s5a,, ..., an—1)an(s)Lyz(s) ds
3
or
t
xr(t) > /IN;I(t,s;al,...,aN_l)aN(s)L\/x(s) ds, E>t . (8)
[

Combining (7) and (8) we get

;L'(t) 2 A],N[t, f/l][.r”,_l.’lf(t) for t 2 f,l .

Also, from Lemia 1 (i), we have

N-1
ll(f) = !: Z ]yj_l(f,fl; as, ..., (I,_]‘)L_I';‘L‘(t])

J=1
L

-}*/[1\’,,2(1‘,,(5';(12....,(Ir/\fﬁl)(LN(S)LN.'IT(S) ds|ai(t)

ty

or
Ii(ﬂ > a (t) / [N';g(/. Sio, .. AN )(1’:\’ (',S’)LA/V.]‘(S‘) ds . (’{)}
)
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Combining (7) and (9) we obtain
z(t) > ay(t)Ag n[t, t1]Lo_1z(t)  for t>t;.
There exists a t; > t; so that
z(t—g) > Ain[t — g, t1]Lnrz(t —g)  for t>1t, (10}
and
z(t—h) > ai(t —h)Ag N[t — hyt1]Ln_qx(t—h)  for t>t,.

Using the fact that L,_;z is a decreasing function on [t;,00) and h > g. we
have

z(t—h)>ay(t —h)Ag N[t — bty Lo 1z(t —g)  for t>ts. (11)
Now, using (10) and (11) in equation (E), we get

an(t) = ~—f(t,:l?(t - g)v é(t - h))
< —q(t)(z(t — g))™ (z(t — k)™
< —q(t)(Ai,n[t — g, 1)) (art — )™ -

(Ao [t = hta])™ (Lnyz(t — g)™ ™™ for t >ty

Setting y(t) = Lp—1z(t) yields

ma

y(t) + q(t)(ar(t =)™ (AL n[t = g, 1)) ™ (A2 N[t — by 1a])
C(yt—g)™ T <0 for t >ty
But in view of [11; Corollary 1], each of the equations (E4; N), N = 3.5....

..,n—1, has an eventually positive and decreasing solution, which is a contra-
diction. This completes the proof.

The following results are immediate consequences of Theorem 3. The Corol-
laries below follow readily from results in [1], [7] and [9].

For all large T > ty with t > T + g, we put

Qi[t,T) = (ai(t — k)" (R[t — ¢,T]) " q(1).
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COROLLARY 1. Let conditions (1) and (2) hold and my+my < 1 . Moreover,
suppose that for all large T with t > T + g

oC

/QN[s,T] ds = oo, for N=3,5...,n—1, (12; N)

and

llmlnf / n—2(8,8 = gian_1,...,a2)Q1[s,T] ds > 0. (13)
t—g
Then equation (E) is oscillatory.

COROLLARY 2. Let conditions (1) and (2) hold and my +my = 1. In addi-
lion, we assume that for all large T with t > T + ¢

llmmf /QN ] ds >% for N=3,5...,n—1, (14; N)

and for some 1 =0,1,...,n —2

'
Jim sup / Li—i—a(s,it—gian—1,....aip2)i(t — 9,8 — g;Qi41,...,a2) -

[ ==
=g

-Qi[s,T] ds > 1.
(15)

Then equation (E) is oscillatory.

Remark 1. From the known oscillation criteria for undamped equations
of type (E) (i.e., equation (E) with my = 0) in [1] and [7] and the references
cited therein, we see that Theorem 1 applies to equation (E) with m; > 0 and
0 < my < 1 while Theorems 2 and 3 are applicable to (E) with 0 < my + my

< 1.
The following example is illustrative:

Ioxample 1. Consider the fourth order differential equation

Letiiy 231 ,-13/2 (00 p\L/2\Ma (s \—my/2
(/ (/ (f”lﬁ)) ) ) + 35t =) E - g) (Es)
(lx(t = g) I’"l)([.z/:(t —h)|"*)sgna(t —h) =0, t>g,
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where g, h, m;, j = 1,2,3,4 are real constants. my >0, m, >0 and g »n
> 0. It is easy to check the following;:
(i) when ms =0, my - m3 >3 and m; > 1, equation {l.5) is oscillaton,
by [1; Theorems 2 and 4] and [7; Theorems 3.2 and 5.1
(ii) when ms > 0 and %(13 — iy +ms - 2ms) <y o, <L
equation (Es) is oscillatory by Theorems 2 and 3:
(i1} when my =my4 >0 and my = my > 0,
equation (Ej5) has a nonoscillatory solution «(f) = (' -.
Thus. we conclude that the damping term which appeared in equation (k-
(i.e., equation (Ej) with msy # 0) plays iinportant role in preserving or disrupt-
ing the oscillatory character of undamped equation (L) (i.e.. equation (l-:
with m, =0).

Theorems 1-3 applied to the special equation

1 ! / i ’ B .
(al(t) Z (t)) + f(f!(z‘ g). a(t h)) = () (F,s

(i.e., equation (E) with n = 2) yields the following corollary.

COROLLARY 3. Let conditions (1) and (2) hold. If for all larqc 1T cecry
bounded solution of the equation

§(0) + QU TI(ly(t — g)™ =) s y(t — ) =0 (E)

is oscillatory, or for all large T and every ¢ > 0, all bounded solutions of the
cquation

O(t) + e(ay (t — h))mzq(t)(

\

are oscillatory, then equation (Eg) is oscillatory.

o(t — )" ) sguoe(t —h) =0. (Fa

Remark 2. In view of Corollaries 1 and 2, one can easilyv see that Coro -
lary 3 is an extension of our results in [4] and some of the results in 12

Remark 3. From the proof of Theorem 3. we see that Theorem 3 remains
valid when the constant ms in condition (2) is identically zevo. Le.. [ satistics

iml

Soey o) senay = gt . my >0 and o 0. Cl

where ¢ is defined as in condition {2).
In this case. we establish a criterion for the oscillation of caquation < whieh
Quproves our eaviicr sesudf i

i 7
i ]

Now  we stato this resnid by notine ot o

! ¢ f P [ ?
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THEOREM 4. Let conditions (1) and (16) hold. If for all large T and N -
[ A n—1, the equations

y(1) + Cilt, T)(ly(t = g)I"™ ) sgny(t —g) = 0 (17; N)
arc oscillatory, then equation (E) is oscillatory.
Proof. It follows from the proof of Theorem 3, and hence is omitted.
Theorems -3 seems to be new even when specialized to the equation
() + f(txlt — g), r(t— h)) =0,

for which condition (2) is satisfied. So, we state them below as corollaries by
noting that i this case for ¢ > s

n is ever, (Fy)

L, (tsiape...oay 1) =1, _((t,siay,_1....,

~

Next. for all large T pys O < p; <1, 0= 1.3,.... n — 1 such that

QJ [f})l] = M f“”(](l) .
(2,'[{,1),’] == ]),'[\-[tb)(](t;) .
where
B=(n—-1)m;+(n—2)ma,
and
. |
[\’ 7 R P e mo /. . [T
(n—1)m(n—2)m2((i — 1)!) ((1 — 2)!‘) : (('11, —7— 1)1 ’

COROLLARY 4. Suppose that condition (2) holds. If for cvery p;, O < p; < 1

P (R n — 1. the equations

g+ Qi pil(ly(t = @)™ T2 ) sguu(t — g) = 0. for i=3.5....n—1.
(18: N}

are oscillatory and every bounded solulion of cither

w1 L Q pil(Jw(t - _(j)l""1+”"2) sgnw(t —g) =10

p Y cq(ty (ot - M=)y segne(t - h) == 0. for cocry > 0. (20)

csoscdiciory then equaiion (KoY is osciliniory

itemark o One ean draw more coroliaries from 1 iicorems 1

ioosimiiae
to those oiven above. Heso we omiit the detalis.

-
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