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CANTOR EXTENSION OF AN ABELIAN CYCLICALLY
ORDERED GROUP

STEFAN CERNAK

The cyclic order on a set P is a ternary relation [x, y, z] on P with certain
properties. Cyclically ordered sets where investigated by V. Novak and
M. Novotny (e.g., [6], [7]. [8]).

V. Novik [7] defined a completion of a cyclically ordered set that was
constructed by means of regular cuts. The method is analogous to that of
forming Dedekind cuts to obtain the MacNeille completion of an ordered set.

L. Rieger [11] introduced the notion of a cyclically ordered group (cf. also
L. Fuchs [3]). Each linearly ordered group can be considered a cyclically ordered
group. A representation theorem for cyclically ordered groups was proved by
S. Swierczkowski [12].

Each cyclically ordered group G possesses a largest linearly ordered sub-
group; this will be denoted by G, (see Pringerova [10]).

Let K be the additive group of all reals ae R such that 0 < a < 1, with the
group operation defined as addition mod 1. For a, b, ce K we put [a, b, ¢] if and
onlyifa<b<corb<c¢<aorc<a< b;then Kisa cyclically ordered group.

Let G be an abelian cyclically ordered group. In the present paper we define
the concept of a convergent (fundamental) sequence in G in such a way that it
coincides with the concept of an o-convergent (o-fundamental) sequence
provided G is a linearly ordered group. If every fundamental sequence in G
converges, then G is called C-complete.

It will be proved that G is C-complete if and only if some of the following
conditions is fulfilled:

(1) G is finite.

(i) G is isomorphic to K.

(iii) G, # {0} and G, is C-complete.

We next define the notion of the Cantor extension Cant G of G. We prove that
Cant G does exist for each abelian cyclically ordered group G and that it is
uniquely determined (up to isomorphisms leaving the elements of G fixed). Also
a constructive description of Cant G is given. The method is analogous to that
which was used for lattice ordered groups by C. J. Everett [2] (cf. also L. Fuchs
[3], F. Papangelou [9]) and in [1] by F. Dashiell, A. Hager and M. Henriksen.
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Some questions concerning covergence in cyclically ordered groups were
investigated by M. Harminc [4].

1. Preliminaries

Let us recall the definition of the lexicographic product of linearly ordered
groups. Let A, B be linearly ordered groups. The cartesian product G of the
groups A and B is made into a linearly ordered group as follows: if (a;, b)) €
€G (i =1, 2), then we put (a,, b)) < (a,, b,) if and only if q, < a, or ¢, = a,,
b, = b,. Then G is said to be the lexicographic product of linearly ordered
groups A and B. We shall use the notation G = A< B.

Let G be a linearly ordered group, N the set of all positive integers, ge G and
(g,) a sequence in G (i.e. g,€G for each ne N). We say that (g,) o-converges

to g (or g is an o-limit of (g,)) and we write g,,—”—> g if for each €€ G, € > 0 there
exists nye N such thatg — e < g, < g + eforeachne N, n = n,. A sequence (g,)
is said to be o-fundamental if for each €€ G, € > 0 there exists n,e N such that
—&£<g,— g <& for each m, ne N, m, n 2 n, (see [5]). Every o-convergent
sequence is o-fundamental. If every o-fundamental sequence is o-convergent,
then G is called o-complete.

Now we describe the Cantor completion method of G (see [5]). A sequence
(g,) 1s said to be o-zero if g,,L» 0. Let H%(E®) be the set of all o-fundamental
(0-zero) sequences in G. For all (g,), (h,)e H® we put (g,) + (h,) = (g, + h,).
Then His a group and E° is an invariant subgroup of H°. The factor group
H°/E° can be made into a linearly ordered group by defining the order relation
in the following way: (g,) + E° < (h,) + E°if and only if there exists nye N such
that g, < h, for each ne N, n = n,. This linearly ordered group will be denoted
by C(G) and called the Cantor extension of the linearly ordered group G. The
coset of C(G) containing a sequence (g,)€ H® will be denoted by (g,)°. The
following assertions hold true (see [5]):

(@) C(G) is o-complete.

(B) G is a subgroup (endowed with the induced order) of C(G).

(y) Every element of C(G) is the o-limit of some o-fundamental sequence in G.

(0) Let (g,) be a sequence in G. lfg,,—z* 0 in G, then g,,—L> 0 in C(G).

Let G be a group with the group operation +. A ternary relation [x, y, z]
which is defined on G is called a cyclic order on G if the following conditions
are fulfilled:

I If x #y # z # x, then either [x, y, z] or [z, y, x].

Il [x, y, z] implies [y, z, x].

L. [x, y, z] and [y, u, z] imply [x, u, z].
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IV. [x, y, z] implies [a + x + b, a+ y + b, a + z + b] for each q, beG.

A group on which a cyclic order is defined will be called a cyclically ordered
group.

Let L be a linearly ordered group. A cyclic order on L can be defined by

(1) [, p,zl=x<y<z or y<z<x or z<x<y.

We say that the cyclic order on L defined by (1) is generated by the linear order
on L. Therefore each linearly ordered group is at the same time a cyclically
ordered group (with respect to the cyclic order generated by its linear order).

Let L and K be as above. We consider the cyclic order on L given by (1).
There can be defined a cyclic order on the direct product of groups L x K as
follows: let u = (x, a), v = (y, b), w = (z, ¢) be elements of L x K. We put [u, v, w]
if some of the following conditions is fulfilled:

(1) la, b, c];

(M) a=b#cand x < y;
(i) b=c#aandy < z;
(V) c=a#bandz <x;
(v) a=b=candlx,y, z].

The group L x K with this cyclic order will be denoted by L ® K (cf. [12]).

The isomorphism of cyclically ordered groups is defined in the natural way.
Every subgroup of a cyclically ordered group is a cyclically ordered group (by
the inherited cyclic order).

1.1. Theorem. ([12], Theorem) If G is a cyclically ordered group, then there
exists a linearly ordered group L such that G is isomorphic to a subgroup of L ® K.

Let G, L, K be as in 1.1. In the whole paper f denotes an isomorphism of G
into L ® K. Denote by G, the set of all g e G such that there exists x € L with the
property f(g) = (x, 0). Then G, is a subgroup of G. It can happen that G, = {0}.
Let G, # {0}, g€ G,, g # 0. Hence there exists x € L with f(g) = (x, 0). If we put
g > 0if and only if x > 0, then G is a linearly ordered group. The cyclic order
on G, generated by this linear order coincides with the cyclic order on G,
inherited from G. Next, G, is the largest linearly ordered subgroup with this
property (see [10]).

Let G be a cyclically ordered group. The notion of c-convexity of subgroups
of G is defined as follows. The subgroups {0} and G are assumed to be c-convex
in G. A proper subgroup G’ of G is said to be c-convex in G if the following
conditions are fulfilled (see [10]):

(i) g€G’, g #0=>2g"#0;

(i) g'€G’, [-g.0,¢']. [-g". ¢ &)= gel".

1.2. Lemma. ([10], Chap. 111, 3.5) Let G be a cyclically ordered group. Then G,
is a c-convex subgroup in G.
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2. Convergent and fundamental sequences in an abelian
cyclically ordered group

In what follows G will denote an abelian cyclically ordered group.

Let (g,) be a sequence in G and ge G. We say that (g,) converges to g (g is a
limit of (g,)) in G and we write g, — g if

(i) card G = 2 and there exists nye N such that g, =g for each neN,
nzmn,,or

(i1) card G # 2 and for each ¢e G, ¢ # 0, with the property [g — ¢, g. g + €]
there exists n,e N such that [g — €, g,, g + €] for each ne N, n = n,.

The sequence (g,) is said to be fundamental in G if for each ¢e G with
[—¢ 0, g there exists nye N such that [—¢, g, — g,. €] for each m, neN,
ni, 02 H,.

2.1. Lemma. g, — g if and onlv if g, — g - 0.

Proof. Let g, » g, ee G with [—¢, 0, €. From [g — ¢, g, g + &] it follows
that there exists nye N such that [g — ¢, g,, g + &] for each ne N, n = n,. Hence
[—& g,— g, €] and so g, — g = 0. The converse can be proved analogously.

By a zero sequence we understand a sequence which converges to 0. The set
of all fundamental (zero) sequences in G will be denoted by H(E).

It will be shown later that every convergent sequence in G is fundamental
in G. The converse does not hold in general. If every fundamental sequence in
G is convergent in G, then G is called C-complete.

Let G’ be a subgroup of G and (g,) a sequence in G’. Let us remark that it
can happen that g, » 0 in G’, but (g,) does not converge to 0 in G.

Example. Let R be the additive group of all reals with the natural order,

1
G = R- R, G’ the set of all ge G of the form g = (r, 0), re R. Then g, = (—, 0)
n

1s a sequence in G, g, — 0 in G'. but (g,) fails to converge to 0 in G (it suffices
to put € = (0. 1)).

A cyclically ordered group Cant G is said to be a Cantor extension of G if the
following conditions are satisfied:

(a) CantG is a C-complete abelian cyclically ordered group.

(b) G is a subgroup (ordered by the inherited cyclic order) of CantG.

(c) Every element of Cant G is the limit of some fundamental sequence in G.

(d) Let (g,) be a sequence in G. If g, - 0 in G, then g, - 0 in CantG.

It will be proved that for each abelian cyclically ordered group G there exists
Cant G and that it is uniquely determined (up to isomorphisms). We distinguish
two cases: G, # {0} and G, = 10}.

First we introduce some auxiliary results. In the following lemmas 2.2 and 2.3
we suppose that the cyclic order on a linearly ordered group A4 is generated by
its linear order.
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2.2. Lemma. Let A be a linearly ordered group, (gn) a sequence in A and g€ A.
Then

() g —gif and only if g, g.

(1) (g,) is fundamental if and only if (g,) is o-fundamental.

Proof. (i) Let g,—> g, €€4,6>0. Henceg—e<g<g+¢eandso[g— &
g, & + ¢€]. The assumption implies that there exists nye N such that [g — &, .

g + €] for each neN, n = n,. Therefore g — < g,<g+ ¢ Hence g,,—:*g-
The converse is analogous.

(if) Let(g,) be a fundamental sequence in 4, ee 4, ¢ > 0. Then [— &, 0, €]. By
the assumption there exists nye N such that [—¢, g, — &, €] for each m, neN,
m,n = n,. Hence —e < g, — g,, < efor each m, ne N, m, n = n,and thus (g,) is
an o-fundamental sequence in A. The converse is analogous.

From 2.2 we obtain immediately

2.3. Lemma. Let A be a linearly ordered group. Then A is C-complete if and
only if A is o-complete.

3. The case G, # {0}

In the whole section we assume that G, # {0}. Then card G = N,. Hence G is
infinite.

Denote by H, (E,) the set of all fundamental (zero) sequences in G,. Let (g,),
(h,), (1,) be sequences in G, f(g,) = (x,, a,), f(h,) = (¥, b)), f(1,) = (z,..c,). Let n,
be a fixed element of N. Denote g° = 8ny+n—1 for each neN.

3.1. Lemma. Let (g,)€ E. Then there exists nye N such that g,€ G, for each
neN, n = n,, and (g0) € E,. )

Proof. Since G, # {0}, there exists €€ G,, € > 0. From —¢ < 0 < ¢ it foll-
ows that [—¢&, 0, g]. The assumption implies that there exists nye N such that
[— ¢ g,. €] for each ne N, n = n,. The c-convexity of G, in G implies that g, € G,
for each ne N, n = n,. Evidently, (g))€ E,.

3.2. Lemma. Let g, — g, f(g) = (x, a). Then there exists nye N such that a, = a
for each ne N, n 2 n,.

Proof. By 2.1 and 3.1 there exists nyje N with g, — ge G, for each ne N,
n = n,. Hence a, = a for each ne N, n 2 nj,.

3.3. Lemma. Every sequence in G has at most one Izmzt inG.

Proof. Let g,— g, g,— h, f(g) = (x, a), f(h) = (y, b). From 3.2 it follows
that there exists nye N such that f(g,) = (x,. a), f(g,) = (x,, b) for each ne N,
n = n,. Hence a=b and so g, — h, g — he G, for each ne N, n = n,. From
g, —h—->g—hg,—h->0inGitfollowsthatg) —h—-g —h,g’—h—0inG,.

According to 2.2 we have g? — h— g—h, g°— h—— 0. Since o-limits are
uniquely determined, we get g = A.
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3.4. Lemma. Let g, h. t be distinct elements of G, (g,). (h,). (1,) sequences in G
such that g, — g. h, — h. t,— t. Then [g. h. t] if and only if there exists nye N such
that g, h,. t,] for each ne N, n = n,.

Proof. Let [g, i 1], f(g) = (x, «), f(h) = (3. b), (1) = (z. ¢). Then in view
of 3.2 there exist n,e N and a, b, ce K with f(g,) = (x,. a). f(h,) =(y,. b).
1) =(z,. ¢) for each neN, n 2 n,.

First suppose that [a. b, ¢]. Hence [g,. /,. 1,] for each ne N, n = n,.

Now suppose that « = b # ¢, v < v. Assume that there exist g'e G and x e L
withf(g) = (x.a),x <X < )y.Wehave2v — v < x<x N <p<2yr—x"If
wepute, =g —g.ea=h—g'. then[g —¢.g.2+ ¢].[h — &.h h+ &]. Hence
there exists n,€ N such that[g — ¢, ¢,.g¢ + &]. [h — &.h,. h + &] for eachne N,
n = n,. Therefore 2xv — v < x, < x', ¥ <y, <2y — x"and so x, < y, for each
ne N.n = n,. Hence [g,. h,. t,] foreach ne N.n = n,. Assume that there does not
exist elements g'e G and x’'e€ L as above. In this case we have 2x — y < x <.
Ife=1h—g.then[¢g — €. g.¢ + ¢&. Thereexists n,e Nsuch that[g — €, ¢,.¢ + &
for each ne N. n = n,. Hence 2x — 1 < x, < x. From this it follows that x, = x
foreach ne N, n = n,. In fact, let there exist ne N, n 2 n, with 2x — vy < x, < X.
Then x < v — x + x, < 1. There exists an element g"€ G, f(g") = (v — X + x,, a).
a contradiction. We get an analogous result for y,. Therefore there exists n;e N
such that x, < y, for each ne N, n 2 n,. We conclude that [g,. /,, t,] for each
neN, nzn,.

Similar arguments can be used to prove the remaining cases.

Conversely. let there exist n,e N such that [g,, ., t,] for each ne N, n = n,,.
Assume. by way of contradiction, that [z, &, g]. Then there is n,e N with [1,, h,. g,]
for each ne N, n 2 n,, a contradiction.

Remark. If g, i, t are not distinct, then 3.4 need not hold in general. It

. 1 2 3
sufficestoput G =R, g, =~ h,==,1, ==,

n " on " o

From 2.2 it follows

3.5. Lemma. (i) £, = E;. (ii) H, = H.

3.6. Lemma. (i) E, < E, (i1). H, S H.

Proof. (i) Let (g,)e E,. €€ G, [—¢, 0, ¢]. If €eG,, then there exists n,e N
such that[—¢, g,. €] foreachne N, n = n,, If ¢ G,, we have [— ¢, g,, €] for each
ne N. Hence (g,)e E.

(1) Let (g,)e H,, €€G, [—¢&. 0, g If eeG,, then [—¢, g, — g,.. €] for each
m,ne N, m,n =z n,. If ¢ G,, then [~ ¢, g, — g, €] for each m, ne N. We infer
that (g,)e H.

3.7. Lemma. If (g,) is a convergent sequence in G, then (g,)e H.

Proof. Let g,— g. By 2.1 we have (g, — g)e £. With respect to 3.1 there
exists n,e N with (g, — g)e E,. Since E; < H{, in view of 3.5 and 3.6 we obtain
(g' — g)e H. Therefore (g,)e H and so (g,)e H.
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3.8. Lemma. Let (g,)€ H. Then there exists nye N such that a, = a,, for each
neN,n 2z n,.

Proof. Let (g,)e H, €eG,, £€> 0. Hence [—¢, 0, €]. There is nye N such
that[—-¢, g, — g,. €] for each m. ne N, m, n = n,. Since G, is c-convex in G, we
conclude that g, — g, €G, and so g, — g,,€ G, for each ne N, n =z n,. Hence
a, = a, foreach ne N, n 2 n,.

3.9. Lemma. G is C-complete if and only if G, is C-complete.

Proof. Let G be C-complete, (g,) € H,. According to 3.6 we have (g,) € H.
There exists g € G such that g, — g in G. It suffices to prove that ge G,. Let e€ G,
[— & 0, g]. There exists nye N such that [— ¢, g, — g, €] foreach ne N, n = n,. By
the c-convexity of G, in G we have g, — g,€ G, for each ne N, n = n,. Therefore
g€G,.

C(onversely. let G, be C-complete, (g,)€ H. Then according to 3.8 there are
n,e N,ae Kwith f(g,) = (x,,a) foreachne N, n > n,. Thereexist xe Land ve G
with f(v) = (x, a). Hence (g — v)e H,. There is ge G, with g} — v — g in G,.
With respect to 3.6 g —v—ginGand g’ - v+ ginG. Thusg,—> v+ gin G.

Define the operation + in H by putting (g,) + (h,) = (g, + h,) for each (g,),
(h,)eH.

3.10. Lemma. H is a group.

Proof. Let (g,), (h,)e H. According to 3.8 ihere are nye N, a, be K such
that f(g,) = (x,, a), f(h,) = (v,, b) foreachne N,n =2 n,. Let x, ye Land v,we G
such that f(v) = (x, a), f(w) = (v, b). Therefore (g° — v), (h} — w)e H,. Since H{
isa group, with respect to 3.5 H, is also a group and so (g? — v) + (h! — w)e H,,.
Therefore by 3.6 (g°) + (h!)e H. Hence (g,) + (h,)e H.

A similar argument may be applied to prove that if (g,) € H, then —(g,)e H.

3.11. Lemma. E is a subgroup of H.

Proof. Let (g,), (h,) e E. By 3.1 there exists nye N such that g,, h,€ G, for
each ne N. n = n, and (g°). (h°)e E,. Because E{ is a group, by 3.5 and 3.6
(gY) — (W) e E holds. This implies (g,) — (h,) € E.

We can form the factor group G = H/E. The coset of G containing a sequence
(g,) € H will be denoted by (g,).

Let (g,), (), (1,) be distinct elements of G. We put [(g,), (h,), (,)] in G if there
exists nye N such that [g,, /i, t,] in G for each ne N, n = n,. We can easily verify
that this definition is correct and that the conditions I--1V are satisfied. Hence
G is an abelian cyclically ordered group.

If this definition is applied to C(G,), then the cyclic order of C(G,) is
generated by the linear order of C(G,). The coset of C(G,) containing a sequence
(g, € H) = H, will be denoted by (g,)*.

Let ¢: G — G be a mapping defined by the rule ¢(g) = (g, g, ...). Then ¢ is
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an isomorphism of the cyclically ordered group G into G. We identify G and
¢(G). Then G is a subgroup of G.

3.12. Lemma. G is a Cantor extension of G.

Proof. (a) It remains to show that G is C-complete. Let (g™ be a funda-
mental sequence in G (a sequence is to be understood with respect to m),
f@h) = (x),a), €€ Gy, [— &0, €. Then [— (&, &, ...), E, (&, &, ..)]. There exists
mee N such that[— (g, &, ...), (87") — (g0), (&, &, )] for each m, peN m,p = m,.
Hence there is n,e N w1th [—e& g —gb, € for each ne N, n = n,. Therefore
g" — gleGyand so a)' = af for each n,m, pe N,n 2 n,, m, p = m,. Hence there
are ny(m)e N, ae K with a," = a for each m, ne N, m = mg, n = ny(m). Let xe L,
ve G with f(v) = (x,a)and let g/" = g * "~ ' for each me N, m = m,. Therefore
(g, — v)e H,. According to (@) and 2.3 there exists (g,,)*eC(GO) such that
(g." — v)* - (g,)* in C(G,). We conclude that (g,” — v) - (g,) in G and so
&) — (g, +v)inG.

(c) Suppose that (g,)e G. There exists nye N with f(g,) = (x,, a) for each
neN, n>n,. Let veG, xe L with f(g) = (x, a). Hence (g° — v)e H,. Because
of (g° — v, g° — v, ...)*— (g° — v)* in C(G,), in view of 2.2 we have (g° — v,
gd—v,...)*> (g° — v)*. Therefore (g, — v, g, — v, ...) > (g, — v) and (g,, g, .-.) =
- (8,)-

(d) Let(g,) beasequencein G, g, — 0in G. By 3.1 there exists nye N such that
g.,€ G, for each ne N, n = n, and (g°) e E,. With respect to (5) and 2.2 we get
(g%, g2, ...)* > Eyin C(G,). Hence (g°, g°, ...) > Eand so (g,, g,, ...) = E, that
isg,»0inG.

Let G be a Cantor extension of G. From G < G we infer that G, < (G), and
50 (G), # {0}. Therefore all results obtained in this section may be used for (G),.

3.13. Proposition. Let G, and G, be Cantor extensions of G. Then there exists
an isomorphism a_from the cyclically ordered group G, onto G, such that a(g) =
for each geG.

Proof. With respect to (b) G is a subgroup of G, and G,. Let g'eG,. By
(c) there exists a fundamental sequence (g,) in G such that g, —» g' in G,. With
respect to (a) there exists g>e G, with g, — g2 in G,. Define a mapping « from
G, into G, by the rule a(g') = g2

First we show that a is correctly defined. Let also (4,) be a fundamental
sequence in G with h, — g' in G,. There exists h’e G, such that h, —» 4% in G,.
According to 2.1 and 3.11 we get g, — h,— 0in G,. Hence g, — h, > 0in G. In
view of (d) we obtain g, — h,— 0 in G,. Again by 2.1 and 3.11 g, — h, >
—g? — h?in G,. By 3.3 we conclude that g2 = hZ

Let g2€G,. There exist a fundamental sequence (g,) in G and g'e G, with
g,—g>in G,and g, - g' in G,. Hence a(g') = g2 Therefore a is surjective.
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Let g'. h'eG,, a(g') =g*, a(h') = h*. There are fundamental sequences
(g,). (h,) in G, such that g, —»g'. h,—h' in G, and g, - g% h,—h*in G,. If
g =h* then g, — h,— 0 in G, and thus g, — h, - 0 in G. Hence g, — h, — 0
in G,. Since g, — h,—>g' — h'in G,, we have g' = h'. We conclude that ¢ is a
monomorphism.

Evidently, a(g' + h'") = a(g') + a(h') for each g'. h'eG,.

Letg', h', t'€G,. a(g") = g%, a(h') = h?%, a(t") = t*. There are fundamental
sequences (g,), (h,), (t,) in G withg, > g'. h, > h', t,>1'inG,,g,~>g" h, > h’,
t,— t*in G,. Suppose that [g', h', t'] in G,. By 3.4 there exists n,e N such that
[g,, h,. 1] in G for each ne N, n = n,. Hence again by 3.4 [g*, h? ¢7] is valid
in G,. The converse is analogous.

Assume that ge G. We have (g, g,...) > gin G. By (d) (g, g, ...) = gin G, and
in G, as well. Hence a(g) = g.

4. The case G, = {0}

In this section it will be assumed that G, = {0}. Let f, x, a be as in section 3,
g€ G, f(g) = (x, a). Define the mapping f, from G into K as follows: f,(g) = a.
Let heG, f(h) = (y, b). Then f,(h) =b is valid. If a=b, then f(g — h) =
=(x —y, 0). Hence g — he G,. As for G, = {0}, we get g = h. We conclude
that f; is a one to one mapping from G into K. Therefore the following lemma
is valid:

4.1. Lemma. The mapping f, is an isomorphism from the cyclically ordered
group G into K.

Remark 1. From 4.1 it follows that G can be considered as a subgroup
of a cyclically ordered group K.

Observe that if G is finite, then G, = {0}.

The following lemma obviously holds true:

4.2. Lemma. Let G be a finite cvclically ordered group. Then G is C-complete.

The natural linear order on R will be denoted by <.

4.3. Lemma. Let G be an infinite cyclically ordered group. Then for each ae K,
a#0 there exists ge G, 0 < g < a.

Proof. Denote x = inf{g, — g;: g, g€G, g <g} in R. Hence x 2 0. If
x>0, then cardG = l Therefore G is finite, a contradicticn. From this it

X
follows that x = 0. Let ae K, a # 0. There are g,, g,€G, g, < g, with0 < g, —
—g <a Weputg=g,—g.

4.4. Lemma. Let G be an infinite cyclically ordered group, a,, a,€e K, a, < a,.

Then there exists ge G, a, < g < a;.
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Proof. Let a,, a,e K, a, < a,. With respect to 4.3 it suffices to consider
the case ¢, # 0. We have ¢, £ a4, — a, < a, or a, — a, < a4, < a,. According to

. . 1
4.3 there exists ge G with0 < g < a, — a,. Let ¢, £ «-» - ¢, < a>. Hence a, < —-.

If ¢ < a,. then there is ne N such that ¢, < ng < a,. If g > a,, then the assertion

isevident. Let a, — @) < a, < a,. Thena, — a, < l Therefore there exists me N
with a, < mg < a,. 2

4.5. Lemma. Let G be an infinite cyclically ordered group. Then K is a Cantor
extension of G.

Proof. (a) It is evident that K is an abelian C-complete cyclically ordered
group.

By Remark 1, (b) is satisfied.

(c) The case a = 0 is obvious. If ae K, a # 0, then there exists an increasing

sequence (a,) (i.e., a, < «,,, for each ne N) in K such that ¢, —» « in K. With
respect to 4.4 for each ne N there exists g,€ G with a, < g, < a, , ,. Therefore
g,—ain K.

(d) Let (g,) be a sequence in G, g,—01in G, eeK; [—¢, 0, €. Then 0 <
< &< — ¢ With respect to 4.3 thereis £,€ G, 0 < ¢ < €. Hence —eg < —¢,. We
obtain [—g,, 0, g]. There is nye N such that [—¢,, g,, €] for each ne N, n = n,.
From this it follows that g, <& < —g org < —g <g,andso g, <e< —¢
or ¢ < —eg<g, Therefore [—¢, g,, €]. We infer that g, » 0 in K.

Remark 2. It is easy to prove that 3.13 is valid also in the case G, = {0}.

4.6. Lemma. Let G be an infinite cyclically ordered group. Then G is C-
complete if and only if G is isomorphic to K.

Proof. Let G be C-complete. Hence G is a Cantor extension of G. By
using 4.5 and Remark 2 we get that G is isomorphic to K. Conversely, let (; be
isomorphic to K. Since K is C-complete, the proof is finished.

Now let G be an arbitrary abelian cyclically ordered group.

By summarizing the above results, we infer from 4.2, 4.6 and 3.9 that the
following theorem is valid:

4.7. Theorem. Let G be an abelian cyclically ordered group. Then G is C-
complete if and only if some of the following conditions is satisfied :

(1) G is finite.

(i1) G is isomorphic to K.

(i) G, # {0} and G, is C-complete.

4.8. Corollary. Let G be an abelian cyclically ordered group. Then G is
C-complete if and only if G, is C-complete.

From 3.12, 3.13, 4.5 and from Remark 2 we get

4.9. Theorem. Let G be an abelian cyclically ordered group. Then

(1) there exists a Cantor extension of G,
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(ii) if G, and G, are Cantor extensions of G, then there exists an isomorphism
a from the cyclically ordered group G, onto G, such that a(g) = g for each geG.
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Svermova 9
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KAHTOPOBCKOE PACUIMPEHUE ABEJIEBOM LIMKJITUUECKU
VHOPHD,OHEHHOFI I'PVYIIIbI
Stefan Cernak
Pe3some
MycTb G-aGeneBa LMKIMYECKM YNOpsAOYeHHas rpynna. B paGoTe onpenencHo M NMocTpoeHo
KaHTOpOBCKoe paclunpenne Cant G rpynnbl G METOAOM (YHIAMEHTANbHBIX TOC/EI0BATETLHOC-

teii. Eciim Cant G = G, 10 G Ha3biBaeTcs C-NOJIHOM. Y CTaHOBJIEHBI HEOOXOAMMBIE U IOCTATOYHbIE
ycioBus s Toro, utobsl G 6bu1a C-NOJIHOM.
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