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ON EXTENSION OF BAIRE VECTOR
MEASURES

MILOSLAV DUCHON

It is a well-known fact that every Baire positive measure can be extended
uniquely to a regular Borel positive measure [1, Theorem 65.1; 6, Theorem 54.D].
Similar propositions are stated for set functions on relatively compact Baire and
Borel sets with values in Banach spaces [3, p. 354, vector measures with finite
variation] and more generally for set functions with values in complete locally
convex spaces [4]. It has been asked by some persons if it is possible to reduce the
assumption concerning completeness of the range space of vector-valued measure.
We answer this question in the positive : Every Baire vector-valued measure with
values in a metrisable and somewhat more general locally convex space X — not
necessarily complete — can be extended uniquely to a regular Borel vector-valued
measure with values in the same space X — more precisely in the closed convex
cover of the values of the given Baire vector-valued measure. Some other results
concerning extension and regularity of vector-valued measures are also added.

1. Extension of vector measures

Let T be a set, D a ring of subsets of T. Let X be a Hausdorff locally convex
space with the topology defined by the system of continuous seminorms, P =(p).
Denote by X and X the quasi-completion and the completion of X [10], p or p
being the extension of p to X and X, respectively.

We shall make use of the following

Lemma 1. If m: D— X is an additive set function, and if for every p in P there
exists a positive finite measure v, on D such that

lim p(m(A))=0, AeD,
vp(A)—0
then m is sigma additive [4, p. 506].
Let N be a set of positive finite subadditive and increasing set functions v defined

on D with v(#)=0. Consider on D the uniform structure t(N) defined by the -
family (d,)ven of semi-distances defined by

d,(A, B)=v(A-B)+v(B—A), A,BeD.
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Now we can state the result that is easy to prove [4, p. 506].

Lemma 2. LetDo,< D be a ring and m: D,— X a set function. If for every p in
P there exists v, in N such that

lim p(m(A))=0, Ae€D,,
vp(A)—0

and if either m is additive or m is positive, subadditive and increasing, then m is
uniformly continuous on D.

It follows, in particular, that every set function v in N is uniformly continuous on
D,.

We shall need the “bounded” analogue of [4, p. 506, Theorem 2], interesting in
itself.

Theorem 1. Let Dy D be a ring dense in D for the topology induced by t(N)
and m: D,— X a bounded additive set function such that for every p in P there
exists v, in N such that

lim p(m(A))=0, AceD.,.
vp(A)—>0

Then m can be extended to a bounded additive set function m,: D— X such that
for every p in P we have

lim p@m,(A))=0, AeD.
vp(A)—0

Proof. Since m is uniformly continuous on Dy, it can be uniquely extended to
m, on D with values in X. This extension is additive on D as can be easily shown.
However, by assumption m is bounded on D, and for each A in D we have
lim m(B)=m,(A)e X when lim B=A, BeD,, in the uniform structure t(N).
Since m(Dy)={m(B): B in Dy} is a bounded subset of X, m;(A) is a strict
closure point of m(D,) in X and hence m,(A) is in the quasi-completion X of X
[10, §23].

Remark 1. Since every non-empty closed, convex subset of a locally convex
space is the intersectio. of all closed semi-spaces containing it [11, I1.9.2] we can
see that my(D) is contained in the X-closed convex cover of m(D,). For every
closed semi-space in X containing m(D,) contains also m,(D).

Corollary 1. Let R be a ring and S(R) the sigma ring generated by R. A vector
measure mt R— X can be extended to a measure m,: S(R)— X if and only if for
every p in P there exists a positive bounded measure v, on R such that

lim p(m(A))=0, AeR.
vp(A)—0

Since v, is bounded on R it can be extended to a positive bounded measure p, on
S(R) and m: R— X is also bounded on R. In this case D,= R and D = S(R). In
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[4, p. 507] it is proved that m,: S(R)— X. The “only if”’ part follows from [4,
Theorem 1].

Recall that many important locally convex spaces are quasi-complete, however
not complete.

Corollary 2. If X is sequentially complete, then the extension m, takes its values
in X [9, Theorem 4.2].
For the set of those A in §(R) for which m,(A) is in X forms a monotone system
containig R [6, p. 27].

2. Regular vector-valued measures

Let S be a Hausdorff locally compact space. Recall that the class of relatively
compact Baire sets in S is the delta ring generated by the compact sets which are
G;, and is denoted BYS). The class of relatively compact Borel sets in S is the delta
ring generated by the compact sets in S, and is denoted B'(S). Clearly S is in B’(S)
if and only if S is compact. In this case B’(S) is a sigma algebra. The class of Baire
sets in S is the sigma ring generated by the compact G; sets, and is denoted B,(S).
The class of Borel sets in S is the sigma ring generated by the compact sets, and is
denoted B(S). The class of weakly Borel sets in S is the sigma ring generated by the
closed or equivalently open sets in S; it is a sigma algebra, and is denoted B, (S).
The Borel sets are precisely the sigma bounded weakly Borel sets [1, p. 181]. When
S is metrisable, B,(S) = B(S), but there exist non-metrisable compact spaces S for
which the equality holds [8]. Clearly B(S)= B.(S) if and only if S is sigma
compact. Our terminology is drawn from [1], [3], [6].

Let RS) be a ring of subsets of S and m: R(S)— X an additive set function.
We say that m is regular if for each E in R(S) and every d >0, for all p in P there
exist a comact set C in R(S) and an open set O in R(S), C< E c O, such that we
have p(m(H)) < d for every Hin R(S) with Hc O — C. Recall thatif m: R(S)—
X is additive and regular, then m is countably additive [4, p. 510, Theorem 3].

By a Baire vector measure on S we mean a vector measure m,: B,(S)— X. By
a Borel vector measure, a weakly Borel vector measure we mean a vector measure
m: B(S)— X, m,: B,(S)— X, respectively.

In [4, p. 511] it is proved that every vector measure m’: B;(S)— X is regular.
However, a slightly more general result is true.

Theorem 2. Every Baire vector measure m,: B,(S)— X is regular.

Proof. From [4, Theorem 1] we deduce that for every p in P there is
a non-negative finite measure v on B,(S) such that v(B)— 0 implies p(m,(B))—
0 B in B,(S). Since every v: is a Baire measure on B.(S), v; is regular [1],
therefore [4, Lemma 3] m, is regular.
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Theorem 3. Let X be a normed space. Every Baire vector measure
m,: B,(S)— X can be extended uniquely to the regular Borel vector measure
m: B(S)— X.

The proof is based on the following.

Lemma 3. If u: B(S)— R. is a finite regular Borel measure and A is any set in
B(S), then there exists a set B in B,(S) such that

d.(A, B)=u(A—-B)+u(B—A)=0

and u(A)=u(B) [1, p. 221].
Proof of Theorem 3. It is well-known [cf. e.g. 4] that there exists
a non-negative finite Baire measure u,: B,(S)— R, such that

lim ||m,(B)||=0, B in B,(S).
Ma(B)—0

The Baire measure y, can be extended uniquely to the non-negative finite regular
Borel measure u: B(S)— R, [1]. According to Lemma 3 for every A in B(S)
there exists a set B in B,(S) such thatd,(A, B)=u(A — B)+ u(B— A)=0, hence
B(S) is dense in B,(S) for the topology induced by d,(A, B). From Theorem 1 we
deduce that there exists a unique extension of m, to a Borel vector measure
m B(S)— X such that

lim ||lm(A)||=0, AeB(S),
u(A)—0

and m is regular because u is regular [4, Lemma 3]. Further, according to
Lemma 3, if A is in B(S), there is a set B in B,(S) such thatd,(A, B) =0, hence
m(A—B)=m(B— A)=0 and so m(A)= m(B)=m,(B) and thus the element
m(A) belogs to X, thatis m: B(S)— X.

Proposition 1. Let X be a normed space. Every (restricted) Baire vector
measure m;: B,(S)— X can be extended uniquely to the regular (restricted) Borel
vector measure m': B'(S)— X.

Proof. If A is in B'(S), there is a compact set K such that A< K. Then A
belongs to KnB'(S)=B'(KnS). B'(KnS) is a sigma ring of subsets of K and we
may go on as in proving Theorem 3 and obtain the unique regular Borel extension
mg: B(KnS)— X. Then we put

m'(A)=mg(A)

Then m’ is unambiguously defined, m"(A) belongs to X and m" extends m, In [4,
Theorem 5] it is proved that m’ takes its values in X=X.

The preceding theorem remains to be true if X is metrisable, P=(p,) being
a countable family of continuous seminorms definig the topology in X.
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Theorem 4. Let X be a metrisable locally convex space, P=(px). Every Baire
vector measure m,: B,(S)— X can be extended in a unique way to a regular Borel
vector measure m: B(S)— X.

Proof. For every px there is a finite non-negative Baire vector measure
p¥: B.(S)— R. such that

]lm pk('"a(B))=0’ BeBa(S)'
uk(B)—0

Denote by u,. the unique regular Borel extension of u% by m the unique regular
Borel extension of m,, m: B(S)— X and note that
lim p.(m(A))=0, A e B(S).
uk(A)y—0
This follows from Theorem 1, Lemma 1 and Lemma 2.
Define the measure u on B(S) by the relation

= gk (A) —
wA)=23 2 oyisy M) = sup p(A).
This is a finite non-negative regular Borel measure on B(S). For every Borel set A
there is a Baire set B such that d,(A, B)=u(A—-B)+ u(B— A)=0. Hence
(A —B)=u(B—A)=0and so p.(m(A —B))=p(m(B—A))=0,k=1,2, ...
and thus m(A) =m(B)=m,(B). Hence m(A) belongs to X for every Borel set A
in B(S).
Analogously we have the following.

Proposition 2. Let X be a metrisable locally convex space. Every restricted
Baire vector measure m;: BYS)— X can be extended uniquely to a regular
restricted Borel vector measure m": B'(S)— X.

In[4, p. 511] it is stated that m" has its values in the completion X = X of X.

Let now X be a Hausdorff locally convex space with a system P=(p) of
continuous seminorms on X corresponding to a base of absolutely convex
neighbourhoods of zero in X. We recall the following, see e.g. [7; 10]. The
seminorms p in P form a directed set when we define p<gq for p, q in P if
p(x)<gq(x) for all x in X. If N, = p~*(0), then we denote by X, the normed space
which we obtain if in X/N, we put, for the coset %, (of x from X) in X,

I%]l,=p(x) for x in ¥, in X/N,.
Then by setting
X = foa (%), P=q,

a continuous linear mapping f,, from the normed space X, onto the normed space
X, is defined since ||fo(%)|l> =[|%,]l,<[|%,/l. Moreover for p<qg<r we have
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for =foq o for- Hence a system (X, f,,), p, g € P forms a projective system and we
can form its projective limit

X =lim proj (Xo, foqe)

as a subspace of the topological product [] X, consisting of all ¥ =(x,), x, € X,,, for
peP

which f,.(x,) = x, for all p< q. Assigning

x—x=(%,)
an isomorphism j of the space X onto the subspace X of X is defined. This is well
defined since for p<gq we have f,(i,)=2%,. Moreover to every ¥eX there
corresponds some x in X for which £=(X%,)=j(x). An isomorphism xe X—

(%,) € X is topological as follows from the fact that the topology of the space X is
determined by the system of seminorms

P={” ”p°fp’ p in P}’

where f, is a restriction to X of the projection of [ [ X, into X,. Soif p=] ||, - f,

PEP

and %€ X, then
p(x)= (” ”p o fp)(%)= ”fp(f)”p = ”ﬁp”p =p(x)

for all x in X.
We can see that a Hausdorff locally convex space X is topologically isomorphic
to the dense subspace X of the projective limit X of the normed spaces X,, p € P.
Let R be a ring of subsets of a set S and I: R— X an additive set function. By
setting

L(A)=I(A),

an additive set function I,: R— X, is defined, for all p in P. Thus for each A in R
the element I(A) of X may be identified with an element (I,(A)),.r in X with
foa(I(A)) =1,(A), p<q, and we may write [(A) = (I,(A)) ,.= I(A). Moreover, it
is clear that if 1 is countably additive the I, is countably additive for all p in P. So
every additive (countably additive) set function I: R— X gives a family (1,),.p of
the additive (countably additive) set functions every I, taking its values in the
normed space X,. For all p in P we have

p(I(A) =|L,(A)l, = p(I(A)).
We can now state the following.

Theorem 5. Let X be a Hausdorff locally convex space. Every Baire vector
measure m,: B,(S)— X can be extended uniquely to a regular Borel vector
measure ni: B(S)— X.
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Proof. For A in B,(S) we have m,(A)=(m.,(A)) ,cp Since X, are the normed
spaces, according to Theorem 3 every m,,: B,(S)— X, can be extended uniquely
to a regular Borel vector measure m,: B(S)— X,. Define m(A)=(m,(A)),cn
A in B(S). We must show that m(A) belongs to X. We have to prove that
fra(m,(A))=m,(A) for p<gq and A in B(S). Now m, and m, are both regular
Borel vector measures and so are f,,(m,) because f,, are continuous as mappings
from X, onto X,. Since f,,(m,(B))= m,(B) for all B in B,(S), the uniqueness of
the extension of a Baire vector measure to a regular Borel vector measure implies
that f,,(m,(A))=m,(A) for all A in B(S). So indeed, the mapping A— m(A)
takes its values in X. Since

p(i(A)) =Im,(A)l, =If, (i (AN,

it follows that fi: B(S)— X so defined is a regular Borel vector measure extending
uniquely the Baire measure m,.
Analogously we can obtain the following.

Proposition 3. Let X be a Hausdorff locally convex space. Every restricted Baire
vector measure m,: B,— X can be extended uniquely to a regular restricted Borel
vector measure m’: B'(S)— X.

Remark 2. In [4, p.511] it is stated that m": B'(S)— X, X being the
completion of X.

Remark 3. According to Remark 1 A(B(S)) is contained in the closed convex
cover of m,(B.(S)) in X not only in X.

For the weakly Borel sets we have the following.

Theorem 6. Let X be a Hausdorff locally convex space. Every regular Borel
measure m: B(S)— X can be extended uniquely to a regular weakly Borel
measure r,: B,(S)— X.

The proof is based on the

Lemma 4. If u, is a regular weakly Borel measure on S and A is any weakly
Borel set, then there exists a Borel set B (even Baire sigma compact set) such that

(A —B)+pu,(B—A)=0.

This can be proved in the same way as for a regular Borel measure [1, p. 221].
Futher every positive regular Borel measure can be extended uniquely to
a regular weakly Borel measure [2].
Now the proof of our theorem proceeds as that of Theorem 5.

Corollary. Every Baire vector measure m,: B,(S)— X can be extended unique-
ly to a regular weakly Borel vector measure 7,: B, (S)— X.

Remark 4. The fact that a regular Borel vector measure extending the Baire
vector measure m, has its values in the same space as m, is useful, for example, in
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connection with tensor products of regular Borel vector measures [5] and regular
weakly Borel vector measures. Recall that, in general, the tensor product of locally
convex spaces fails to be complete even if the factors are complete.

As for Theorem 1 it is useful when the space is not complete bur only
quasi-complete, for example, the space of operators on a Banach space with the
strong operator topology is quasi-complete.

Remark 5. Modifying the proof of Theorem 5 we could prove that if X is the
locally convex projective limit of metrisable locally convex spaces X;, g € Q in the
sense of [10], then every Baire vector measure m,: B,(S)— X can be extended
uniquely to a regular Borel vector measure m: B(S)— X. It is clear that the space
X needs not be, in general, metrisable. The case of an arbitrary locally convex
space X has remained open if we do not assume that X is quasicomplete.
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O IMPOOOIXXEHNH BEKTOPHBIX MEP B3PA
Miloslav Duchon

Pe3oMe

B paGoTe g0Ka3aHbI HEKOTOPBIE YTBEPXKACHUS O MPOZOIKEHHH BEKTOPHBIX afANTHBHBIX DYHKUMI
MHOX€ECTBa Ha KONbLO M3 KONbLA INIOTHOTO B MOCJIEAHEM B HEKOTOPO# paBHOMEPHO# cTpyKType. ITpn
MOMOIIM 3THX pe3yNbTaTOB A0OKa3aHO ciefylollee yrBepxaenne. Kaxpas BektopHas Mepa Bapa co
3HayeHUIMH B METPHUYECKOM faxe OGLIeM OTAETMMOM JIHKaNLHO BbINYKJIOM MPOCTPAHCTBE (HUKaKast
MOJNHOTa He NMPEANnoNaraeTcs) MOXeT GbITh MPOJONKEHa OHO3HAYHO B PEryNsSPHYIO BEKTOPHYIO MEPY

Bopenst co 3HayeHHMSIMM B TOM Xe€ MPOCTPAHCTBE, a MMEHHO B 3aMKHYTOH BBINYKJIOH 06onoYKe
3HayeHWH JaHHOH BeKTOpHON Mepsl Bapa.
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