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ABSTRACT. This article is partly a brief survey of known results which are 
going back as far as E. E. Kummer (1847), then to modern algebraic language of 
Z. I. Borevich and I. R. Shafarevich (1964) introducing the notion of theory of 
divisors, and to author's results (1973-75) using categorical methods in this area. 
The presented conception is chosen for better understanding the motivation of 
the new results and the notions. 

The main result of this paper is the description of all maximal S1 -categories 
by means of so called a-ultrapseudofilters and ultrastars. A 5-^ -category is a 
subcategory M. of the category C of all Sx -semigroups (which are semigroups 
possessing a divisor theory in the sense of Arnold) with semigroup homomor-
phisms, having the same objects as £ , containing 8* -homomorphisms (defined 
by means of v -ideals) as morphisms, and with the divisor theory as a reflection 
for the reflective subcategory of M of all semigroups with unique factorization. 

It is shown that these maximal 5X -categories form a set with cardinal number 
equal to expexpN0, while all the S1 -categories form a class which is not a set. 

1. Introduction 

In his monumental work E. E. K u m m e r introduced the concept of "ideal 
complex numbers" (ideale komplexe Zahlen) ([7] (1845), in more detail [8] (1847); 
cf. [11]) for the ring of integers of the Ath cyclotomic field (A an odd prime) 
to remove the defect of these rings that the law of unique factorization into 
irreducible elements fails. In the present algebraic language this concept can be 
expressed by means of that of the divisor theory of an integral domain introduced 
by Z. I. B o r e v i c h and I. R. S h a f a r e v i c h (cf. [2] (1966), Russian original 
1964) which can be formulated as follows (a slight modification): 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i on : Primary 11R27, 18A40; Secondary 54D80, 
54H99. 
Keywords : Kummer's ideal complex numbers, theory of divisors, Cech-Stone /3-compactifi-
cation, reflective subcategory, reflection. 
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DEFINITION 1.1. Let R be an integral domain, D a semigroup with unique 
factorization, and h a (semigroup) homomorphism from the multiplicative semi­
group R* into D. The homomorphism h (together with D) is called a theory 
of divisors for the ring R if h satisfies the conditions: 

(1) An element a G R* is divisible by /? G R* in the ring R if and only if 
h(a) is divisible by h((3) in the semigroup D. 

(2) Let a,/?,a±/3 G R*, and a G D. If /i(a) and /i(/?) are divisible by a in 
-D, then h(a ± (3) are also divisible by a in D. 

(3) Let a, 6 G £>. If {r G -R* : a divides /i(r)} =-{rGi?*: 6 divides /i(r)}, 
then a = b. 

Note that the condition (2) can be derived from the conditions (1) and (3) 
(cf. [12]) and it is not hard to see that the integral domains possessing a theory 
of divisors are just the Krull domains. Semigroups with unique factorization are 
just free semigroups and the generators are just the irreducible elements. 

To use the categorical methods, it is appropriate to transfer the considered 
algebraic structures to those of the same kind, it means to pass over the rings to 
the semigroups. In this paper a semigroup will be considered to be commutative, 
with an identity element and satisfying the cancellation law. The concept of a 
theory of divisors (= a divisor theory) for a ring is transferred to a divisor theory 
for a semigroup as follows: 

DEFINITION 1.2. A semigroup S is called a 6 -semigroup if it possesses a 
divisor theory, which is a homomorphism Q from S into a semigroup D with 
unique factorization satisfying the following conditions: 

(a) (sx G S & 82 G S & Q(S1)/Q(S2)) =-> sjs2, 
D S 

(b) d G D => 3 a positive integer n and elements s1,...,sn G S such 
that gcdD{Q(s1),...,Q(sn)} =d. 

Here, the symbols / and / denote the divisibility relation in the semigroups 
D s 

D and 5 , respectively, and gcdD{d1,..., dn} is the greatest common divisor of 
the set {dr,..., dn} in D for dx , . . . , dn G D. 

If instead of (b) the stronger axiom 
(bx) (a,beD) => (3ceD)(gcdD{b,c} = lD & a • c G Q(S)) 

is satisfied, then we call S a 51-semigroup. 
Remark. C l i f f o r d studied the S -semigroups in slightly more general form 
in his papers [3] (1934) and [4] (1938). A r n o l d paid attention to the ^-semi­
groups in [1] (1929). The axioms (a) and (b) are equivalent to the axioms (1) 
and (3) of B o r e v i c h and S h a f a r e v i c h (cf. [12; 2.4]). The multiplicative 
semigroups of the integral domains possessing a theory of divisors (hence of the 
Krull rings) are 51 -semigroups. 

256 



A CATEGORICAL CONTRIBUTION TO THE KUMMER THEORY OF IDEAL NUMBERS 

From C 1 i f f o r d 's result the following assertion follows: 

THEOREM 1.1 (Uniqueness of the divisor theory). Let S be a 5-semi­
group with divisor theories g: S -> D, g1: S —r D'. Then there exists a unique 
isomorphism f from D onto D' such that the following diagram commutes. 

D 
9 / 

Therefore the divisor theory g: S -> D is uniquely determined with the 
exception of S-isomorphisms / . For a ^-semigroup S we denote by es: S -> cS 
a divisor theory of S (cS is a semigroup with unique factorization). For elements 
sx,s2 G S we have es(s1) = es(s2) if and only if sx, s2 are associates in S. 

In the area of divisibility theory of a semigroup the important role is played 
by a special kind of ideal, at present called a v-ideal, introduced by A r n o l d 
[1] (1929), which can be defined as follows: 

DEFINITION 1.3. Let S be a semigroup. A non-empty subset I of S (0 7--
I C S) is called a v-ideal of the semigroup S if 

l = {seS: {(svs2eS) k (Viel)(Sl/is2)) => ( V * * 2 ) } -

The set (5) = {sx : x G S} is a v -ideal of S for each s € S, which is called 
the principal v -ideal of S generated by s. 

The set of all v-ideals of S will be denoted by T(S) and for 7, J £ T(S) we 
denote by I o J the v-ideal generated by the set I • J , therefore 

IoJ= f] K. 
Kei(S) 
KDIJ 

Then o is an operation on T(S) and (1(5), o) is a semigroup (the cancellation 
law need not be satisfied in general). 

Put gs(s) = (s) for each s e S. Then gs: S -> (T(S), o) is a homomorphism 
and according to [4] we have: 

THEOREM 1.2. If a semigroup S possesses a divisor theory, then the homo­
morphism gs: S —r (T(S),o) is a divisor theory of the semigroup S. 

The significance of K u m m e r ' s idea — to supplement the multiplicative 
semigroup of the ring of the Ath cyclotomic field by new elements (ideal com­
plex numbers) to save the uniqueness of decomposition into irreducible factors 
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— can be found in many abstract constructions in present mathematics. If a 
mathematical structure does not possess some "good" property, then this defect 
is removed by supplementing new elements in this way that the new structure 
has the required "good" property. Such constructions are compactifications of 
a topological space (the Cech-Stone /3-compactification) and completions of an 
ordered set (the Mac Neile completion). 

This fact is expressed in the category theory language by means of the con­
cept of the reflection. In Section 2 we will define special homomorphisms for 
semigroups (5 -homomorphisms) by means of v -ideals and the category /C of 
all 5-semigroups, where the morphisms are just the S-homomorphisms. The full 
subcategory V of all unique factorization semigroups is a reflective subcate­
gory of JC and es: S -» cS is a ©-reflection for each 5-semigroup S (The­
orem 2.1). The same property has the category /C1 of all ^-semigroups with 
5*-homomorphisms (Theorem 2.2), where the J*-homomorphisms occur in alge­
braic number theory and are again defined by means of i>-ideals. 

The question which is investigated in this paper concern the maximality of 
the choice of these morphisms to preserve the property of reflection. In [14] it 
was shown that this choice is maximal in the category C of all S -semigroups 
with homomorphisms (Theorem 3.1). 

Much more complicated is the situation in the category C1 of all (^-semi­
groups with homomorphisms. All maximal choices of morphisms of the category 
Cx which involve 6*-homomorphisms and preserve the mentioned property of 
reflection were described in [14] by means of generalized matrices with integral 
entries (bundles) forming so called ultrastars which are maximal stars (Defini­
tion 3.4). 

It is shown in this paper that these maximal choices of morphisms form a 
set with cardinal number equal to expexpN0 (Theorem 5.4). On the contrary 
all choices of morphisms with these properties form a class which is not a set 
(Theorem 6.7). 

The tool for the investigation is the Cech-Stone compactification /3P of the 
discrete topological space P of all primes. Special systems (a-pseudofilters) of 
special subsets (a-sets) of P are introduced (Definition 4.2 and 4.3), a one-to-
one mapping from /3P to the set of all maximal a-pseudofilters (a-ultrapseudo-
filters) is introduced, and the connections between stars and a-pseudofilters are 
shown (Propositions 5.1-5.3). Using P o s p i s i l ' s formula (cf. [10]): card/?P = 
expexpN0, cardinal numbers of all ultrastars and all a-ultrapseudofilters are 
calculated (Theorems 4.5 and 5.4). 

In this article we will use only the basic notions of the category theory (e.g., 
[9] or [6]) and furthermore of the reflective subcategories (e.g., [5]). If C is a 
category, we denote by 0(C) the class of all objects of C. If % is a full sub­
category of C, then an 11 -reflection for a C-object X is a morphism gx G 
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Homc(X, R(X)) (R(X) e 0(11)) such that for each /^-object Y and each mor-
phism / G Homc(X, Y) there exists a unique morphism / € Romc(R(X),Y) 
such that the following diagram commutes. 

Y 
A 

x 
QX 

R 

If each C-object possesses an /^-reflection, then the subcategory TZ is said to 
be reflective. 

2. Categorical approach to the divisor theory 

DEFINITION 2.1. Let Sl and S2 be semigroups and / a homomorphism from 
Sx to S2. Then / is called a 6-homomorphism if for each v -ideal J of S2 the 
set f~l(J) is empty or it is a v-ideal of Sx ([13; Definition 2.8]). 

Furthermore we denote by 

/C the category of all 5-semigroups with £-homomorphisms, 
V the full subcategory of /C of all unique factorization semigroups, 
C the category of all 8 -semigroups with (semigroup) homomorphisms 

(thus O(JC) = 0(C)). 

The divisor theory g: S -* D of a 8 -semigroup S has the property of 
"©-reflection", more exactly we have ([13; 5.3]): 

THEOREM 2.1. V is a reflective subcategory of the category K and es: S -» cS 
is a V -reflection for each K,-object S. 

The choice of 8 -homomorphisms is appropriate to express the divisor theory 
as P-reflection, but this choice does not involve, e.g., the norm homomorphism 
N from cR* to cS*, where S is an integral domain possessing a theory of 
divisors with quotient field k and R is the integral closure of S in a finite 
extension K (see [2; Chap. 3, Sec. 5]). 

In the paper [13; Definitions 3.1, 3.7] for a semigroup G a topology 8* = 8Q 
was defined by means of the set of all v -ideals of G as a subbasis for closed sets 
and then the concept of 8 -homomorphism is transferred to that of 8*-homo­
morphism. 
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DEFINITION 2.2. A homomorphism / from a semigroup G to a semigroup H 
is called a 6* -homomorphism if / is a continuous mapping from the topological 
space (G,5Q) to the topological space (H,5*H). 

To preserve the property of ©-reflection for J-semigroups with 5*-homomor-
phisms, we must contract the class of S-semigroups to the class of 5X-semigroups. 

We denote further by 

/C-, the category of all ^-semigroups with J*-homomorphisms, 
Vx the full subcategory of /Cx of all unique factorization semigroups 

(thus 0(Vx) = 0(V)), 
Lx the category of all ^-semigroups with (semigroup) homomorphisms 

(hence 0(LX) = O(JCJ). 

Note that the category JCX contains above mentioned norm homomorphism 
as a morphism. 

The /Cx analogue of Theorem 2.1 is also true ([13; 5.3]): 

THEOREM 2.2. Vx is a reflective subcategory of the category IC1 and 
es: S -» c5 is a Vx-reflection for each ^-object S. 

3. Maximal ^-categories 

Now there arises the question if we can enlarge the classes of morphism in 
the categories JC and Kl remaining in L and Lx for Theorems 2.1 and 2.2, 
respectively, to keep validity. It was shown ([14; Satz 1.3]) that in case of the 
category JC it is not possible. We have more exactly: 

THEOREM 3.1. Let M be a subcategory of L containing tC and let V be the 
full subcategory of M with 0(V) = 0(V) fulfilling the following conditions: 

(a) V is a reflective subcategory of M, 
(b) es: S —•> cS is a V-reflection for each JC-object S. 

Then M = JC. 

In the case of the category JC1 the situation is much more complicated. To size 
up this question, the following concepts were introduced ([14; Definition 1.4]): 

DEFINITION 3.1. Let M be a subcategory of Lx containing Kx and let Vx 

be the full subcategory of M with 0{px) = 0(VX). The category M is called 
a S1-category if Vx is a reflective subcategory of M and e^: S -» cS is a 
!>!-reflection for each /Cj-object S. A ^-category M is said to be a maximal 
S1-category if for each (^-category M containing M we have M = M. The 
category Kx is the least ^-category. 
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The description of the maximal ^-categories makes use of the following 
Definitions 3.2-3.4 ([14; Definitions 2.1, 2.3, 3.2, 4.1]): 

D E F I N I T I O N 3.2. A bundle A = [a{j] (1 < i < u + 1, l<j<v + l) 

au a12 . . . a -̂ . . . 

° i l ai2 ••• % 

of size u x v (u, v are positive integers or the symbol oo and oo + 1 = oo) is 
a sequence {5}J = 1 , where 5. is a sequence { a - } ^ and a-- are non-negative 
integers such that for each integer i (1 < i < u + 1) the set {j : 1 < j < v + 1 
&, a{. ^ 0} is finite. The sequence 5- will also be called a column of A and we 
also say that 5 • is of size u. 

If for each 1 < j < v + 1 the set {i : 1 < i < u + 1 & a.. ^ 0} is finite, then 
the bundle A is called an almost zero bundle. 

Two bundles A = [ai •] of size it x i; and J5 = [6 -fc] of size t> x 10 can be 
multiplied in the usual way; the product A • B is the bundle C = [%] of size 
u x w and 

E %bjk 
l<j<V+l 

for each 1 < i < u + 1, 1 <k < w + 1. 

DEFINITION 3.3. The sequences f = { x j ^ j , 77 = {yj}'j-1 of non-negative 
integers (u, v are positive integers or the symbol 00) are called parallel if for 
each positive integer A there exists a positive integer B such that the g.c.d. 
(the greatest common divisor) of the set 

{x{ : n < i < u + 1} U {y- : n < j < v + 1} 
is greater than A or equal to zero for each integer n > B. (The g.c.d. of the 
empty set is zero.) Then we shall write £ || rj. 

DEFINITION 3.4. A system 6 of bundles containing all almost zero bundles 
is called a star if we have 

(a) A,Be&,A has size uxv,B has size v x w ==> A- B G 6 . 
(b) If A = [a{j] e 6 has size uxv and 2? = [6fc/] G 6 has size r x 5, then 

for each 1 < j < v + I, I < £ < s + 1 the sequences {a-•}Ji
=1, {&/^}£=1 

are parallel. 

A maximal element in the system of all stars ordered by inclusion C is called 
an ultrastar. Clearly, the set of all almost zero bundles forms the least star, 
which will be denoted by 6 0 . 

In [14; Sec. 4] a natural one-to-one correspondence from the set of all ultra-
stars onto the class (which is therefore a set) of all maximal S1 -categories was 
constructed and it was shown (Satz 4.11): 
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PROPOSITION 3.2. For each Sx-category M there exists a maximal Sx-category 
M such that M is a subcategory of M. 

Since the set of all bundles has cardinal exp N0, we get: 

PROPOSITION 3.3. The set of all ultrastars and the set of all maximal 
Si-categories have the same cardinal < exp exp N0. 

4. a-Pseudofilters 

For more detailed description of ultrastars and for the proof of converse in­
equality in Proposition 3.3 we will introduce and investigate the concept of 
a-pseudofilter. 

We denote by P the set of all primes with discrete topology and by (3P the 
Cech-Stone compactification of P . For M C /3P the closure of M in /?P will 
be denoted by cl^p M. 

Remind that Cech-Stone compactification (3P of the space P consist of all 
ultrafilters of the set P , and each p € P is identified with the fixed ultrafilter of 
the set P generated by p. The system of all sets of the form {u € fiP : f / G u } , 
where U C P forms an open base of the topological space /?P. This system 
is also the system of all clopen (open-and-closed) sets of /?P (see, e.g., [15; 
1.19, 1.37]). 

DEFINITION 4.1. Let £ = {x j^ = 1 (u is a positive integer or oo) be a sequence 
of non-negative integers xi. Put 

?r1(0 = { p G P : (3keN)(\/ieN)(k<i<u + l =-=-> p/x{)} , 

TT2(0 = {p e P : (ViV 6 N)(3fcN G N)(Vi G N)(kN <i<u + l = * pN/x{)} , 

(/ is the divisibility relation among integers, 

N is the set of all positive integers), 

a(e) = (cl/3P7r1(0-P)U7r2(0. 

PROPOSITION 4.1. Sequences £, r) of non-negative integers are parallel if and 
only if a(f) n a(rj) ^ 0. 

P r o o f . Let £ = {-rj^=1, r] = { y j ^ i (u> v a r e positive integers or the 
symbol oo) be sequences of non-negative integers. 

I. Assume £ || 77. If the set n^Q n 7r1(?7) is infinite, then there exists u £ 
d/jpfaiCO n 7r2(r?)) ~" P an(* clearly u G a(£) n a(rj). 

Let the set irx (£) n irx (rj) be finite and let q e P - *i (0 n ^ (ry). Then g does 
not divide the g.c.d. of the set {xi : n < i < u + 1} U ty : n < j < v + 1} for 
each positive integer n. Therefore there exists p G 7r2(£) n 7r2(ry) C a(£) n a(r/). 
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II. Let u G a ( 0 n a(rj). If u G ffP - P , then u G cl^p TTX (f) n clpp^fa) 
and the set 7rx(0 n 71̂ (77) is infinite and f || 77. 

If u = p G P , then p G 7r2(c;) n 7r2(7?), which follows that £ || 77. D 

DEFINITION 4.2. A subset _4 of /?P is called an a-set if there exists a se­
quence £ of non-negative integers such that A = a(£). 

This concept of an a-set can also be characterized only by purely topological 
tools as follows: 

PROPOSITION 4.2. Let A C pp. Then the following statements are equiva­
lent: 

(a) A is an a-set 
(b) There exist a continuous mapping f from /3P to R (the space of real 

numbers) and a neighbourhood U of the point 0 in E with the following 
properties: 

(i) i / r g R is a cluster point of the set f(PP) n U, then r = 0, 
(ii) for s G U - {0} the set of f~l(s) is finite, 

(in) i4 = / - i ( o ) . 
(c) There exists a clopen set G of (3P such that G - A and G(~)(/3P — P) = 

A n (pp - P). 

P r o o f . 
I. Suppose that the statement (a) is valid and £ is a sequence of non-negative 

integers with a(£) = A. If TT^Q is finite, then A is finite, i C P , and clearly 
the condition (b) is satisfied. Assume that n^Q = {pvP2>---} IS mfinite and 
the primes pi are mutually different. Put U = {x e R : — 1 < x < 1} and 

{ 0 if t e A, 

i if t=pn and t$A, 

1 ift-pP-AUWiiS). 

Then / is a continuous mapping from /3P to P fulfilling (i)-(iii) from (b). 
II. Assume that the statement (b) is true. We can suppose that U is an open 

set of R. Setting G = f~x(U) we get a clopen set G of j3P with G D A. 
Let u € G n (/?P - P ) . If / (u) ^ 0, then there exists a neighbourhood V 

of / (u) in R such that V C U and /(/?P) fl V = / (u ) . Hence the set f~l(V) 
is finite and therefore f~*(V) is not a neighbourhood of u in /3P, which is a 
contradiction. Consequently, O n (/3P - P ) = A n (0P - P). 

III. (c) =$> (a): Let there exist a clopen set O of /?P such that O D A and 
G n ()9P - P) = A n (/?P - P ) . If O n P is finite, we can suppose O = A. 
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For a positive integer n put 

. _ / 1 i f G n P i s finite, 

" " I Pi • • -Pn if G n P = {p^Pa, . . .} is infinite, 

where p1,p2) • • • a r e mutually different, 

f<tf •<£•••<£ i f -4nP = 
°n \ l if A n P = 0 and A^0, 

-2n 
on 

» _ 1 — *> 

if - 4 n P = fø1,g2,...}, 

L 

2"" 
l if Л = 0 . 

Consider the sequence £ = {bncn}™=l. Then TT^O = G n P , 7r2(£) = .A n P , 
therefore a(f) = .A. It follows that A is an a-set. • 

COROLLARY 4.3. Each a-set is a zero set and therefore closed'in @P. Each 
clopen set of /?P is an a -set. 

DEFINITION 4.3. A non-empty system a of a-sets is said to be an a-pseudo-
filter if it satisfies the following conditions: 

(a) Aea, B ea = » AnB-^0 , 
(b) C is an a-set, Aea,ACC ==> C G a. 

A maximal element of the system of all a-pseudofilters ordered by inclusion 
C is called an a-ultrapseudofilter. If u € /?P, we denote by x(u) the system of 
all a-sets containing u . 

Using Corollary 4.3 we get: 

PROPOSITION 4.4. If u € /?P, then x(u) is an a-ultrapseudofilter. The 
mapping u H* X(U) from /3P to the set of all a-ultrapseudofilters is one-to-one. 

According to P o s p i S i l ' s Theorem ([10] or [15; 3.2]) card/3P = expexpN0 

and since the set of all a-sets has cardinal exp N0, we get from Proposition 4.4: 

THEOREM 4.5. The set of all a-ultrapseudofilters has cardinal exp exp N0 . 

D E F I N I T I O N 4.4. Let A = [a y ] (1 < i < u + 1 , l < j < t ; + l ) b e a bundle of 
size uxv and I) be an a-pseudofilter. We put A -» \) if the following conditions 
are valid: 

(1) (Vn € N) ( l < n < v + 1 = * a{{ain}?=1) 6 !)) , 

(2) if £ is a sequence of non-negative integers of size v such that a(£) € I), 
then a(A-£) e I). 
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PROPOSITION 4.6. Let f) be an a-pseudofilter. 

(a) For a sequence rj of non-negative integers (rj is a bundle of size u x 1) 
we have rj —> f) if and only if a(rj) G f). 

(b) If A, B are bundles of sizes uxv, v x w, respectively, then 

(A-^\) k B-±\)) => A-B^\). 

P r o o f . 
I. Let 77 be a sequence of non-negative integers. From Definition 4.4 we get 

immediately that if 77 -+ f), then a(77) G f). 
Let £ be a sequence of size 1 (hence a bundle of size l x l ) with the property 

a(i) G f). Then £ = [0] and a(r) • f) = /3P G fj. Thus 77 -> fj. 
II. Let A = [a^], £? = [6^] be bundles of sizes uxv, v x w, respectively, 

and .A -r f), B -> fj. Then C = A • B = [c{j] is a bundle of size uxw and 

cij = X^ aik&kj ^or e a c ] l 1 < i < ^ + 1, 1 < j < w + 1. 
k=i 

For each integer n (1 < n < tu +1) we get {cin}^=1 = A- {bkn}
v
k=1, therefore 

«(kB}?-i)erj. 
Let £ be a sequence of non-negative integers of size w such that a(£) G f). 

Then a(B • 0 G fj and a(C • f) = a (A • (B • 0 ) G J)- Therefore A • 5 -> f). D 

For further proofs we will need the following assertion: 

L E M M A 4.7. 

(a) Let £ be a sequence of non-negative integers of size v and A an almost 
zero bundle of size uxv. Then 

* i (0 C TT..(-4 • 0 , TT2(0 C ;r2(A • 0 , a ( 0 C a(A • 0 • 

(b) Lei Mx, M2 be a-sets and Mx C M2. Let M1 = a(£), where £ is a 
sequence of non-negative integers of size v. Then there exists an almost 
zero bundle A of size 00 x v such that M2 = a(A • £). 

P r o o f . The part (a) of Lemma 4.7 is readily shown. 
Let 7 be a sequence of non-negative integers with a(7) == M2 and let 

£ = {x^i-i. Let qx, q2,... be integers with the following property: 
If 71 (̂7) is infinite, then qx,q2,... are mutually different and 71 (̂7) = 

{gi,r /2 , . . .}. ^ ^"1(7) contains only k elements (k a non-negative integer), 
then qu = 1 for v > k + 1 and 71̂ (7) = {qv : 1 < v < k}. For positive integers 
*, 3 (3 <v + l) set 

(1 if g ^ 7 r 2 ( 7 ) , _ (0 lii^j 
Vij I ij if ff, G 7T2(7),

 aij " I g ? 1 ' ^ . . . g j " . if i = j . 
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Then A = [a{.] (1 < i < oo, 1 < j < v + 1) is an almost zero bundle of size 
ooxt j . Let 77 = A • £ = {2/J-^i • Since y{ = a ^ for each positive integer z, we 
have 7r2(77) = 7r2(7) and 7r1(77) = ^ ICO u 7ri(7)- Consequently 

C W ^1 (fl) - P = (cl/3P *i ( 0 U cl^p 7rx (7)) - P 

= K P ^ I ( 0 ~ P) U (cl^p 7^(7) - P) 

= ^ ^ 1 ( 7 ) - ? , 

therefore a(A • £) = a(r\) = a(7) = M2, which is what we wanted to prove. • 

5. Relationship between stars and a-pseudofilters 

DEFINITION 5.1. For an a-pseudofilter f) we denote by 4(f)) the system of 
all bundles A with A -» f). 

For a star S put 

B(e) = {a(0 : (3 A G e)(3n G N)(A = [ay] of size tx x v & 

l<n<v + l k t = {ain}lsl)} 
=: {a(£) • £ is a sequence of non-negative integers with £ G 6 } . 

PROPOSITION 5.1. If f) is an a-pseudofilter, then .4(f)) is a star. If f) is an 
a-ultrapseudofilter, then A(\j) is an ultrastar. 

P r o o f . 
I If A = \ai3] is an almost zero bundle of size u x v, then for each integer 

n (1 < n < v + 1) we have ^({a^}^) = J3P G f) and for each sequence f of 
non-negative integers of size v with a(£) G f) the set a(.4 • £) belongs to F) by 
Lemma 4.7(a). Therefore A -» i) and .A G 4(f)). 

II. Let A,J5 G .4(f)). If .4, B have sizes w x v , v x iu, respectively, then 
according to Proposition 4.6, A • B -> I), thus .4 • JB G .4(f)). 

If A, .S have sizes uxv, rxs and £, 77 are columns of A, J5, respectively, 
then a(£) G I), a(7?) G f) (by Definition 4.4), hence a(f) n a(77) ^ 0. Using 
Proposition 4.1 we get £ || 77, which implies that *4(f)) is a star. 

III. Let f) be an a-ultrapseudofilter, 6 a star, 6 D -4(f)), and let C = 
[c..] G 6 be a bundle of size uxv. 

Suppose that n is an integer (1 < n < v + 1) and put 7 = {cin}JL1. Let 77 
be a sequence of non-negative integers with a(77) G f). Using Proposition 4.6(a) 
we get 77 -> f), therefore 77 G 4(f)) and 77 G 6 . Consequently 77 || 7 and by 
Proposition 4.1, a(77) n 0.(7) ^ 0, which follows that 0(7) G f). 
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If £ is a sequence of non-negative integers of size v with a(£) G f), then 
£ -> f) (Proposition 4.6(a)) and thus £ 6 6 . Therefore C • £ G 6 and rj \\ C • £. 
Consequently (Proposition 4.1) a(rj) n a(C • £) ^ 0, which gives a(C • £) G f). 

Hence C -» f) and C G .4(f)), thus .4(f)) is an ultrastar. This proves the 
result. • 

PROPOSITION 5.2. If & is a star, then B(&) is an a-pseudofilter. For stars 
&x, 6 2 with &1 C 6 2 we have B(&x) C B(&2). 

P r o o f . Let 6 be a star. Since the zero sequence u = { o j ? ^ (o{ = 0 for all 
i = 1,2 . . . ) as an almost zero bundle belongs to 6 , we have /3P = a(u>) G B(&), 
thus 5 ( 6 ) ^ 0 . 

Using Proposition 4.1 we get X D 7 ^ 0 for X, F G # ( 6 ) . Suppose that 
B C C C /3P, JB G # ( 6 ) , C is an a-set and a(£) = B, where £ is a sequence 
of non-negative integers of size v with £ G 6 . According to Lemma 4.7(b) there 
exists an almost zero bundle A of size oo x v such that C = a(A • £). Then the 
relation C G 5 (6 ) follows from _4-£ G 6 . Therefore #(6) is an a-pseudofilter. 

For stars 6X C 6 2 the inclusion B(&1) C Z?(62) is clear. D 

PROPOSITION 5.3. If f) is an a-pseudofilter, then BA(\)) = f). 

P r o o f . Suppose X G f) and X = a(£), where £ is a sequence of non-
negative integers. According to Proposition 4.6(a), £ -» f), hence £ G >4(f)) and 
X = a (£)e tU([ ) ) . 

Conversely, assume that X G 5*4(1)). Then there exists a sequence £ of 
non-negative integers with X = a(£) and £ G *4(f)), therefore £ -» f) and 
X = a(£) G f) (Proposition 4.6(a)). The result follows. • 

Prom Propositions 5.1-5.3 we can derive easily that A, B are mappings 
from the set V of all a-pseudofilters to the set S of all stars, from S to V, 
respectively, A is one-to-one (injection) and B is onto (surjection). Furthermore 
the restriction of A to the set Vu of all a-ultrapseudofilters is a one-to-one 
mapping from Vu to the set Su of all ultrastars. Hence card7\ < card£u and 
using Propositions 4.5 and 3.3 we get: 

THEOREM 5.4. The set of all ultrastars and the set of all maximal 8x-categories 
have the same cardinal equal to exp exp N0. 

Note that the question whether for each ultrastar 6 the a-pseudofilter B(&) 
is an a-ultrapseudofilter remains open. 

267 



LADISLAV SKULA 

6. Some examples 

The aim of this last section is to show that the mapping B: S —r V is not 
one-to-one (Proposition 6.2) and that the class of all ^-categories does not form 
a set (Theorem 6.7). 

LEMMA 6.1. Let 21 be the set of all almost zero bundles and £ a sequence of 
non-negative integers of size v with a(£) ^ 0. Then the set 

Q = 6(£) = {A • £ • Z : A € 21 has size u x v and 

Z is a bundle of size 1 x w} U 21 

is a star. 

P r o o f . Evidently 21 C 6 and the condition (a) of Definition 3.4 is satisfied. 
If a is a column of the bundle A • £ • Z, where A G 21 has size uxv and Z is a 
bundle of size l x w , then according to Lemma 4.7(a), a(£) C a(_4 • f) C a(cI). 

• 

EXAMPLE. Let p be a prime, ^ = {p*}-^, £2 = {p '" 1 }*^ • I f £2 € e (£ i ) 1 t h e n 

there exist .A = [a{j] € 21 of size wxoo and a bundle .Z = [z] of size l x l such 
0 0 

that £2 = A • fj • Z, therefore 1 = ]T) a^z, which is a contradiction. 
i=i 

The stars 6(£x) and 6(£2) are different and B(G{^)) = B(6(f2)) = {-X : 
X is an a-set with p e X} = X(P) » using notation of Definition 4.3. Thus we 
can state: 

PROPOSITION 6.2. The mapping B: S ->V is not one-to-one. 

DEFINITION 6.1. ([14; 4.9]) Let D and D' be semigroups with unique fac­
torization and let / be a homomorphism from D to D'. An irreducible el­
ement q of the semigroup D' will be called an a-element of f if the set 
{p : p is an irreducible element of D such that /(p) is divisible by q} is infi­
nite. 

If m is an infinite cardinal number and the set of all a-elements of / has 
cardinal equal to or less than m, we call / an a(m) -homomorphism. 

PROPOSITION 6.3. Suppose that m is an infinite cardinal number, Dx, D2, 
Ds are semigroups with unique factorization and f:Dx —> D2, g: D2 —> D3 

are a(m)-homomorphisms. Then go f: Dx -> D3 is an a(m)-homomorphism. 

The proof is almost word for word the same as the proof of [14; 4.9.1], where 
this proposition was shown for m = N0. 
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DEFINITION 6.2. ([14; Sec. 4]) Let p be a prime and Dx, D2 be semigroups 
with unique factorization. Denote by (DX,D2)M^ the set of all homomorphisms 
from Dx to D2 with the following property: 

Let q be an irreducible element of the semigroup D2 and let {pi}JL1 be a 
sequence of size u (u is a positive integer or oo) of mutually different irreducible 
elements of the semigroup Dx. Let a{ be the order of f(p{) at q for 1 < i < u+1. 
ThenpG7r2({a.}-=1). 

For ^-semigroups G, H put 

(G, H)M, j = {g : g is a homomorphism from G to H such that 

there exists / G (cG, cH)M{p) with / o eG = eH o g) . 

We define the category M(p) whose objects are ^-semigroups, 
HomM, JG,H) = (G,H)M, , for ^-semigroups G, £T, and the operation 
of morphisms equals the composition of mappings. Using the results of [14; 
Sec. 4] we get: 

PROPOSITION 6.4. The category M(p) is a maximal S^category for each 
prime p. 

DEFINITION 6.3. Let p be a prime and m be an infinite cardinal number. For 
(^-semigroups G, H put 

(G,H)M,pm) = [g : g is a homomorphism from G to H such that 

there exists / 6 (cG, cH)M,p) with / o eG = eH o g and 

/ is an a(m)-homomorphisms} . 

We define a subcategory M(p,xn) of the category M(p) whose objects are 
^-semigroups and Hom^(pim)(G,.ff) = (G,H)M{pm) for ^-semigroups G, H 
(see Proposition 6.3). Since for the semigroups Dx, D2 with unique factorization 
and for each J*-homomorphism / from Dx to D2 the set of all a-elements of / 
is empty ([13; Korollar 3.10]), the category /Cx is a subcategory of the category 
M(p,m) and therefore: 

PROPOSITION 6.5. The category M(pjXn) is a 6\-category for each prime p 
and each infinite cardinal number m. 

PROPOSITION 6.6. Let p be a prime and m, n be infinite cardinal numbers 
with m < n. Then the category M(p,m) is a proper subcategory of the category 
-M(p,n). 
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P r o o f . Clearly, M(p,m) is a subcategory of M(p,n). We will show that 
•M(P?m) 7̂  M(p, n). Let Q be a set with cardQ = n and let piq be mutually 
different symbols for q £ Q a n d i being a positive integer. There exist semi­
groups Dx, JD2 with unique factorization such that {p̂  : q € Q, z G N} and 
Q are the sets of all irreducible elements of Dx and D2, respectively. 

For a positive integer i and q G Q set 

/(Pi„) = qpi 

and extend / to a homomorphism from Dx to D2. Then / G (Dl)D2)M, x 

and Q is the set of all a-elements of / . Thus / G RomM^ J D11D2) — 
H o m / v i ( p , m ) ( ^ i ^ 2 ) - ' a 

Using Propositions 6.5 and 6.6 we obtain: 

THEOREM 6.7. The class of all S^categories does not form a set. 
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