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SUBADDITIVE MAXIMAL ERGODIC THEOREM
BLAHOSLAV HARMAN

The paper is aimed to generalize the so called maximal ergodic theorem, which
can be formulated (see, e.g., [1]) as follows:

Let (X, S, u, T) be a dynamical system, thatis X#@, S is a 0 — algebraon X, u
— measure on S and T: X— X a measure preserving transformation. Let f be an u
— integrable function defined on a set X. Let us denote E={xeX; 3keN:
f(x)+ ...+ f(T*'x)=0}. Then

J fredp=0. (¢9)

The proof of this maximal ergodic theorem is based on the assertion, whose
formal modifications ($ee [1], [2], [3]) can be formulated in common form as:
Let us denote E,={xe X; 3k=n: f(x)+...+ f(T* 'x)=0}. Then

J fxe.duz0. ()

The proof of the assertion (1) is based only on the suitable limitation by using
(2). Therefore (2) can be regarded as a kernel of a maximal ergodic theorem. If f is
a nonnegative integrable function, then (2) is trivial. In this case a nontrivial
consequence of (2) is the following assertion:

Let a=0, f=0. Let us denote

F.={xeX;3k=n: f(x)+...+ f(T*'x)=ka),

or
H,={xeX;3k=n: f(x)+...+f(T* 'x)<ka} resp.
Then
| fxr.du Z au(F,), (3)
resp.
| fam.dp = au(H,). (4)

The generalization of the mentioned classical theorem is based on the changing
of the integral with respect to a measure (that is of some linear functional defined
on a set of integrable functions) by a sublinear functional I defined on a set F which
is a subset of a set R*, where X is a nonempty set. A measure preserving
transformation is replaced by a transformation to which the functional I is
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invariant. The exact formulation of the demands on the objects X, F, I, T is
formulated in § 1.

In § 2 there are formulated some lemmas.

§ 3 is devoted to the generalized variant of a maximal ergodic theorem.

§ 4 contains an example using an integral with respect to a premeasure which is
one of the representatives of the nonlinear functional I. The main importance of
this example lies in showing the impossibility of the generalization of (4).

§ 1. Fundamental properties of a system (X, F, I, T)

1. Let us assume X to be a nonempty set. Let us denote a subset of a set of all real
functions defined on X by the symbol F. The following conditions must be
fulfilled :

a) If f, g are elements of F, then f+g e F, max (f, g)=fvgeF, min (f, g)=
fageF.

b) If ceR, feF, then cfeF.

c) If e: X— R is the map defined by the formula e(x)=1, then e€F.

2. Let us denote by the symbol I a functional I: F— R with the following

properties :

a) If f, geF, f=g, then I(f)=1I(9).

b) If fe F, ce R, then I(cf)=cI(f).

c) If feF, geF, f=0, g=0, then I(f+ g)=I(f)+ I(g) (subadditivity).

d) IfaeR,a=0, feF,then I(f)=I(fAra)+ I(f — f Aa) (additivity in a horizon-
tal sense).

e) Letf,e FforneN,f,/fe R*. Letasequence {I(f,)} be upper bounded by
a constant K. Then fe F and I(f)=K.

3. Let us denote by the symbol T a transformation T: X— X. The following
conditions on T must be fulfilled:

a) If feF, Tf: X— R, x+> f(Tx), then TfeF.
b) If feF, then I(Tf)=I(f).

§ 2. Some elementar properties
This paragraph is devoted to simple lemmas, which aim at securing the correction
of the following considerations.
Lemma 1. Let fe F, f=0, a=0. Let us denote
M={xeX; f(x)>0}.
Then I(f + axm) = I(f) + al(xm)-
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Proof: The assertion of lemma is the straightforward consequence of a property
2d from § 1 (additivity in a horizontal sense) of the functional I.

I(f+ axm) = I((f + axm) A @) + I((f + axm) — (f + axm) Aa) =
= I(aym) + I(f) = I(f) + al(3m)- Q.E.D.

Lemma 2. Let fe F. Let us denote
M= {xeX; f(x)>0)}.

Then xm € F.

Proof: Let us denote g, =min (n max (f, 0), e) for ne N. It is easy to see
gn € F, g.=e. Therefore the sequence {I(g.)} is upper bounded by the constant
I(e). Moreover g,/ xu. By using the property 2e we obtain yu € F.

Q.E.D.

Lemma 3. Let feF, f=0, AcX, xa€F. Then fya €F.
Proof: Let us denote h, =min(f, nxa), n€N.
Evidently h, € F; I(h,) = I(f). Therefore {I(h,)} is an upper bounded sequence.
Moreover h,,/fxa. By using 2e we obtain fya € F.
Q.E.D.

§ 3. Maximal ergodic theorem

An assertion analogical to the classical maximal ergodic theorem will be proved
in the next paragraph. For its formulation we need some notations. Let fe F, f=0,
a=0, ke N. Let us denote

Se=f+Tf+..+ T 'f—ka
M, =max (0, S;, ..., S,)
A, ={xeX; M,(x)>0}.

By lemmas 2, 3 the functions Si, M,, xa, are elements of F.

Theorem 1. Let fe F, f=0. Let f be a bounded function.

Let a=0. Then I(fxa,)= al(xa,)-

Proof. For a =0 an assertion of the theorem is trivial.

Let us assume a>0. It is evident that M,=S.. However, TS:=
Tf+ ...+ T*f — ka = Si+1— f + a thus it follows that f + TM, = S+1 + a. All these
relationships are valid for k=1, 2, ..., n.

It is easy to see that f+ TM,=f—a+a=S,+ a. Hence

(f + TM,)xa, Zmax (Si1, Sz, ..., Sn+1)Xa, + aXa, =
=max (0, Sy, ..., Sus1)Xa, + axa, =
= Mp+1)Xa, T aXa,
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and then
fxanZ xaMas1 = (TM,) xa, + aXa, =
Z xa M, — (TM,) %A, + axa, =
=M, — (TM,)xa, + axa,-

For obtaining the last inequality, the relationship M,.1=M, and M,(x)>0 iff
x € A, has been employed. Let k> 1 such that M, — (TM,,)xa, + kaya, 0. This is
possible because of the assumption a >0 and the fact that the functions f, M., TM,
are bounded and all functions occurring in this inequality are equal to zero for
x ¢ A,. Moreover there is valid

I(M, + kaxa,) = I(M, — (TM,)Xa, + kaya, + (TM,)xa,) =
=I(M, — (TM,)xa, + kaxa,) + I((TM,)xa,) =
= I(M, — (TM,)xa, + kaxa,) + [(TM,) =
=I(M, = (TM,)xa, + axa, + (k — D)axa,) + [(M,)=
= I(fxa, + (k= 1aya,) + I(M,) = I(fya,) + a(k = D)I(xa,) + I(M,).

From lemma 1 it follows that
I(M,, + kaya,) =1(M,) + kal(xa,).

By applying the last inequality we obtain after a short arrangement the assertion of
the theorem.

Q.E.D.
The following theorem can be considered as a limit case of the preceding one.
Firstly we must introduce the notations.

A={xeX;3peN: f(x)+ f(Tx)+...+ f(T*"'x)>pa)}.

Theorem 2. Let fe F, f=0, a=0. Let f be a bounded function. Then I(fxa,)=
al(xa).

Proof. For a =0 the assertion of the theorem is trivial. Let us assume a > 0.
Evidently

An CAn+1
A=A,
n=1
and then

Xan/ XA
fxa./ fxa.

Moreover xa, € F, I(xa,)=I(e) and ya € F. By lemma 3 fxa € F. By using the
above mentioned relationships and theorem 1 we obtain I(fxa)=I(fxa,). There-
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. 1
fore {I(xa,)} is a sequence bounded by 2 I(fxa). Hence from I(xA)éé I(fxa) the

assertion of the theorem follows.
Q.E.D.

§ 4. Application of an integral with respect to a premeasure

In the preceding paragraph a positive result concerning the relation (3) was
obtained. By applying an integral with respect to a premeasure a negative result
concerning the relation (4) will be shown. Let us assume fe F, f=0, a=0. Let us
denote

N, =min (O, Sl, Sz, ceey S,.)
B, ={xeX; N.(x)<0}.

It will be shown.that an arbitrary relation between the values al(xs,) and I(fxs,) is
allowed. The functional I will be replaced by an integral with respect to
a premeasure which is introduced in [4]. Further properties of this integral have
been worked out in [4], [5], [6]. The example given will be calculated by a method
from [5], page 259. This method is applicable to the calculation of an integral of
a real function of a real variable with respect to a premeasure u. Let us denote this
integral by a symbol J,(f). In order to get a better survey let us introduce
a necessary formula

L= f g(H)dh,

where A is the Lebesgue measure and a function g is defined by the relation
g()=u({xeX; f(x)>1}).

Let X =(0, 1), u=VA. Let F be a set of all integrable functions with respect to

the premeasure p defined on the set (0, 1). The functional I will be defined as
follows: I(f)=J.(f). As a transformation T define T: (0,1)—(0,1), x>

(x +%> mod 1.

It is evident that this transformation is A-preserving and, due to the definition of
u, premeasure u preserving. It is easy to show that J,(f) = J,(Tf). Moreover from
the properties of the integral with respect to a premeasure it follows that all
conditions required in a system (X, F, I, T) are fulfilled.

In the following example we shall work with the function N=N,=
min (0, Si, S;) and with the set B={x € (0, 1); N2(x)<0}.
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i, 1
Example. Let g: (0,1)>R, t—Vt, f=gx <0, 5).

Let ae <O, L_> After a short calculation we obtain
V8
B=(0, 4az)u<%, 1)
I(fys) = Ju(fxs) = ma®

al(ys) =al,(fxs)=a \/4a2+% .

Let us denote
1

Ve

It is easy to see that
. 1
I(fxs)>al(xs) if ae(&, %>

I(fxe)=al(xs) if a=§
I(fxe)<al(xs) if ae(0,&).
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CYBAJOUTUBHASI MAKCUMAIJIbHASI SPTOOUYECKAS TEOPEMA
Blahoslav Harman

Pe3oMme

B pa6ore npusegeHo 06061ieHHe TaK Ha3bIBAEMOMN KJIACCMYECKOH MAKCHMAJILHOH 3proguuecKoi
TeopeMbl ISl cy4asi cyGnuHeitHoro ¢yHKIMOHata. B npuMepe Mcnonb30BaH HeJTMHEHHbIH MHTErpal,
OCHOBaHHbIH Ha MOHSATHH NpeaMepbl. Ha 3TOM npuMepe TakXe MoKa3aHo, YTO C AAHHOW TOYKH 3peHUs
He Bcerga BO3MOXHO 06006UIeHHE MPUBEAEHHON TEOPEMBI.
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