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SUBADDITIVE MAXIMAL ERGODIC THEOREM 

BLAHOSLAV HARMAN 

The paper is aimed to generalize the so called maximal ergodic theorem, which 
can be formulated (see, e.g., [1]) as follows: 

Let (X, S, ju, T) be a dynamical system, that is X=£ 0, S is a a — algebra on X, JU 
— measure on S and T: X—»X a measure preserving transformation. Let / be an [i 
— integrable function defined on a set X. Let us denote E = {xeX; 3k eN: 
f(x)+...+f(Tk~1x)^0}. Then 

ffodn^O. (1) 

The proof of this maximal ergodic theorem is based on the assertion, whose 
formal modifications (See [1], [2], [3]) can be formulated in common form as: 

Let us denote En = {xeX; 3k^n: f(x)+... +/(Tk"1jc)^0}. Then 

ffadii^O. (2) 

The proof of the assertion (1) is based only on the suitable limitation by using 
(2). Therefore (2) can be regarded as a kernel of a maximal ergodic theorem. If / is 
a nonnegative integrable function, then (2) is trivial. In this case a nontrivial 
consequence of (2) is the following assertion: 

Let a ^ 0 , / ^ 0 . Let us denote 

Fn = {xeX;3k^n:f(x)+...+f(Tk~1x)^ka}9 

or 
Hn = {xeX;3k^n:f(x) + ...+f(Tk~1x)^ka} resp. 

Then 
SfXFndn^an(Fn), (3) 

resp. 
Uxnndii^aii(Hn). (4) 

The generalization of the mentioned classical theorem is based on the changing 
of the integral with respect to a measure (that is of some linear functional defined 
on a set of integrable functions) by a sublinear functional I defined on a set F which 
is a subset of a set Rx

9 where X is a nonempty set. A measure preserving 
transformation is replaced by a transformation to which the functional I is 
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invariant. The exact formulation of the demands on the objects X, F, 1, T is 
formulated in § 1. 

In § 2 there are formulated some lemmas. 
§ 3 is devoted to the generalized variant of a maximal ergodic theorem. 
§ 4 contains an example using an integral with respect to a premeasure which is 

one of the representatives of the nonlinear functional I. The main importance of 
this example lies in showing the impossibility of the generalization of (4). 

§ 1. Fundamental properties of a system (X, F, / , T) 

1. Let us assume X to be a nonempty set. Let us denote a subset of a set of all real 
functions defined on X by the symbol F. The following conditions must be 
fulfilled : 
a) If / , g are elements of F, then f+geF, max (/, g) = / v g e F, min (/, g) = 

fAgeF. 
b) If ceR, feF, then cfeF. 
c) If e: X—>R is the map defined by the formula e(x)= 1, then e e F. 

2. Let us denote by the symbol I a functional I: F—»I? with the following 
properties : 
a) If/, geF, f^g, then 1(f) ^ 1(g). 
b) U feF, ceR, then I(cf) = cl(f). 
c) If feF, geF, f^O, g^O, then I(f + g)^ 1(f) + 1(g) (subadditivity). 
d) If a e R, a ^ 0, / e F, then 1(f) = l(f A a) + I(f - / A a) (additivity in a horizon­

tal sense). 
e) Let/„ e F for n eN, fn/feRx. Let a sequence {!(/„)} be upper bounded by 

a constant K. Then feF and 1(f) =^K. 
3. Let us denote by the symbol T a transformation T: X - > X . The following 

conditions on T must be fulfilled: 
a) If feF, Tf: X->JR, x^f(Tx), then TfeF. 
b) If feF, then I(Tf) = I(f). 

§ 2. Some elementar properties 

This paragraph is devoted to simple lemmas, which aim at securing the correction 
of the following considerations. 

Lemma 1. Let feF, f^O, a^O. Let us denote 

M={xeX;f(x)>0}. 

Then I(f + axu) = 1(f) + a!(xM). 
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Proof : The assertion of lemma is the straightforward consequence of a property 
2d from § 1 (additivity in a horizontal sense) of the functional I. 

W+ aXM) = I((f+axM)Aa) + ! ( ( / + QXM) ~(f+ «XM) A a) = 
= I(axM) + 1(f) = 1(f) + al(xM). Q.E.D. 

Lemma 2. Let feF. Let us denote 

M={xeX;f(x)>0}. 

Then XM e F. 
Proof : Let us denote gn =min (n max (/, 0), e) for neN. It is easy to see 

gn eF, gn = e. Therefore the sequence {I(gn)} is upper bounded by the constant 
1(e). Moreover gn/xM- By using the property 2e we obtain / M e F . 

Q.E.D. 

Lemma 3. Lef feF, f = 0, A cz X, %A e F. Then /%A e F. 
P roof : Let us denote hn=min(f, WA), neN. 
Evidently hn e F, I(hn) = I(f). Therefore {I(hn)} is an upper bounded sequence. 

Moreover hn/fxA. By using 2e we obtain /%A eF. 
Q.E.D. 

§ 3. Maximal ergodic theorem 

An assertion analogical to the classical maximal ergodic theorem will be proved 
in the next paragraph. For its formulation we need some notations. Let feF,f = 0, 
a=0, keN. Let us denote 

Sk=f+Tf+... + Tk~1f-ka 
M„=max(0 , Si, ..., Sn) 
An = {xeX;Mn(x)>0}. 

By lemmas 2, 3 the functions Sk, Mn, %A„ are elements of F. 

Theorem 1. Let feF, f = 0. Let f be a bounded function. 
Leta=0. Then I(fXAn) = aI(xAn). 
Proof. For a = 0 an assertion of the theorem is trivial. 
Let us assume a > 0 . It is evident that Mn = Sk. However, TSk = 

Tf+... + Tkf-ka = Sk+1 -f+a thus it follows that / + TMn = Sk+1 + a. All these 
relationships are valid for k = 1, 2, ..., n. 

It is easy to see that / + TMn =f — a + a = S1 + a. Hence 

( /+ TMn)xAn ^ m a x (Si, S2, ..., Sn+1)xAn + axAn = 
= max (0, Si, ..., Sn+1)xAn + a%A„ = 
= Mn+1XAn + axAn 
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and then 
fXAn ^ XAnMn+1 - (TMn)XAn + aXAn ^ 

= XAnMn - (TMn)xAn + aXAn = 

= Mn- (TMn)xAn + aXAn. 

For obtaining the last inequality, the relationship Mn+i^Mn and M n ( x ) > 0 iff 
x e An has been employed. Let k > 1 such that Mn - (TMn)xAn + kaxAn =0. This is 
possible because of the assumption a >0 and the fact that the functions / , Mn, TMn 

are bounded and all functions occurring in this inequality are equal to zero for 
x ^ An. Moreover there is valid 

I(Mn + kaXAn) = I(Mn - (TMn)XAn + kaXAn + (TMn)XAn)^ 
^I(Mn - (TMn)XAn + kaXAn) + I((TMn)XAn)^ 

^I(Mn - (TMn)xAn + kaXAn) + I(TMn) = 
= I(Mn-(TMn)xAn + axAn + (k-l)aXAn) + I(Mn)^ 

^I(fXAn + (k-l)aXAn) + I(Mn)^I(fxAn) + a(k-l)I(XAn) + I(Mn). 

From lemma 1 it follows that 

I(Mn + kaXAn) = I(Mn)+ kaI(XAn). 

By applying the last inequality we obtain after a short arrangement the assertion of 
the theorem. 

Q.E.D. 

The following theorem can be considered as a limit case of the preceding one. 
Firstly we must introduce the notations. 

A = {xeX;3peN:f(x) + f(Tx) + ...+f(Tp-lx)>pa}. 

Theorem 2. Let feF, / ^ 0 , a^0. Let f be a bounded function. Then I(fxAn)^ 
al(XA). 

Proof. For a = 0 the assertion of the theorem is trivial. Let us assume a>0. 
Evidently 

An cz An+i 

n = \ 

and then 
A«A,t / A.A 

fXAn/fXA. 

Moreover %A„ e F, I(xAn) = I(e) and XA e F. By lemma 3 fXAeF. By using the 
above mentioned relationships and theorem 1 we obtain I(fXA)^I(fXAn). There-
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fore {I(xAn)} is a sequence bounded by - I(JXA). Hence from I(xA)=^~ I(fx*) the 
a a 

assertion of the theorem follows. 
Q.E.D. 

§ 4. Application of an integral with respect to a premeasure 

In the preceding paragraph a positive result concerning the relation (3) was 
obtained. By applying an integral with respect to a premeasure a negative result 
concerning the relation (4) will be shown. Let us assume feF, / = 0, a^O. Let us 
denote 

N n = m i n ( 0 , Si, S2, ..., Sn) 
Bn = { jceX;N n ( jc)<0} . 

It will be shown.that an arbitrary relation between the values aI(xBn) and I(fxBn) is 
allowed. The functional I will be replaced by an integral with respect to 
a premeasure which is introduced in [4]. Further properties of this integral have 
been worked out in [4], [5], [6]. The example given will be calculated by a method 
from [5], page 259. This method is applicable to the calculation of an integral of 
a real function of a real variable with respect to a premeasure JU. Let us denote this 
integral by a symbol /„(/). In order to get a better survey let us introduce 
a necessary formula 

Xf) = \Rg(t)dx, 

where A is the Lebesgue measure and a function g is defined by the relation 
g(t) = v({xeX;f(x)>t}). 

Let X = (0, 1), \i = VX. Let F be a set of all integrable functions with respect to 
the premeasure \i defined on the set (0, 1). The functional J will be defined as 
follows: /(/) = /„(/). As a transformation T define T: (0, l)-> (0, 1), JC-> 

И) mod 1. 

It is evident that this transformation is A-preserving and, due to the definition of 
\i, premeasure \i preserving. It is easy to show that J»(f) = J»(Tf). Moreover from 
the properties of the integral with respect to a premeasure it follows that all 
conditions required in a system (X, F, I, T) are fulfilled. 

In the following example we shall work with the function N = N2 = 
min (0, Si, S2) and with the set B = {jce(0, 1); N 2 ( J C ) < 0 } . 
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E x a m p l e . Let g: (0, 1)^R, t->Vt, / = QX (o, - ; ) . 

Let a e (0, — = ) . After a short calculation we obtain 
V V8/ 

B = < 0 , 4 a 2 ) u ( | , l ) 

I(fXB) = UfXB) = *a2 

aI(xB) = aJ,(fXB) = a yj4a2 + -. 

Let us denote 

It is easy to see that 

V 2 ( J Г 2 - 4 ) 

I(fXв)>aI(Xв) if в є ( | , ^ 

I(fXß) = aI(xв) if a = § 
í(/Xв)<a/(Xв) if flє(0,§). 
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СУБАДДИТИВНАЯ МАКСИМАЛЬНАЯ ЭРГОДИЧЕСКАЯ ТЕОРЕМА 

В1аЬо$1ау Н а г т а п 

Р е з ю м е 

В работе приведено обобщение так называемой классической максимальной эргодической 
теоремы для случая сублинейного функционала. В примере использован нелинейный интеграл, 
основанный на понятии предмеры. На этом примере также показано, что с данной точки зрения 
не всегда возможно обобщение приведенной теоремы. 
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