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EMBEDDING SEMIGROUPS
IN NILPOTENT-GENERATED SEMIGROUPS

JOHN M. HOWIE

A semigroup with zero is called nilpotent-generated if it has a generating set
A with the property that for all @ in A4 there exists n > 1 such that " = 0. Recent
work [2, 7, 11] has drawn attention to such semigroups. Also, since it is known
[4, 9] that every semigroup is embeddable in an idempotent-generated semi-
group it is natural to ask whether nilpotent-generated semigroups have the same
universal property. In Section 1 it is shown that this is indeed the case: every
semigroup S can be embedded in a nilpotent-generated semigroup 7. One can
moreover be a good deal more precise about the nature of T'(Theorem 1.1) and
can arrange for T to inherit from S various special properties (Theorem 1.5).
For example, if S is regular, then so is T. _

Certain arithmetical aspects of the embedding are explored in Section 2. If n
is a positive integer and C is a class of semigroups, then by analogy with the
definition in [6] one defines k to be a CNG-cover of n if every semigroup of order
n in the class C is embeddable in a nilpotent-generated semigroup of order at
most k. Let v(n) be the least CNG-cover of n. It is shown in Theorem 2.4 that
if S is the class of all semigroups, then

4n + 1 < vg(n) <4n+ 2,
and in Theorem 2.5 that if Z is the class of semigroups with zero, then
4n —3 < vy(n) < 4n — 2.

These inequalities are tantalisingly close to an exact specification for the
functions vgand v,, but at the moment I am unable to be any more exact. It is
of course perfectly possible a priori that the upper bound is attained for some
values of n and the lower bound for others.

For certain classes C we can specify v precisely. For example, if G'is the class
of groups and Q is the class of semigroups S such that S?= S, then v(n) =
= 4n + 1 for every class C such that G € C < Q.

The greater part of this work was done during a visit to Australia in April
and May 1986. I benefited greatly from discussions with several Australian
mathematicians, especially Dr. T. E. Hall of Monash University.
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1. The embedding method

For unexplained terms in semigroup theory see [5].

The set of all nilpotent elements of a semigroup S will be denoted by N(S),
or just by N if the context allows. If ae N(S) is such that a”" =0, a"~' # 0, we
call n the index of a and write i(a) = n. If S = (N(S)) is nilpotent-generated,
define i(S) = max {i(a): ae N(S)} if this is finite; otherwise define i(S) = oc.
Note that if S has finite index i(S), then a"® = 0 for all « in N(S), but this does
not imply that (N(S))*® = 0.

Let S = {(N) be nilpotent-generated; then either the ascent

Nc NUN’c NuUN*UN*c ..
is infinite or there is a unique & for which
S=NUN>U...UN*#NUN>U...UN"",
In the first case we say that S has infinite depth and write d(S) = oo; in the second

case we say that S has depth k and write d(S) = k.
Define the nilpotent rank nr(S) by

nr(S) =min{|4|: A € N and {4) = S}.

This may well be greater than the rank r(S) = min{|4|: (4> = S}. (See the
example in [3, Section 2].)

Theorem 1.1. Let S be a semigroup. Then S can be embedded in a nilpotent-
generated semigroup T. Moreover, T can be chosen so that nr (T) < 3 and i(T) =
=d(T) =2.

Proof. Let T be the Rees matrix semigroup M°[S'; 2, 2; I], where [ is
the 2 x 2 identity matrix. That is to say,

T=({1,2}xS'x {1, 2}) u {0},

where
. . _J,ab, ) fj=k
(i, a, j)(k, b, l)—{ 0 if ] £ k.
and
(i, a, ))0 =0(, a, j) =00 = 0.
Then
N(T)={(i, a, )eT: i #j}u{0}.
Since
(1,a, N=(1,1.2)(2,a, 1) (1.2)
and
2,a,2)=(2,a, 1)(1,1,2) (1.3)
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forallain S', it follows that T is nilpotent-generated and that i(T) = d(T) = 2.
It is now easily verified that s+ (1, s, 1) embeds S in T.

In order to obtain a T such that nr(7) = 3 we must first use the result of
Evans [1] (see also Neumann [8], Subbiah [10]) to embed S in a semi-
group U = {u,, u,» of rank 2. If U' = U, we take T = M°[U; 2,2;1];if U' o U
we take

T=M[U";22;N\{(1,1,1),@2,1,2), (2,1, .
Now consider the subset
A={2,u,1), 2, u1),d,l,2)

of N(T). Fori=1, 2,

Lu, )=0,1,2)(Q2, u, 1)e{4);

hence (1, u, 1)e<{A) for all win U. Similarly (2, u, 2)e (A for all uin U. It now
follows that

(1, u,2) = (1, u, 1)(1, 1, 2)e<4)
for all u in U. Finally, consider an element of the form (2, u, 1), where ue U.

If uef{u,, u,}, then (2, u, 1)e 4 = {(4). Otherwise u = wu,, where we U and
ie{l, 2}, and then

2, u, 1)=2,w,2)2, u;, 1)e<4).

Thus {(4) = T and so nr(7T) < 3.

Remark. The values for i(T) and d(T) are clearly as small as possible.
Also, it is not possible to have i(T) = nr(7T) = 2. To sce this, consider a semi-
group T generated by two elements a, b such that a*> = 5> =0. Then the
elements of T are

0, a, b, ab, ba, aba, bab, (ab)?, (ba)’, ....

The elements in aTa U bTh are nilpotent, and either ab has infinite order or ab
has index m and period r:

(ab)”l +r - (ab)'".

In this latter case ba also has finite order, since

(ba)m+r+l — b(ab)m+ra — b(ab)”'a — (ba)m+ l.

In fact, the period of ba must be r, and the index must be m or m — 1 or m + 1.
For our purposes the most important conclusion is that whether the order of ab
is finite or infinite the number of non-zero idempotents of 7 is at most 2. It
follows that any S with more than 3 idempotents cannot be embedded in 7.
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For the next theorem it is convenient to make a small alteration in our
embedding technique. If S is a semigroup without zero, define

[(S) = M[S'; 2, 2; 1]
as before. If S is a semigroup with zero, define

rs)=Mis': 2, 2; 1j/Z.

a Rees quotient by the ideal

Z=1{(1,0,1).(1.0.2), (2.0, 1), (2. 0. 2)}. (1.4)

In effect
I(S)=1{(s.j):i.jell, 2}, seS' s # 0 U0}

in both cases: the difference is that in the second case it can happen that
(i, 5. j)(j, t. k) = 0. Then we have

Theorem 1.5. Let S be u semigroup. Then S is embedded in the nilpotent-
generated semigroup I'(S). Also,

(1) S is regular [orthodox. inverse] if and only if T'(S) is regular [orthodox,
inverse] .

(i) if S = S"iswithout zero, then S is (completely) simple if and only if T(S)
is (completely) O-simple :

(ii) if S = S' has a zero, then S is (completely) 0-simple if and only if I'(S) is
(completely) 0-simple .

(iv) if' S = S is without zero, then S is bisimple if and only if I'(S) is 0-bisimple

(v) if'S=S"has azero, then S is 0-bisimple if and only if I'(S) is 0-bisimple.

Proof. This is all fairly routine. If we use the characterization of a com-
pletely (0-)simple semigroup as a (0-)simple semigroup containing a primitive
idempotent [S, Theorem I11.3.1 and Corollary 111.3.4], then the key to the proof
is the following lemma, whose proof is omitted. We use superscripts S' and T
to distinguish between Green's relations in S' and in T = I'(S).

Lemma 1.6. Let i, j, k, [€{1, 2}, a, beS', a, b # 0. Then

(i) (i, a, ))RT(k, b. 1) if and only if i = k and a RS'h;;

(i) (i, a, j)L"(k, b, 1) if and only if j =l and a L'b;

(iii) (i, a, j)D"(k, b, ) if and only if a D*'b;

(iv) (i, a, j)d"(k, b, 1) if and only if a 35'b;

(v) (i, a,j)is a non-zero (primitive) idempotent in T if and only if i = j and a
is a non-zero (primitive) idempotent in S".
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2. Arithmetical aspects

Let us now turn to the definition of v(n) in the introduction. For each finite
semigroup S we now define a nilpotent-generated semigroup w(.S) containing S.
First, if S* # S and S has no zero, let

w(S)=M[S"; 2, 2; M\{(1, 1, 1), (2, 1,2), (2, 1, D}
If S> # S and S has a zero, let

w(S)=(MI[S"; 2, 2; /2)\{(1, 1, 1), (2, 1, 2), (2, 1, )},
where Z is as defined in (1.4). If S = S and S has no zero, let
w(S) = M°[S; 2, 2; I].
If S>= S and S has a zero, let
w(S) =MI[S; 2, 2; I]/Z.

The important point to note here is that if S? = S, then the adjunction of an
identity to S is unnecessary. Since every a in S has a factorization a = bc with
b, ¢ in S, the crucial equations (1.2) and (1.3) can be replaced by

(La, )=(1,5,2)2,¢c, 1), 2,a,2)=(2,b,1)(1, ¢, 2).

Notice now that if |S| = n, then |y(S)| <4n+ 2. If S has a zero, then
|w(S)) < 4n — 2. If §? = S, then |y(S)| < 4n + 1. If S = S and S has a zero, then
|w(S)| = 4n — 3. Thus we have

Theorem 2.1. Let S, Z, Q denote respectively the class of all semigroups, the
class of semigroups with zero, and the class of all semigroups S such that S* = 8.
Then, with the definitions as in the introduction,

ve(n) <4dn + 2, vu(n) < 4n~ =2, vo(n)y<dn+1,
Vzno(n) < 4n — 3.

Now let G be a finite group and suppose that G is embedded in a finite
nilpotent-generated semigroup 7. Then G is contained within a single H-class of
T and hence certainly within a single J-class J of T. We show now that J must
contain at least two L-classes. For suppose by way of contradiction that J
contains a single L-class. Then the identity e of G is a right identity for J
[5. Proposition 11.3.3]. The assumption that T is nilpotent-generated means that
e =a,a,...q, a product of nilpotents in 7. Since

R. <R, and R, = R, ... =R:=R,

it follows that ea, Re. Hence ea, € H,, since J contains only one L-class. Now
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m

al" = 0 for some m. To show that (eaq,)” = 0 assume inductively that (eq,)" ™' =
= ea;" ' and then deduce that

(ea))" = (ea))(ea))" ™' = (ea))e-a" ™"
= (ea))a"~"' (since ea,e H,)
= ea™
= eal.

Thus we have ea, € H, and (ea,)” = 0, a contradiction.

We deduce that J contains at least two L-classes, and a dual argument shows
that J contains at least two R-classes. Hence J contains at least four H-classes,
each containing at least n (= |G|) elements. Since T also contains a zero, the
order of T must at the very least be 4n + 1.

Let us say that a class C of semigroups is group-saturated if (for every n > 2)
C contains at least one group of order n. Then we have

Theorem 2.2. If C is a group-saturated class of semigroups, then v-(n) =
>4n + 1.

From Theorems 2.1 and 2.2 we now obtain

Theorem 2.3. Let C be a group-saturated class of semigroups such that C < Q.
Then ve(n) =4n + 1.

Among classes C satisfying the conditions for this theorem are the class of all
groups, the class of all monoids, and the class of all regular semigroups and the
class of all inverse semigroups.

For a group-saturated class C not contained in Q (such as the class S of all
semigroups) Theorems 2.1 and 2.2 give a less satisfactory outcome:

Theorem 2.4. Let C be a group-saturated class of semigroups. Then 4n + 1 <
S ve(n) < 4n+ 2.

For semigroups with zero we can obtain closely analogous results. First,
let G° denote class of 0-groups (groups with zero adjoined), and say that a class
C of semigroups with zero is 0-group-saturated if it contains 0-groups of every
finite order n. Then a modified version of the proof of Theorem 2.2 leads to the
conclusion that

ve(n) = 4n — 3,

for any such class C. Hence we obtain
Theorem 2.5. Let C be a 0-group-saturated class of semigroups with zero. Then

4n — 3 < ve(n) < 4n — 2.

If C is also contained in Q then v-(n) = 4n — 3.

There are two obvious approaches to the problem of resolving the ambiguity
exhibited in Theorem 2.4. One might try to find a new embedding method that
would give the conclusion vg(n) < 4n + 1. Or (if 4n + 2 is in fact the correct
answer) one might look for a class C of semigroups (with C & @ obviously) for
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which v¢(n) = 4n + 2. One obvious such class is the class M of monogenic
(one-generator) semigroups. Let S = {a: a”*"=a") be such a semigroup,
where a has index m and period r. Then |S| = m + r — 1 = n(say). If Sis acyclic
group, then from Theorem 2.4 we know that it can be embedded in a nilpotent-
generated semigroup T of order 4n + 1. So suppose that S is not a group, which
happens precisely when m > 2. Let T be the semigroup with zero defined by the
presentation
T=<b,clb’=c*=0,(cby" ' = (cb)"".

The relation (cb)”*"~' = (cb)"~ ' implies that
(bc)m+r=b(cb)n1+r-lc=b(cb)ln—lc=(bc)m; )
so the elements of T are

0, b, ¢, be, cb, beb, cbe, (be)?, (cb)?, ...
cees (BEY" T2 (b)Y T2, (b)Y T TR, b(eby" TR, (b)Yt

Thus
ITN=14+22m+2r—=3)+1=4m+r—1)=4n.

Also, ar bc embeds S in T. The conclusion is

Theorem 2.6. If M is the class of monogenic semigroups, then vy,(n) = 4n + 1.

Though of some interest in its own right, this result is in a sense disappoint-
ing, since it contributes nothing to the main question raised by Theorem 2.4.
One might of course regard it as ‘evidence’ in support of a conjecture that
vs(n) = 4n + 1, but it is evidence of a very flimsy kind.
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MOrPYXEHUE NMOAYTIPYIIT U HUWJIBNOTEHTHO NOPOXAEHHBIE
MOJIYIPYTIIIbI

John M. Howie

Pesiome

Kaxayro (kOHe4HyI0) nojyrpynny S MOXHO MOTPY3UTh I;.(KOHe‘lHyl-O) HUJILIIOTEHTHO MOPOX-
NeHHY10 nosyrpynny 7 ¥ METOJ NMOrPYXEeHHs COXpaHAEeT HEKOTOPbIE CBOCTBA S : HaNpUMeEp, eClIH
S perynspHa, To T TOXE peryjspHa.

Ecnu n — nonoxurenbHoe uenoe Yucao u C — KJIAcC MOJIyrpyni, TO ONPeAeinuM Ve(n) Kak
HaHUMeHbIIIEe 11eJI0€ YMCIIO0 k, I KOTOPOTO BEpHO, YTO KaX/Aas MOJyrpynna nopsiaka n U3 knacca
C norpyxuma B HWJIbMOTEHTHO MOPOXACHHYIO MOJIYTPYIIY HE BLICUIErO MOPAAKA YeM K.

OnaHHUM M3 IJ1aBHBIX PE3yJIbTATOB SBJSETCH TO, YTO €C/IM G — KJIacC BCEX TaKMX mojyrpymm S,
yt0 S = S, TO V(1) = 4n + | ans kaxaoro takoro knacca C, Ans kotoporo G C < Q.
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