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ON THE FRATTINI IDEAL IN COMPACT SEMIGROUPS 

KAR^PING SHUM 

An algebraic semigroup 5 which is also a Hausdorff space is called a topological 
semigroup if the multiplication is (jointly) continuous. A non-empty subset I of 5 is 
called an ideal of 5 if IS c I and 5I cz I. The Frattini ideal of 5, denoted by 0(S), is 
defined to be the intersection of all maximal ideals of 5. According to S. Schwarz 
[10], 0(S) is always nonempty, provided that S has proper maximal ideals. 

The studies of the Frattini ideal in a semigroup were made by several authors, 
namely, J. E. Kuczkowski [7], §. Schwarz [10], P. A. Grillet [4], R. Fulp [3] 
and others. In his paper [10], S. Schwarz remarks that some results concerning the 
Frattini ideal in commutative rings can be transformed analogously to (noncom-
mutative) semigroups. The purpose of the present paper is to extend a topological 
version of Schwarz's results from algebraic semigroups to compact semigroups. We 
shall prove that, under certain conditions, the Frattini ideal &(S) of a compact 
semigroup S will coincide with the intersection of all open prime ideals containing 
&(S). 

Throughout this paper, the symbol 5 will always denote a topological semigroup. 
The reader is referred to [9] for definitions not explicitly given here. 

Definition. A non-empty ideal P of a semigroup S is said to be prime if AB c P 
implies that AaP or BczP, A, B being ideals of S. 

An ideal T is completely prime if ab eT implies that aeT or b eT, a, b being 
elements of 5. An ideal which is completely prime is prime. But the converse need 
not be true. These concepts coincide when 5 is a normal semigroup, that is, aS = Sa 
for all elements of S. 

An ideal Q is completely semiprime if a2eQ implies that aeQ, a being an 
element of 5. Clearly, a completely prime ideal is also completely semiprime, but 
not conversely. For instance, let S= {0, a, b} be a semigroup with zero in which 
ab = ba = 0, a2 = a and b2 = b, then the ideal {0} is completely semiprime, but not 
completely prime. 

The author wishes to thank Dr H. L. Chow for his enthusiastic discussions. 

309 



An ideal M of 5 is called g-maximal if M is a proper maximal ideal of 5 and S\M 
is a group. 

Definition. AL7 idempotent e of Sis said to be a g-maximal idempotent if and only 
if J0(S\e), the maximal ideal contained in the set S\e being a g-maximal ideal. 

Let I be an ideal of 5. We define an idempotent e & I to be I-primitive if e is the 
only idempotent contained in eSe\I. 

Definition. A semigroup S is said to be a quasi-normal semigroup if and only if 
the set of all idempotents E of S forms a semilattice. In other words, S is 
a quasi-normal semigroup if and only if its idempotents are mutually commutative 
with each other under multiplication. 

For e, fe E, define e^f if and only if ef = fe = e It is clear that ^ is a partial 
ordering in E. If S is an arbitrary semigroup and 1 is an ideal of S, then the atoms 
of the partially ordered set En(S\I) (if it exists) are all I-primitive idempotents of 
5. We u ually denote the set En(S\I) by E(I). 

Definition. An ideal I of a semigroup S is defined to be an E-recogmzable ideal if 

E(1)£0 and E(l)nl = 0, where E(l) is the closure of the set E(l). 
If I is an open ideal of a semigroup 5 with E(I)£0, then I is always 

^-recognizable. But conversely, an E-recognizable ideal need not be open. For 
example let 5 = [2, 1] with multiplication * defined by .r*y = max {\, xy} for all 
x, yeS, then {i} is an H-recogmzable ideal, but {2} is not open. The following 
theorem shows that (among other things) under certain conditions, the 
^-recognizable Frattini ideal of a semigroup is open. 

Theorem 1. Let S be a compact quasi-normal semigroup with zero. If every 
maximal ideal of S is g-maximal, and if the Frattini ideal <P(S) is an E-recognizable 
nil ideal of S, then <P(S) is an open completely semiprime ideal of S. 

Conversely, if <P(S) is an open completely semiprime ideal and if E(<P(S)) = 
En(S\0(S)) contains only <P(S)-primitive idempotents, then <P(S) can be 
expressed as the intersection of g-maximal ideals of S. 

R e m a r k : In general, if 5 is an arbitrary semigroup, then <P(S) may be neither 
open nor closed as can be seen in example 3 on page 74 in [10]. 

The following lemmas are needed for the proof of Theorem 1. 

Lemma A. Let S be a compact semigroup. If each maximal ideal of S is 
completely semiprime, then the Frattini ideal <P(S) can be expressed as the 
intersection of open prime ideals containing <P(S), and in fact, <P(S) = 
J0(S\E(<P(S)). 

The proof of lemma A is in [12]. We notice that Corollary 12 in [12] is 
a generalized form of Lemma A. 
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Lemma B. Let I be an open completely semiprime ideal of a compact semigroup 
S. For each e2 = ee S\I, define Tod,e to be the set {x e S\ex e I}. Then Tod;£ = 
{xeS\xeeI}, and Tod7e is an open ideal of S containg I. Morever, if e, is 
I-primitive, then Tod/e, =J0(S\el) is an open completely prime ideal of S. 

The proof of lemma B can be also found in [12]. 
The lemma below slightly generalizes lemma 13 (iii) in [12]. It can be derived 

immediately from lemma 13 (ii) in [12], but for the sake of completeness, we 
provide a proof. 

Lemma C. Every g-maximal idempotent of S is 0(S)-primitive. 
Proof. Let e be a g-maximal idempotent of 5. Then e is the unique idempotent 

in S\Ma = Pa for some maximal ideal Ma. Consider f2 = fe eSe\0(S), then / = exe 
for some xeS, and so / = ef. Suppose f± e. Then, since f £ 0(S),fe S\Mp = Pp for 
some maximal ideal Mfi of S. Because e is g-maximal, Pa j= Pp and so by Schwarz 
[ 1 0 ] / = efePaPp c 0(S), which is a contradiction to f£ <P(S). Hence f=e and e is 
therefore <2>(5)-primitive. 

Lemma D. Let S be a quasi-normal semigroup with zero. If I is an 
E-recognizable nil ideal of S, then the set of all I-primitive idempotents of S is 
closed. 

Proof. Let E(l) denote the set of all I-primitive idempotents of S. Take e in the 

closure of IJ(I) and there exists a net {ea} in E(I) such that ea-*e. Since I is an 

^-recognizable ideal, then e e E\I. Now let fe E\I such that / ^ e, that is, / = ef. 
Consider /„ = ej. Clearly eaf—>ef = f gives /„—»/. Since S is quasi-normal and I is 
also a nil ideal of 5, hence fa = ej is an idempotent not in I. However, Fa ^ ea and 
ea is I-primitive, thus it follows that the only possible cluster points of {/«} is e. 

Consequently, f=e. This means that eeE(I), completing the proof. 

R e m a r k 1: If we replace in lemma D the ^-recognizable nil ideal I by an 
E-recognizable completely prime ideal, then the result of lemma D is still valid. 

R e m a r k 2: If I is a completely prime ideal of S and E(I)£0, the set E(I) is 

a singleton. Let e f be idempotents in E(I): then, because 5 is a quasi-normal 

semigroup, we have (ef)2 = ef and ef= eef= efe e eSe. As e e E(I) then ef= e or 

efel. Similarly, ef=f or efel. Since I is a completely prime ideal of 5, ef£I. 
Therefore we must have e = / . 

R e m a r k 3 : Let E be the set of all primitive idempotents (for a definition of 
primitive idempotents see [5]) of a compact semigroup. Whether or not the set E 
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must be closed is an open problem proposed by R. J, Koch in 1954 [page 831; 5]. 
By applying the same arguments as used in the proof of lemma 4. we can easily 
prove that E is closed if 5 is a quasi-normal semigroup. Thus a partial answer to 
Kocn's problem is obtained. 

We now turn to pro\e Theorem 1. 
Suppose that each maximal ideal of 5 is g-maximal. They by lemma A, <P(S) is 

completely semiprime and 0(S) = Jo(S\E(0(S))) = n{Jo(S\el)\eieE(0(S))}. 
The p.oof will be complete if we can prove that E(<P(S)) is a closed subset of 5. 
Since every idempotent in E(&(S)) is g-maximal then, by lemma C, e\ery 
idempotent in E(0(S)) is ^(5)-primitive. As <P(S) is assumed to be an 
F-recogmzabie nil ideal then, by applying lemma D, it follows that E(0(S)) \* 
closed. Thus 0(S) = Jo(S\E(0(S))) is open. 

For the converse part, let 0(S) be an open completely semiprime ideal of 
a quasi-normal semigroup 5 ; then by Theorem 3.4 in [13], 0(S) = 
r {Jo{S\et)\et e E(0(S))}. Since E(0(S)) consists of 0(5)-primitive idempote I s 
only, then, by lemma B, each / 0 (5 \ ^ ) is a completely prime ideal of 5. Now, oy 
Schwarz [10], each of tnese open completely prime ideals is a maximal ideal of 5, 
and so it follows that 5 \ / 0 (5 \^ ) is a disjoint union of gioups [2], Applying 
remark 2 of lemma D, we know that 5\/0(5\e /) contains only a unique idempotent 
et and therefore must be a group. Thus each /0(5\e f) is a g-maximal ideal, 
completing the proof. 

R e m a r k : In the necessity part of Theorem 1, if 0(S) is assumed to be an 
^-recognizable completely prime ideal instead of an E-recognizabie nil ideal of 5, 
then we can prove easily that 0(S) itself is a g-maximai ideal of 5. 

Corollary. If E(0(S)) contains only 0(5)-primitive idempotents of 5, then any 
open completely semiprime ideal of a compact semigroup can be expressed as an 
irceisection of g-maximal ideals if and only if it contains 0(S). 

Proof. Clearly, every ideal which is the intersection of g-maximal ideals o; 5 
contains 0(S). Conversely, let A be an open completely semiprime ideal contain-
irg 0(S). Then there exists at least one idempotent e? = e,-6 5 \A, and hence 
A c / 0 ( S \ e , ) . Thus, by theorem 1, each JQ(S\et), et e S\A is a g-maximal ideal of 5. 
Lei E(A) denote £ n ( 5 \ - 4 ) . Suppose, if possible, that A^J0(S\E(A)) = 
n{/0(-S\e.)k- € E(A)}. Then we can pick y & A., y eJ0(S\E(A)). Hence there is an 

idempotent / sucu that fe F(y) = {yn}Z-i c J0(S\E(A)), which implies that feA. 
.however, since A is an open completely semipiime ideal of 5 . then > £ A implies 
feA, a contradiction. Thus A = n{/0(5\e,)|e. e E(A)}, completing the pioof 

Theorem 2. Let S he a compact semigroup with Sz = 5, thep tne Frdtiim ideal 
0(S) of S is the intersection of all open prime ideals containing 0(S). Moreover, 
®(S) = Jo(S\E(0(S)). 
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Proof. Since S2 = S, then by Schwarz [10], every maximal ideal of 5 is a prime 
ideal containing 0(S). Moreover, since 5 is compact, each maximal ideal is open 
[6], and so each maximal ideal of 5 is an open prime ideal containing 0(S). On the 
other hand, each open prime ideal containing @(S) must be a proper maximal ideal 
of 5. (This was proved by Schwarz in [10]). Hence, there is a 1-1 correspondence 
between the set of all proper maximal ideals of 5 and the set of all open prime 
ideals containing 0(S). Therefore we conclude that <P(S) is the intersection of all 
open prime ideals containing <P(S). Moreover, by Numakura [8], each open prime 
ideal containing @(S) has the form J0(S\et) with ek>£ 0(S). Hence, <P(S) = 
n{ / 0 (5 \ e f )k e E(0(S))}=Jo(S\E(0(S))). 

Corollary 1. Let S be a compact connected semigroup with S2 = S; then 0(S) is 
a connected ideal of S. Moreover, 0(S) is open if and only if E(0(S)) is 
non-empty and compact. 

Corollary 2. (Schwarz [10].) Let S be a compact semigroup with S2 = 5. If 0(S) 
is a proper ideal of 5 and if every open prime ideal of 5 contains 0(), then 0(S) 
does not contain any idempotents which are not contained in the kernel K of S. 

Proof. Let Q* denote the intersection of all prime ideals of 5. As 0(S) is 
a proper ideal of 5, Q*£0 and so by Theorem 2, we have Kc: Q*a 0(S). By 
Schwarz [10], Q* contains exactly those idempotents which are contained in K. We 
only need to show that there exists no idempotent in 0(S)\Q*. Suppose 
f* = fe 0(S)\Q*. Then by Numakura [8], J0(S\f) is an open prime ideal of 5 and 
hence fe 0(S)czJo(S\f), which is a contradiction. The proof is completed. 

Let 5 be a compact semigroup with zero. Let N= {xeS\0e r(x) = {xn}~ J . 
Then Nx = J0(N) is called the nil radical of S. 

CoroSIary 3. Let S be a compact semigroup with zero. IfS2 = S and if0(S) is the 
intersection of all open prime ideals ofS, then the Frattini ideal of S coincides \\ith 
the nil radical of S. 

Proof. By Corollary 2, we know immediately that E(0(S)) = E(NX), where 
E(N1) = Sn(S\N1). Hence it follows that JO(S\E(0(S)) = JO(S\E(N1)). We now 
have by Theorem O(S) = Jo(S\E(0(S)), and also by Theorem 2.3 hi [11], wc have 
Nl=J0(S\E(N1). Thus <P(S) = Nt. 

A semigroup with zero is called an IY-semigroup if the set of ail nilpotent 
elements of 5, denoted by Ar, is an open subset of 5. K. P. Shum and C. S. Hoo [11] 
have shown that N is an ideal of 5 in the case of 5, being a compact abelian 
semigroup. Recently, H. L. Chow [1] has pointed out that the abelian condition 
can be weakened. He shows that the result of Shum and Hoo is still valid if 5 is 
a compact weakly normal semigroup, that is, eS = Se for all idempotent eeS. Thus 
the following facts follow verbatim from Corollary 3. 
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Corollary 4. Let 5 be a compact weakly normal semigroup with zero satisfying 
S2 = S. If 0(S) is the intersection of all open prime ideals of 5 then 5 s an 
N-semigroup if and only if its Frattini ideal is open. 

Corollary 5. Let 5 be a compact weakly normal N-semigroup with S2 = S If 
0(S) is the intersection of all open prime ideals of S and if e is a 0(S)-primitive 
idempotent not in 0(S), then eS\0(S) is a compact group. 

Proof. By Corollary 4 we know that &(S) = N. Since e is a (P(S)-primitive 
idempotent not in <2>(S), then by R. J. Koch [5], eS\0(S) = eS\N is a disjoint 
union of compact groups. Now, let f2 = f£e such that f e eS\<P(S) = Se\&(S). 
Then there exists elements x and y e 5 such that f=ex and f = ye. Consequently, 
f=ef = fe and so ef = f^e. Because f£0(S) and e are 0(S)-primitive, f=e. 
Hence, we conclude that eS\0(S) is a group. 

R e m a r k s : 
(I) Theorem 2 is a generalized result of 5. Schwarz in [10]. The reader is referred 

to Theorem 6 in [10]. 
(II) A compact semigroup with S2 = S does not imply that every open prime ideal 

of S is completely open prime. For instance, see example on page 5 1 m [9]. 
(hi) A compact semigroup with S2 = S does not imply that 0(S) is the 

intersection of all open prime ideals of 5. For instance, let S be a min-thread, then 
0(S) = [0, 1). Clearly, <P(S) is not the intersection of all open prime ideals of 5 

(IV) The hypothesis S2 = S cannot be dropped in proving the necessity part for 
Corollary 1. For instance, the example 3 in [10] shows that E(0(S)) is non-empty 
and compact, but 0(S) is neither open nor closed. 

(V) Corollary 3 is analogous to the following well-known result in the Ring 
Theory: let R be an arbitrary commutative ring with identity, then the set or all 
nilpotent elements of R coincides with the intersection of all the prime ideals of 5. 

(VI) Let 5 be a compact semigroup with the kernel K. An eLment x e 5 i called 
K-potent if there is an integer p > 0 such that xp e K. We denote by jV* the set of 
all K-potent elements of 5, jV* the largest ideal contained in A*, then our 
Corollary 3 can be restated as follows: Let 5 be a compact semigroup with a kernel 
satisfying S2 = 5. If 0(S) is the intersection of all open prime ideals of 5 and if jV* 
is open, then 0(S) = IV*. Thus, Corollary 3 is a generalized version of Theorem 9 
in [10]. 
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ОБ ИДЕАЛЕ ФРАТТИН В КОМПАКТНЫХ ПОЛУГРУППАХ 

Кар-ПингШум 

Р е з ю м е 

В работе доказывается что в определенных условиах идеал Фраттини Ф(5) в компактной 

полугруппе равен пересечению всех открытых простых идеалов содержащих Ф(5). 
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