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ON THE FRATTINI IDEAL IN COMPACT SEMIGROUPS

KAR-PING SHUM

An algebraic semigroup S which is also a Hausdorff space is called a topological
semigroup if the multiplication is (jointly) continuous. A non-empty subset / of S is
called an ideal of S if IS = I and SI < I. The Frattini ideal of S, denoted by @(S), is
defined to be the intersection of all maximal ideals of S. Accordingto S. Schwarz
[10], &(S) is always nonempty, provided that S has proper maximal ideals.

The studies of the Frattini ideal in a semigroup were made by several authors,
namely, J. E. Kuczkowski [7], S. Schwarz [10], P. A. Grillet [4], R. Fulp [3]
and others. In his paper [10], 8. Schwarz remarks that some results concerning the
Frattini ideal in commutative rings can be transformed analogously to (noncom-
mutative) semigroups. The purpose of the present paper is to extend a topological
version of Schwarz’s results from algebraic semigroups to compagt semigroups. We
shall prove that, under certain conditions, the Frattini ideal @(S) of a compact
semigroup S will coincide with the intersection of all open prime ideals containing
@(S). '

Throughout this paper, the symbol S will always denote a topological semigroup.
The reader is referred to [9] for definitions not explicitly given here.

Definition. A non-empty ideal P of a semigroup S is said to be prime if ABc P
implies that Ac P or Bc P, A, B being ideals of S.

An idea] T is completely prime if ab € T implies that ae T or b€ T, a, b being
elements of S. An ideal which is completely prime is prime. But the converse need
not be true. These concepts coincide when S is a normal semigroup, that is, a§ = Sa
for all elements of S. 4

An ideal Q is completely semiprime if a’*e Q implies that a € Q; a being an
element of §. Clearly, a completely prime ideal is also completely semiprime, bu.
not conversely. For instance, let $= {0, a, b} be a semigroup with zero in which
ab =ba =0, a*=a and b*= b, then the ideal {0} is completely semiprime, but not
completely prime.
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Anideal M of § is called g-maximal if M is a proper maximal ideal of S and S\M
is a group.

Definition. An idempotent e of S is said to be a g-maximal idempotent if and only
if Jo(S\e), the maximal ideal contained in the set S\e being a g-maximal ideal.

Let I be an ideal of S. We define an idempotent e ¢ I to be I-primitive if e is the
only idempotent contained in eSe\/.

Definition. A semigroup S is said to be a quasi-normal semigroup if and only if
the set of all idempotents E of S forms a semilattice. In other words, S is
a quasi-normal semigroup if and only if its idempotents are mutually commutative
with each other under multiplication.

For e, fe E, define e<f if and only if ef = fe =¢ It is clear that < is a partial
ordering in E. If § is an arbitrary semigroup and / is an ideal of S, then the atoms
of the partially ordered set EN(S\I) (if it exists) are all /-primitive idempotents of
S. We u ually denote the set En(S\I) by E(J).

Definition. An ideal I of a semigroup S is defined to be an E-recognizable ideal if

E(I)#0 and Fl)rﬂ:ﬂ, where E(1) is the closure of the set E([).

If I 1s an open ideal of a semigroup S with E(I)#@, then I is always
E-recognizable. But conversely, an E-recognizable ideal need not be open. For
example let §=[3, 1] with multiplication % defined by xxy =max {3}, xy} for all
x, y €S, then {3} is an E-recogmzable ideal, but {3} is not open. The following
theorem shows that (among other things) under certain conditions, the
E-recognizable Frattini ideal of a semigroup is open.

Theorem 1. Let S be a compact quasi-normal semigroup with zero. If every
maximal ideal of S is g-maximal, and if the Frattini ideal ®(S) is an E-recognizable
nil ideal of S, then ®(S) is an open completely semiprime i1deal of S.

Conversely, if @(S) is an open completely semiprime ideal and if E(®(S))=
En(S\®(S)) contains only ®(S)-primitive idempotents, then ®(S) can be
expressed as the intersection of g-maximal ideals of S.

Remark: In general, if S is an arbitrary semigroup, then @(S) may be neither
open nor closed as can be seen in example 3 on page 74 in [10].

The following lemmas are needed for the proof of Theorem 1.

Lemma A. Let S be a compact semigroup. If each maximal ideal of S is
completely semiprime, then the Frattini ideal ®(S) can be expressed as the
intersection of open prime ideals containing ®(S), and in fact, ®(S)=
Jo(S\E(D(S)).

The proof of lemma A is in [12]. We notice that Corollary 12 in [12] is
a generalized form of Lemma A.
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Lemma B. Let I be an open completely semiprime ideal of a compact semigroup
S. For each e*=e € S\I, define Tod,e to be the set {x € S|lexel}. Then Tod,e =
{xeS|xeel}, and Tod,e is an open ideal of S containg I. Morever, If e, is
I-primitive, then Tod,e, = J,(S\e,) is an open completely prime ideal of S.

The proof of lemma B can be also found in [12].

The lemma below slightly generalizes lemma 13 (iii) in [12]. It can be derived
immediately from lemma 13 (ii) in [12], but for the sake of completeness, we
provide a proof.

Lemma C. Every g-maximal idempotent of S is @(S)-primitive.

Proof. Let e be a g-maximal idempotent of S. Then e is the unique idempotent
in S\M, = P, for some maximal ideal M,. Consider f*= f € eSe\®(S), then f = exe
for some x € S, and so f = ef. Suppose f# e. Then, since f ¢ @(S), fe S\M; = P, for
some maximal ideal M; of S. Because e is g-maximal, P, # P, and so by Schwarz
[10] f =ef € P,Ps = ®(S), which is a contradiction to f ¢ @(S). Hence f=¢ and e is
therefore @(S)-primitive.

Lemma D. Let S be a quasi-normal semigroup with zero. If I is an
E-recognizable nil ideal of S, then the set of all I-primitive idempotents of S is
closed.

Proof. Let E(I) denote the set of all /-primitive idempotents of S. Take e in the

closure of E(I) and there exists a net {e,} in E(I) such that e, —e. Since I is an

E-recognizable ideal, then e € E\I. Now let fe E\I such that f<e, that is, f = ef.
Consider f, = e,f. Clearly e, f— ef =f gives f,— f. Since S is quasi-normal and I is
also a nil ideal of §, hence f, = e.f is an idempotent not in /. However, F, <e, and
e, 1s I-primitive, thus it follows that the only possible cluster points of {f,} is e.

Consequently, f=e. This means that e € E(I), completing the proof.

Remark 1: If we replace in lemma D the E-recognizable nil ideal I by an
E-recognizable completely prime ideal, then the result of lemma D is still valid.

Remark 2: If I is a completely prime ideal of S and E(I)# @, the set E(J) is
a singleton. Let e f be idempotents in E(/): then, because S is a quasi-normal

semigroup, we have (ef)’=ef and ef =eef =efe e eSe. As e€ E(I) then ef=¢ or

ef € 1. Similarly, ef=f or efel. Since I is a completely prime ideal of S, ef é 1.
Therefore we must have e =f.

Remark 3: Let E be the set of all primitive idempotents (for a definition of
primitive idempotents see [5]) of a compact semigroup. Whether or not the set E
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must be closed is an open problem proposed by R. J. Koch in 1954 [page 831; 5].
By appiying the same arguments as used in the proof of lemima 4. we can easily
prove that £ is ciosed if S is a quasi-normal semigroup. Thus a partial ansver to
Kocn’s problem is obtained.

We now turn to prove Theorem 1.

Suppose that each maximal ideal of § is g-maximal. They by lemma A, ©(S) 1s

c.apictely semiprime and @(S) =J(S\E(P(85))) = n{Jo(8\e)|c € E(P(S))}.

The p.oof wiil be complete if we can prove that E(@(5)) is a closed subset of §.
Simce every idempotent in E(@(S)) is g-maximal then, by lemma C, every
idempotent in E(®(S)) is &(S)-primitive. As P(S) is assumed to be an
E-recognizable nil ideal then, by applying lemma D, it follows that E(@(S)) is
ciosed. Thus @(8) = J(S\E(D(S))) is open.

For the converse part, let @(S5) be an open completely semiprime ideal of
a quasi-normal semigroup §; then by Theorem 3.4 in [13]. @(S)=
~{iS\e)le € E(P(S))}. Since £(P(5)) consists of ¢(S)-primitive idempote 1 s
only, then, by lemima B, each J,(8§\¢;) is a completely prime ideal of §. Now, oy
Sciiwarz [10], each of tnese open completely prime ideals is a maximal ideal of .
anG so it follows that S\Jy(8\e) is a disjoint union of giovps [2]. Applying
remaik 2 of lemma D, we know that S\J,(5\¢;) contains only a unique idempotont
e, and therefore must be a group. Thus each J,(S\¢) is a g-maximal 1deal,
ccmpicting the proot.

Remark: In the necessity part of Theorem 1, if @(S) is assumed to be an
£-recognizable compietely prime ideal instead of an £-recoznizabte nil ideal of §,
then we can prove easily that @(S) itself is a g-maximal ideal of S.

Corellary. If E(P(5)) contains only @(8)-primitive idempotents of S, then any
open completely semiprime ideal of a compact semigroup can be expressed as an
irieisection of g-maximai ideals if and only if it contains @(5).

Proof. Clearly, every ideal which is the intersection of g-maxumal ideals ol §
contains P(S). Conversely, let A be an open completely semiprime ideal contain-
irg @(8). Then there exists at least one idempotent e?=e¢ € S\A, and hence
A = Jo(8\e;). Thus, by theorem 1, each Jo(S\e,), €, € S\A is a g-maxitnal ideal ot S.
Lev E(A) denote EN(S\A). Suppose, if possible, that A SJ{(S\E(A))=
N{J{S\e)|e. € E(A)}. Then we can pick y € A, y € J(S\E(A)). Hence there is an

ilempotent f suca that fe I(y)={y"} -1 = J(S\E(A)), which implies that fe A.
Fowevcer, since A is an open completely semiptime ideal of S. then y € A impiies
7 €A, a contradiction. Thus A =N {ju(S\e&)|e € E(A1)}, compicting the pioof

Tueorem 2. Let § be a compact semugroup with §?= 8, ther tae Frattipt ideai
@(5) of § is the intersection of all open prime ideals containing (8). Moreov.r,
D(8) = Jo(S\E{(P(S)).
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Proof. Since §2= S, then by Schwarz [10], every maximal ideal of S is a prime
ideal containing @(S). Moreover, since S is compact, each maximal ideal is open
[6], and so each maximal ideal of S is an open prime ideal containing @(S). On the
other hand, each open prime ideal containing @(S) must be a proper maximal ideal
of S. (This was proved by Schwarz in [10]). Hence, there is a 1-1 correspondence
between the set of all proper maximal ideals of S and the set of all open prime
ideals containing @(S). Therefore we conclude that @(S) is the intersection of all
open prime ideals containing @(S). Moreover, by Numakura [8], each open prime
ideal containing @(S5) has the form Jy(S\e) with ¢ ¢ @(S). Hence, ®(85)=
n{Jo(S\e)|e; € E(P(S5))} = Jo(S\E(P(S5))).

Corollary 1. Let S be a compact connected semigroup with §*= S ; then ®(S) is
a connected ideal of S. Moreover, @(S) is open if and only if E(®(S)) is

non-cmpty and compact.

Corollary 2. (Schwarz [10].) Let S be a compact semigroup with §*=S. If @(S)
is a proper ideal of S and if every open prime ideal of S contains ®(), then ®(S)
does not contain any idempotents which are not contained in the kernel K of S.

Proof. Let Q* denote the intersection of all prime ideals of S. As @(S) 1s
a proper ideal of §, Q*#§ and so by Theorem 2, we have K = Q* c @(S). By
Schwarz [10], Q* contains exactly those idempotents which are contained in K. We
only need to show that there exists no idempotent in @(S)\Q*. Suppose
f?=fe ®(S)\Q*. Then by Numakura [8], J,(S\f) is an open prime ideal of S and
hence fe @(S)=Jo(S\f), which is a contradiction. The proof is completed.

Let S be a compact semigroup with zero. Let N={xeS|0e '(x)={x"}3 .}.
Then N, =J,(N) is calied the nil radical of S.

Corellary 3. Let § be a compact semigroup with zero. If §* = § and if ©(5) is the
intersection of all open prime ideals of S, then the Frattini ideal of S coincides with
the nil radical of S.

Proof. By Corollary 2, we know immediately that E(@(5))= E(N,), where
E(N,))=8n(5\N,). Hence it follows that J,(S\E(D@(85)) = Jo,(S\E(N,)). We now
kave by Theorem ©(8) = J,(S\E(P(S)), and also by Theorem 2.3 in [11], wc have
N, =J(S\E(N}). Thus &(S)=N,.

A semigroup with zero is called an N-semigroup if the set of all nilpotent
elements of §, denoted by N, is an open subset of §. K. P. Shum and C. S. Heo {11]
have shown that N is an ideal of S in the case of S, being 4 compact abelian
sernigroup. Recently, H. L. Chow [1] has pointed out that the abelian condition
can be weakened. He shows that the result of Shum and Hoo is stiil valid if § is
a compact weakly normal semigroup, that is, eS = Se for all idempotent e € S. Thus
the following facts follow verbatim from Corollary 3.
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Corollary 4. Let S be a compact weakly normal semigroup with zero satisfying
S§?=S8. If ®(S) is the intersection of all open prime ideals of S then S s an
N-semigroup if and only If its Frattini ideal is open.

Corollary 5. Let S be a compact weakly normal N-semigroup with $*=S If
@(S) is the intersection of all open prime ideals of S and if e is a ®(S)-primitive
idempotent not in ®(S), then eS\®(S) is a compact group.

Proof. By Corollary 4 we know that @(§)=N. Since e is a @(S)-primitive
idempotent not in @(S), then by R. J. Koch [5], eS\®P(S)=eS\N is a disjoint
union of compact groups. Now, let f>=f+#e such that fe eS\@P(S)= Se\D(S).
Then there exists elements x and y € S such that f=ex and f= ye. Consequently,
f=ef=fe and so ef=f<e. Because f¢ @(S) and e are P(S)-primitive, f=e.
Hence, we conclude that eS\@®(S) is a group.

Remarks:

(1) Theorem 2 is a generalized result of S. Schwarz in [10]. The reader is referred
to Theorem 6 in [10].

(I1) A compact semigroup with $?= S does not imply that every open prime ideal
of S is completely open prime. For instance, see example on page 51 n [9].

(iii) A compact semigroup with $°=S does not imply that @(S) is the
intersection of all open prime ideals of S. For instance, let § be a min-thread, then
@(S)=][0, 1). Clearly, @(S) is not the intersection of all open prime ideals of S

(IV) The hypothesis $?= S cannot be dropped in proving the necessity part for
Corollary 1. For instance, the example 3 in [10] shows that E(®(S)) is non-empty
and compact, but @(S) is neither open nor clcsed.

(V) Corollary 3 is analogous to the following well-known result in the Ring
Theory: let R be an arbitrary commutative ring with identity, then the set or all
nilpotent elements of R coincides with the intersection of all the prime ideals of S.

(V1) Let S be a compact semigroup with the kernel K. Anel.ment x e Si called
K-potent if there is an integer p >0 such that x” € K. We denote by N¥ the set of
all K-potent elements of §, N* the largest ideal contained in A*, then our
Corollary 3 can be restated as follows: Let § be a compact semigroup with a kernel
satisfying $?=§. If @(8) is the intersection of all open prime ideals of § and if N*
is open, then @(8)= N*. Thus, Corollary 3 is a generalized version of Theorem 9
in [10].
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OB UIEAJIE ®PATTUH B KOMITAKTHLIX ITOJIYTPYIIITAX
Kap-ITunr Il ym
Pe3ome

B pa6GoTe moKa3bIBAETCS YTO B ONpeAeNIEHHbIX ycioBuax ugean dparruau D(S) B KOMNAKTHOM
NOJIyTPyIIe paBeH MEePEeCeYeHNI0 BCEX OTKPBITHIX MPOCThIX MAeaNoB cofepxauux D(S).
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