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ABSTRACT. The structure of singular solutions, defined on R, , of the nonlinear

differential equation y"' + py” + qv’ + rf(y,¥’,y¥"”) = 0 is studied. Sufficient
conditions are given under which a set of all zeros of a singular solution is a

neighbourhood of co.

1. Introduction

Consider the third-order differential equation
v +py' +ay +rf(yy,y") =0, (1)
where p € C'(R,), ¢€ C°(R,), r € L, (R,), f € C°(R*), r >0 on R, and
[y, 25, 73)z, 20 on R, (2)

DEFINITION 1. Let I € R, y € C?(I) and 3" be absolutely continuous
on I. Then y is called a solution of (1) if equation (1) is valid for almost all ¢

on I.
A solution y is called proper if I =R, and sup |y(¢)] >0 forall 7€ R, .
T<t<oo

A proper solution is called oscillatory if it has infinitely many zeros tending

to 00.
A solution y defined on R, is called singular if there exists Ty > 0, such
that ¥y =0 on [Ty, 00) and y is not trivial in any left neighbourhood of Ty.

Many authors studied the following problem, see e.g. [3]-[7], [10] - [14]:
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To give sufficient conditions on p, ¢, r and f under which a solution
y of (1), defined on R, , with a zero is oscillatory.

Note, that they defined oscillatory solution y as a solution defined on R, ,
that has a sequence of zeros tending to co. Thus oscillatory solution in this sense
is, according to Definition 1, either proper oscillatory or singular.

One of significant problems is to study the existence of (proper) oscillatory
solutions. To use the results of the above mentioned authors, it is useful to seek
conditions under which a solution of (1) with a zero

— is defined on R 43
— is not singular.

In this paper we give sufficient conditions under which for a singular solu-
tion y of (1)

y(@)#0, te0,T), (3)
holds, where T is given by Definition 1.

The following example shows that the singular solution may exist, for which
(3) does not hold.

EXAMPLE. Let

t{-15(t —1)3 +11(t - 1)> - 5(t — 1)+ 1} for t € [0,1],

y(t) =4 (2-1)* for t € (1,2],
0 for t > 2,
r(t) =24,
1 on R, ,
a(t E%[3+(E) ] *
(="~ ~ryR) (") for te[0,1], t#3,
1
pt) =4 &+ () for t =2,
12-1) for t € [1,2],
0 for t > 2.

Then p € C°(R, ), y(0) =0, y > 0 on (0,2) and y is the singular solution of
y" +py" +qy +rly|*sgny = 0 with A = 1. Thus (3) is not valid for ¢ € [0,2).
2. Structure of singular solutions

The following theorem is often used and gives the sufficient condition under
which singular solutions do not exist at all.
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THEOREM 1. ([9]) Let € > 0 exist such that

3
|f(1"1a$21m3)| S Z lle on ['—5’6]3 . (4)

i=1
Then there ezists no singular solution of (1).

It is evident that the assumption of Theorem 1 is not valid for Emden-Fowler
equation:
v +py" +qy +rlytsgny =0,  Ae€(0,1). (5)
Moreover, singular solutions may exist, see [9] for p = ¢ =0.
In [1] the structure of a singular solution y is studied for two-terms equa-
tion (1), i.e. for p =0 and ¢ = 0. It was proved that

y@®)y'(t) <0, y()y"(t)>0 on [0,T)

In the following theorem the same result is proved for singular solutions of (1)
in a neighbourhood of T, .
First, sum up the needed results in the following lemma:

LEMMA 1. Let I CR, and let there exist positive solution h of

R'+ph' +qh=0 (6)
on I. Then (1) can be expresed on I in an equivalent form
v+ £ (6,9 41, 91) = 0, (7)
(s) ds
where R(t) = egp ,
Ol =y, Y@ =R2M) =Ry"h-y1),
y[ll — %, y[3] - (y[Z])', (8)
— !
f1 (t,x1,$2,$3) - T(t)h‘(t)R(t)f(xl’ h( )1'2, R(t) ( ) + h (t)‘r2)

Moreover, if t, € I and y is a solution of equation (7) (and thus of equation (1),
too) such that
y(t)yM(t) <0, y(t)yP(t,) >0, (9)
then
yy() <0, y)yPl@) >0  for tel, t<t,. (10)
Proof. The transformation of (1) into (7) can be obtained by the direct
computation, see [2]. Further (2), (7) and (8) yield

Blt)y(t) <0 ae.on I (11)
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and .
y(t)>0(<0) on I, I, ie{1,2,3},

implies (12)
yli=1 s nondecreasing (nonincreasing) on I, .
Let (9) be valid with y(t,) > 0 for simplicity. Put I, = {¢t: t € I, t <t,}. We
prove that
2
IT@®i>0  on 1,. (13)
i=0
Thus, suppose indirectly, that 7 € I, is the maximal number, such that

2
[T 1¥%(7)| = 0. From this, from (9), (11) and (12)
i=0

y() >0, @) <0, gy >0, yPlE)<0  on (7t
and, evidently, y/?(7) = 0. Thus
to
2l(t0) = 121(t) — 92(r) = [ (s) ds <.
T

The contradiction with (9) and y(¢,) > 0 proves that (13) holds. The conclusion
(10) follows from (9), (11), (12) and (13). a

THEOREM 2. Let y be a singular solution of (1) and let T, be the number
from its definition. Then there exists left open neighbourhood I of T, such that

y()y'(t) <0, y)y"(t)>0 on I. (14)

Proof. Let h beasolution of equation (6) such that A(T}) = 1, h'(T}) =0,
and let J be an open left neighbourhood of T, on which A > 0 holds. Then
according to Lemma 1, (1) can be expresed in the equivalent form (7). Further

y(T,)=0, i=0,1,2, (15)
and we prove that
vyt <0, y@)wP(E) >0 on J. (16)

First suppose that y # 0, say y > 0, in a left neighbourhood J; of T, J; C J.
Then (11) yields 313 < 0 a.e. on J,. Moreover, y®l # 0 a.e. in any left neigh-
bourhood J, of T}, as, otherwise, (8) and (15) yield y = 0 in J, that contradicts
y # 0. From this
T!I
y2l(t) = —/y[z’](s) ds>0 for teJ,
t
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and, using (8) and (15), y!!(t) < 0, y(t) > 0 on J; . The validity of (16) follows

from Lemma 1.
The last possible case consists in the existence of an increasing sequence

{7.}5° such that
y#0 in any left neighbourhood of T, (17)
and 7, € J, lim 7, =T, and y(7,) =0 for k =1,2,....
k— o0 v

Let J, =[a,T,], @ € J be such an interval that

W = % 132'1]3 h(s) — -;—Tea}(l (R(s)h3(3))’|A(Ty) >0, (18)

t -
where A(t) = [ ﬁ% and J is the closure of J. If
«

F(t) = —A@®yP Oyt + FAOROP ) (H®)* + 3V, ted,,
then, using (8), (11) and (18), we have
F'(t) = Ay ey (1) + [$h(8) + JA@) (R@R ()] (41 (1))
>wWEN@)*>0  on J,.

Thus F is nondecreasing and F(T,) = 0 yields F'(t) < 0 for t € J,. On the
other hand, if 7, € J,, then F(7,) > 0, and thus F(t) =0 on [Tk,Ty]. From
this, and from (19) we have

(19)

Ty Ty
0= /F'(s) ds > W/(y[l](s))2 ds>0.

Thus, using (18), y'(t) = 0 on [r,,T,], which contradicts (15) and (17). The
contradiction proves that (16) is valid and applying (8)
y@)y'(t) <0, ted. (20)
Further suppose that there exists a sequence {7;}{° such that 7, < T, k=
1,2,..., kli)r{.loTk =T, y"(7,) = 0.
Let z be the solution of

2" —(zp) +29=0, 2(T)=1, 2 (T)<pT,),

and v be the solution of

v" — (vp)' + qu = 32" — 2zp, o(T,)=1, o (T,)<1+p(T,).
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Let J; C J be an open left neighbourhood of T, such that
2(t) >0, 2'(t) — 2(t)p(t) < 0,
v(t) >0, z(t)—'(t) +v(t)p(t) >0,
Define F' on J; U{T,} by

ted,. (21)

F=—zy"y+ (7 —2p)y'y+ 2z = +op)y” + vy’
Then, using (20) and (2)

F' = —vry/ f(y, 9", y") + zryf (v, 9", 9") + 05" >0 on Jj.

From this, F is nondecreasing and using F(T,) = 0 we have F(t) <0, t € J;.
Let 7 € J; be a zero of y”. Then

1 2
F(r)= (' = 2p)y'y+ 5(z =o' + o)y | _ <0

that contradicts (20) and (21). Thus y"” # 0 on J; and it follows from (21) and
y(i)(Ty) =0,i=0,1,2, that y(t)y"(t) > 0, t € J;, must be valid. Put I = J,.
O

Remark 1. Note, that for a singular solution y of (1), (16) is valid in a left
neighbourhood of T, .

Remark 2. Singular solution y of (1), fulfilling (14) in an open left neighbour-
hood of T , is called Kneser singular solution. Thus every singular solution is
Kneser singular solution.

In the light of Theorem 2 our problem can be formulated in the following
way:

PROBLEM 1. To give sufficient conditions under which for Kneser solution y
the inequality (3) is valid (if (4) does not hold).

3. Problem 1

In the two following theorems, further assumptions are posed only on p and g.

THEOREM 3. Let ¢ <0 on R_. Then for a singular solution y of (1), (3) s
valid.

Proof. Let y be a singular solution of (1). Then, according to [8], there
exists a positive solution h > 0 of equation (6) on R, and the assupmtions of
Lemma 1 are fulfilled with I = R__. As, according to Remark 1, the inequalities
(9) are valid for t, lying in a left neighbourhood of 7, (10) yields (3). O
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THEOREM 4. Let C€R, pe C*(R,), g€ C'(R,),
(1-C){p" +3Cpp’' +C?p®} — ¢ — Cpg >0 on R,

C>
or (22)

Wi

and p>0 on R,

and either C<§ and p<0 on R,
or
c=2.

Then for a singular solution y of (1) the inequality (3) holds.

Proof. Let y be singular solution of (1) and let T, be a number from its
definition. Contrarily, suppose that there exists 7 € [0, Ty) such that y(7) = 0.
Put

C [ p(s) ds
F(t)=e {——2yy”+ y'2+ [—q +(1-C)yp' +(C- 02)p2] y?
+2p(C — l)yy'} , t>71.
(23)

¢ [ p(s) ds
F'(t)y=e {7 {yQ[—q’—Cpq+3pp’(C—02)+p3(02-03)+p"(1*6‘)]

+y*[3C - 2lp + 21y (3, /, y”)} :

(24)

Assumptions of the theorem yield F'(t) > 0. As F(T,) = 0 and F(7) =
[y’(T)]2 > 0, we can conclude that F = 0 on [7,7,] and thus, by integra-
tion of (24) on [, T,] and by (22), y =0 on [r,T,). It is in contradiction with
the definition of the singular solution y. O

CONSEQUENCE 1. Let g € C! (R, ) and let one of the following assumptions
hold:
(i) peC?(R,.), p<0,p"—¢ >0 0nR,;
(ii)) p>0, ¢ +pg<0 on R, ;
(i) p e C*(R,), 9p" + 18pp’ +4p> — 27¢' —18pg >0 on R, .
Then for a singular solution y of (1) the relation (3) holds.

Proof. It follows from Theorem 4 for C =0, 1, %, respectively. Note, that
according to (23) the assumption p € C*(R, ) is not needed in case C =1. O

In the following theorem assumptions are posed also on the nonlinearity f.
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THEOREM 5. Let a > 0 exist such that

|f(.’131,.’L'2,:E3)| > a‘mll on R*. (25)

Further, let one of the following assumptions be valid on R, :
(a) p>0, ¢ < /arp;
(b) p>0, e C'(R}), 2ar —¢' —qp>0;
(c) p<0,peC?*R,), g€ C'(R,), ar+p" —¢ > 0.
Then for a singular solution of (1) the inequality (3) holds.
Proof. Let y be a singular solution, T} be defined by Definition 1.
a) Suppose, contrarily, that 7 € [O,Ty) exists such that
y(r) =0.
Theorem 2 and Definition 1 yield, for simplicity,

y(t) >0, J(t)<0, ¢'(t)>0 (26)

in a left neighbourhood of T, and thus 7; € (7,T,) must exist such that

y"'(r;) =0, and (26) isvalid on [r,T,).

In both of the following cases

— "' has the maximal zero on [7, Ty),

— there exists an increasing sequence of zeros of y" tending to T,
it is possible to choose 7, such that

" — " 27
JDax v =y (n). (27)
From this
aly'l =py" +rf(y,y'y") 2 py" +ray|,_ . (28)
On the other hand, using y(T}) = y'(T})) =0, (26) and (27), we have
T,

y2(r) =2 / W (8)ly"(s) ds < 24" (r,)y(ry) -

T1

Thus, together with (28),

1
a(2y"y)? > py" +ray|,_,

(Vpy" = varg)” + (v/2apr — q)/2yy" <0 _.,

that contradicts the assumption ¢ < arp on R, .
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b), ¢) The statement can be proved similarly as that of Theorem 4 for C = 1

or C =0, respectively. Instead of (22) a more precise estimation of F’ must be
used, using (22) and (25):

(1]
(2]
(3]
(4]
(5]
(6]
(7]

(8]
9]

(10]

[11]
(12]
(13]

(14]

Cj'p(s) ds ,
F'(ty=e ? {y*[-¢' — Cpq + 3pp'(C — C?)

+p%(C? — C®) +p"(1 - C) + 2ar] +y*[3C — 2]p} .
a
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