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LINEAR ARBORICITY OF GRAPHS

MIROSEAW TRUSZCZYNSKI

In the note presented we mean by a graph an undirected, loopless, finite graph
without multiple edges. Our terminology is based on Harary [5].

The concept of the linear arboricity of a graph G, denoted Z(G), was introduced
by Harary [6] as the minimum number of linear forests, i.e. unions of vertex-disj-
oint paths into which a graph G can be decomposed. Obviously, if the maximum
degree of G is r then [r/2] < E(G) and if G is r-regular, then [(r + 1)/2] < =(G). It
was conjectured by Akiyama et al. [1] (and independently by Peroche [9] and by
Hilton [7]) that for an r-regular graph G the equality Z(G) =[(r + 1)/2] holds, and
it was proved for r =2,3 and 4 (see [4], [2]) and for r =5,6 and 8 (see [4] and [10])
In the sequel we shall refer to this conjecture as Linear Arboricity Conjecture
(LAC in short).

The linear arboricity of G is closely related to the older concept of arboricity of G.
denoted y(G), defined to be the minimum number of forests into which a graph G
can be decomposed. Clearly y(G)< Z(G) for every graph G. Using the well-
-known result of Nash—Williams [8] one can easily prove (see[3]) that for an
r-regular graph G, y(G)=[(r +1)/2]. Hence, if true, the assertion of the LAC
would be somewhat surprising since it would mean that the linear arboricity and the
arboricity of a regular graph are equal.

In the note we consider the linear arboricity of the cartesian product and we
prove that if the LAC holds for regular graphs G and H, then it holds for their
cartesian product G X H, as well.

Let us recall that the cartesian product G X H of graphs G and H is defined as
the graph with the vertex set V(G) X V(H), in which two vertices (x, y) and (v, w)
are joined with an edge if and only if either xv € E(G) and y=w, or x =0 and
yw € E(H).

Lemma 1. If His a 2k-regular graph with E(H) = k + 1, and F is a linear forest,
then E(FX H)y=k + 1.

Proof. To prove the lemma we shall construct a colouring of the edges of F x H
with k + 1 colours such that each monochromatic set spans a linear forest. Clearly
we can restrict ourselves to the case when F is a path x,x; ... x,. Suppose the edges
of H are coloured with k + 1 colours ¢y, ..., x4 so that each colour spans a linear
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forest in H. Since H is 2k-regular, for every vertex a of H either each colour
appears among the colours of the edges incident with a and some two of them
appear exactly once, let us denote the set ot all such vertices by X, or there is
a colour which is missing at a, let us denote the set of such vertices by Y. To
construct a suitable colouring of F X H we shall need a certain labelling of the
vertices of H. Elements of X will be labelled with ordered pairs of colours. To
introduce this labelling let us consider a multigraph M with the vertex set X in
which two vertices a and b are joined with A multiple edges if and only if there are
A maximal monochromatic paths starting in ¢ and ending in b. Clearly M is
2-regular, since for every a € X there are exactly two colours which appear once
among the colours of the edges incident with a and, consequently, exactly two
maximal monochromatic paths start in a. Let aea, ... a, a,, where a,=a,, be
a cycle of M and let ¢, i=0, 1, ..., s—1, be the colour of the maximal
monochromatic path which starts in ¢, and ends in a,,, (1if s =3, there is exactly one
such a path in M, if s =2, there are two such paths in M between «, and a, and we
take for ¢, the colour of an arbitrary one of them and for ¢, the colour of the other).
Now we label each vertex a,,,, i=0, 1, 2, ..., s = 2, with the ordered pair (c,, €,+,)
and ao=a, with (c,-,, ¢p). In this way we label all vertices of X. Finally, we label
each vertex y of Y with the colour which is missing at y, let us denote it by c,.

We are ready now to define a suitable colouring of the edges of F x H.

1. All edges of Fx H parallel to an edge e=ub of H, ie. the edges
(xi, a)(xi, b), i=1, ..., p, are coloured with the same colour with which e is

coloured in H.

2. Consider an edge e =(x,, a)(x,,;, a) of FX H.

(a) If a e X, then it is labelled with an ordered pair, say (¢, d). Colour e with c if
i is even and with d if i is odd.

(b) If ae Y, then it is labelled with ¢,. Colour e with ¢,.

Clearly, each subgraph of F X H spanned by a monochromatic set of edges has its
maximum degree less than or equal to 2 and none of them contains cycles (see
Figure 1). Hence the obtained colouring gives a decomposition of F X H into k + 1
linear forests.

Theorem 2. Let G and H be k-regular and p-regular graphs, respectively.
Suppose  E(G)=[(k+1)/2] and E(H)={[(p +1)/2). Then E=(G X H =
=[(k + p + 1)/2]. (In other words, if the LAC holds for G and H, then it holds for
G X H, as well.)

Proof. Let V(G)={x,, ..., x,} and V(H)={y,, ..., y.}. Suppose that E is
a linear forest of G. Then Ey=E X {y,}u...UE X {y,} i1s a linear forest of G X H.
Similarly we can define a linear forest F; of H. Clearly, E, and Fg; are
edge-disjoint for every linear forests E and F of G and H, respectively. Moreover
if T, and T, are two edge-disjoint linear forests of G (resp H) then T,y and Tay
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(resp. Ty and T,g) are also edge-disjoint. Denote [(k + 1)/2]=k' and [(p + 1)-
/2]=p' and let E,, ..., E,, (resp. Fy, ..., F,") be linear forests covering the edges of
G (resp. H). If both k and p are odd, then G X H can be decomposed into k' + p’
edge-disjoint linear forests Eu, ..., Ex'n Figs --., Fpc. If k o1 p, say p, is even,
then we decompose G X H into E, X H, E,y, ..., Exn, and then we decompose
E, X H into p' linear forests, which is possible by Lemma 1. This gives
a decomposition of G X H into k' + p' — 1 linear forests. In both cases the obtained
decomposition consists of [(k + p + 1)/2] linear forests, as claimed.

—— blue (B) FxH:
red (R)

Fig. 1. a, is labelled with (R. B), a; with (B, R), a, and a, with {R}.

This theorem ensures the validity of the LAC for many regular graphs. Below we
state just one example.
Corollary 3. For an n-dimensional cube Q, we have Z(Q,)=[(n+1)/2].

Pl’OOf. O,, = sz sz o X Kz.
n times
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JIMHEWHAS OTPEBECHOCTbH I'PA®OB
Mirostaw Truszczynski
Pe3iome
Jlunennas apesecHocTh =(G) rpada G 3TO MUHMMAJILHOE YMCIIO JIMHERHBIX JIECOB, COEAMHEHHE
koTopbix paBHo G. B pa6orax [1], [7] u [9] He3aBHcHMMO Gblna BhICKa3aHa rUNOTE3a, YTO JHHENHHAs
ApeBecHOCTb r-perynspHoro rpadga G pasha [(r+1)/2]. B pa6orax [1], [2], [4], [9], [10] ona Gbina
nokazaHa ans r=2,3, 4,5, 6, 8. B HacTosien paboTe uccneqyeTcst TMHEAHAs [PeBECHOCTD 1eKapTOBa

npousBeneHus perynsipHbix rpagos. [Tokazano, 4To eciv runoTesa BepHa ans perynspHeix rpagpos G u
H, To oHa BepHa ans nekaprosa npouseegenuss G X H.
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