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LATTICES WITH A THIRD 
DISTRIBUTIVE OPERATION 

JAN JAKUBIK—MILAN KOLIBIAR 

Preliminaries 

Two binary operations o and * in a set M are said to be mutually distributive (or 
the operation o is distributive with the operation *) if for each a, b, ceM, 
ao(b*c) = (aob)*(aoc), a*(bQc) = (a*b)o(a*c). 

B.H. Arnold[ l ] investigated distributive lattices (L \ A, v) with an operation * 
such that (L; *) is a semilattice and the operation * is distributive with A and v. In 
[4] there were investigated pairs of distributive lattices (L; A, V), (L; n , u) such 
that each of the operations A, v is distributive with each of the operations n, u . In 
this note we shall show that the results of [1, Th. 16] and [4] are valid also without 
assuming the distributivity of the mentioned lattices. 

In the lattices (L; A , v) the order will be denoted by ^ , that in the semilattice 
(L\n) by c (i.e. x^y iff xny = x). Lattice operations in the lattice of 
equivalence relations in a set M will be denoted by A and v . a> will denote the 
least equivalence relations (equality), i the greatest one. 0. 0 will denote the 
product of equivalence relations 0, 0 in the usual sense. 

1. Results 

Theorem 1. Let L = (L\ A , v) be a lattice. There is a 1 -1 correspondence 
between semilattice operations n in L such that n is distributive with A and v, 
and pairs of congruence relations 0X, 02 in L such that 0XA02 = CO, 

(aAb)vc0i(avc)A(bvc) (/ = 1,2) for each a, b, ceL, and a<b implies 
a0x02b. 

The congruence relations 0, corresponding to n are given as follows. a0xb iff 
anb = avb, a02b iff anb = aAb. Conversely, given 0X and 02, anb is the 
uniquely determined element c for which aAb 0xc02avb. 

If the desired operation n exists, then L is distributive. 
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Theorem 2„ Let L = (L; A, V) be a lattice. There is a 1 - 1 correspondence 
between the operations n as in Theorem 1 and representations of Las a subdirect 
product of distributive lattices A, B such that if (a, b),(a', b') are elements of the 
subdirect product and (a, b)^(a', b'), then (a, b') belongs to this subdirect 
product. The subdirect representation belonging to an operation n is that given by 
congruence relations 0X, 02 from Theorem 1. The operation n corresponding to 
a subdirect representation cp:L-*AxB is given as follows. If cp(x) = (a, Z?), 
cp(y) = (a', b'), then xny = cp~\aAa', bvb'). 

Theorem 3. a) The temilattice (L; n) of Th. 1 turns out to be a lattice1) iff the 
corresponding congruence relations 0X, 02 commute. 

b) The semilattice (L; n) of Th. 2 turns out to be a lattice if the subdirect 
factorization is a direct one. 
. In both cases the lattice (L; n, u) is distributive and the operation u is 
distributive with A and V, too. 

Theorem 4. a) U for two lattices, (L; A, V) and (L; n, u) , the operation n is 
distributive with A and v, then the operation u is distributive with these 
operations too and both lattices are distributive. 

b) Let LX = (L; A, V) and Lz = (L; n, u) be lattices. The operation n is 
distributive with A and v iff there are distributive lattices A = (A ; A , v), B = (B; 
A , v) and a map qp:L^>AxB such that cp is an isomorphism ofLx onto the direct 
product AxB and an isomorphism of 1^ onto the direct product AxB (B being 
the dual of B). 

Remark 1. In Theorem 1 four distributive laws are postulated: 
xn(yAz) = (xny)A(xnz)fXA(ynz) = (xAy)n(xAz), 

xn(yvz) = (xny)v(xnz), and xv(ynz) = (xvy)n(xvz). None of these laws 
can be omitted as the following example shows. Let Lx, Ly be lattices on the set 
{a, b, c) given by the chains Lx:a<b<c, 1^: a cz cab. There hold the first three 
identities but the last does not. 

This example shows also that in Theorem 4 it would not be sufficient to suppose 
only that one of the operations of Lx is distributive with one operation of Z<>. 

Remark 2. From theorems [4, Th. 3.4] and [5, Th. 3.6] there immediately 
follows the following weakening of Theorem 4b). If each operation of Lx is 
distributive with each operation of Z ,̂ then there is an isomorphism of L, onto 
a direct product of two lattices A and B which is also an isomorphism of the lattices 
Ln and AxB. 

2. Some lemmas 
2.0. Lemma. Congruence relations 0, <P ofa lattice (L; A , V) commute iff for 

each a, beL, a^b, a00b is equivalent with a<P0b. 

l) i.e. there is an operation u on L such that (L; n , u) is a lattice 
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Proof. The condition is obviously necessary. Suppose it is satisfied and let x, 
y eL, x0z and z<Py. Then xAyAz<PxAZ0X, hence teL exists with xAyAz0t<Px, 
so that y&yvt. Further, xAyAz0yAz<Py, hence yAz<P&yvt, yAz0<Pyvt and 
t&y AZ so that tQ<Pyvt, x<Pt<P0yvt0y, hence x<PGy. This shows that 0<P^&0, 
which implies 00 = <P0. 

In the paragraphs 2.1—2.5.9 we suppose that (L; A, V) is a lattice (with the 
ordering relation ^ ) , (L; n) is a semilattice (with the ordering relation c ) and 
that the operation n is distributive with both operations A and v. 

2.1. From the distributivity of n with the operations A , V it follows immediately 
(see [1]) xAy^xny^xvy, xnycxAy, xny^xvy, xn(xAy) = xA(xny), 
xn(xvy) = xv(xny). These relations will be used freely in what follows. 

2.2. a^x^b and a^b imply a^x^b. 
Proof. anx = an(xAb) = (anx)A(anb) = (anx)Aa = (aAx)na = ana = a, 

bnx = (bvx)n(avx) = (bna)vx = avx = x. 
2.3. u^x, u^y, l/czjc and « c y imply xAy = xny. 
Proof. u^xAy^x and w c * yield, by 2.2, wcjcAy CJC. Similarly, xAy c y . It 

follows that xAy^xny, hence XAy = xny (using 2.1). 
2.4. Let the semilattice (L; n) form a lattice (L; n, u) (see the footnote1)). 

Then a^aub^b holds for any a^b. 
Proof. [av(aub)]n[bA(aub)] = ([av(aub)]nb)A([av(aub)]n(aub)) = 

= [(anb)vb]A[av(aub)] = bA[av(aub)], hence 

(1) bA[av(aub)]cav(aub), 

b A[av(aub)]^b A(aub). 

Further, an(bA[av(aub)]) = (anb)Aa = a, hence 

(2) acbA[av(aub)]. 
Using 2.1 we get bn(bA[av(aub)])^bn(bn[av(aub)]) = (bna)vb = b, 
hence 

(3) bc:bA[av(aub)]. 

Further, [av(aub)]n(aub) = av(aub), [bA(aub)]n(aub) = bA(aub), 
hence 

(4) av(aub)c:aub, bA(aub)caub. 

From (2) and (3) it follows that aub c b A[av(aub)], which combined with (1) 
and (4) yields av(aub) = aub = bA(aub), which proves the assertion. 

2.5. Define the relations 0U 02 in L as follows. a0xb iff anb = avb, a02b iff 
anb = aAb. 

2.5.1. 02 is an equivalence relation in L. 
Proof. Reflexivity and symmetry are obvious. Let a02b, b02c. Then 
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anb = ar\b,bnc = bt\c, 
a/\b /\c = (a/\b)t\(b Ac) = (anb)A(bnc) = (aAb)n(aAc)nbn(b AC) = 

= (anb)n(aAc)nbn(bnc) = anbncn(aAc) = anbnc, since anc^aAc. 
From the relations aAbAc^a, c; aAbAc = anbnc<^a, c it follows by 2.3 that 
anc = aAc, hence a02c. 

2.5.2. &2 is a congruence relation in the lattice (L; A , V ) . 
Proof. Let a&2b, i.e., anb = aAb. Then (aAc)n(bAC) = (anb)AC = 

= aAbAc = (aAc)A(bAc), hence aAc02b AC. Further, (avc)A(bvc) ^ 
(avc) n (bvc) = (anb)vc = (aAb)vc^(avc) A (bvc), which yields 
a vc02bvc. 

2.5.3. 0 , is a congruence relation in the lattice (L; A , V ) . 
Proof. It suffices to consider the semilattice (L; n) and the lattice dual to (L; 

A , v), and to use 2.5.2. 
2.5.4. 0 , , 0 2 are congruence relations in the semilattice (L; n). 
Proof. a&xb implies (anc)n(bnc) = (anb)nc = (avb)nc = 

= (anc)v(bnc), hence anc0xbnc. The proof for 0 2 is similar. 
2.5.5. 0XA02 = O). 

The assertion follows immediately from the definition 2.5. 
2.5.6. aAb0xanb, anb02avb. 
The assertion follows immediately from 2.5 and 2.L 
2.5.7. a^b implies a0x02b. 
The assertion follows from 2.5.6. 
2.5.8. If the semilattice (L; n) forms a lattice (see the footnote1)), then a020xb 

for each a^b. 
Proof. Using 2.4 we get a02aub0xb. 
2.5.9. The lattice (L; A , v) is distributive. 
Proof. Using 2.5.6 we get for arbitrary x, y, zeL:(xvy)Az02(xny)Az = 

= (xAz)n(yAz)02(xAz)v(yAz). On the other hand, (xvy)Az0x(xvy)nz = 
= (xnz)v(ynz)0i(xAz)v(yAz). This gives (*V>>)AZ = (xAz)v(yAz) by 
2.5.5. 

3. Proofs of the Theorems 

P r o o f o f T h . 1. The existence of the congruence relations 0X, 02 for a given 
semilattice (L; n) and the distributivity of the lattice (L; A , v ) are consequences 
of 2.5.2, 2.5.3, 2.5.5, 2.5.7 and 2.5.9. 

Conversely, let 0 , , 0 2 be congruence relations in L satisfying the given 
conditions. These conditions ensure the existence of the operation n . Obviously n 
is idempotent and commutative. The elements dx = (anb)nc, d2 = an(bnc) 
satisfy dt0xaAbAc, dt02avbvc (i=\,2), hence dx0xA02d2, which yields 
dx = d2. 
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To prove the distributivity of the operation n with A and v we use the definition 
of n (i.e. 2.5.6) and the supposed distributivity of quotient lattices L/0, (z = 1, 2). 
The elements ux = (a/\b)nc, u2 = (anc)/\(bnc) satisf y a A b A C0X U{ 02(at\b)vc 
(z = l ,2), hence ux = u2. Similarly we get (anb)Ac = (aAc)n(bAc) and the 
distributivity of the operations n and v. 

One can easily verify that if 0,, 02 are congruence relations corresponding to 
a given operation n, then the semilattice operation corresponding to 0,, 02, 
coincides with n. Similarly, if we start with 0X, 02, construct n and then the 
corresponding congruence relations, we get 0,, 02. This yields the correspondence 
stated in the theorem. 

Proof of Theorem 2. Let (L; n) be a semilattice with the property stated in 
the theorem and 0,, 02 the congruence relations from Th. 1. Then the lattice L is 
isomorphic to a subdirect product of lattices L/0,, L/02 under the mapping 
q>: x—>([.r]0,, [.r]02) ([x]0t is the class of the congruence relation 0 f, containing 
x) (see e.g. [3, § 20]). By Th. 1 the lattices L/0 f are distributive. Let (a, b), 
(a', b') have the same meaning as in the theorem. Then elements u, veL exist 
with q)(u) = (a, b), q?(v) = (a', b'), u^v. By Th. 1 there is teL with u0xt02v. 
Then q?(t) = (a, b'). 

Conversely, let q?: L-*A x B be an isomorphism of the lattice L to a subdirect 
product of lattices A, B having the properties stated in the theorem. Let 0U 0 2 be 
the corresponding congruence relations in L [3, § 20]. Then 0XA02 = CO and L/0 f 

are isomorphic to A and B, respectively, hence they are distributive. If a, beL, 
a^b, q)(a)=(a, a'), q?(b) = (b, b'), let t be the element of L with q)(t) = (a, b'). 
Then a0xt02b, hence the congruence relations 0U 02have the properties of 
Theorem 1 so that there is a semilattice operation n in L which is distributive with 
the operations A, V. The relations xAy0xxny02xyy yield the last assertion of 
Th. 2 concerning the operation n. 

Proof of Th 3 a) If the lattice (L; n, u) exists, then 0 , . 0 2 = 0 2 . 0, by 2.0, 
2.5.7 and 2.5.8. Conversely, let 0X. 02 = 0 2 . 0,. Then for a^b we get by Th. 1 
a0x02b, hence a020xb, too. By Th. 1 there is a semilattice operation u in L, 
which is distributive with the operations A, V, satisfying aAb02aub0xavb. 
Hence (aub)na02(a Ab)na02a, (aub)na0x(avb)na0xa, which yields 
(aub)na0xA02a, i.e., (aub)na = a. Similarly we get (anb)ua = a using 
aAb0xanb02avb. Hence (L; n, u) is a lattice. The distributivity of this lattice 
follows by Th. 1 (or by 2.5.9) from the distributivity of the operation A with the 
operations n, u. 

b) Since a0x02b for a^b, we get 0, v 0 2 = i. Hence the subdirect product is 
a direct product iff 0 , . 02 = 0 2 . 0,. By a), this is equivalent to the condition that 
(L; n) forms a lattice. 

Proof of Th. 4. The assertion a) follows from Theorems 1 and 3. The assertion b) 
follows from Theorems 2 and 3. 
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СТРУКТУРЫ С ТРЕТЬЕЙ ДИСТРИБУТИВНОЙ ОПЕРАЦИЕЙ 

Ян Я кубик—Милан Кол ибиар 

Резюме 

Пусть (21; л, у) — структура. В этой статье исследуется бинарная операция п на множестве Ь 
обладающая следующими свойствами: (а) (Ь; п) является полуструктурой; (б) операция п будет 
дистрибутивной относительно каждой из операций л и V. Доказано обобщение одного результа­
та Арнольда. 
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