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LATTICES WITH A THIRD
DISTRIBUTIVE OPERATION

JAN JAKUBIK—MILAN KOLIBIAR
Preliminaries

Two binary operations - and « in a set M are said to be mutually distributive (or
the operation o is distributive with the operation %) if for each a, b, ce M,
ao(bxc)=(aob)x(aoc), ax(boc)=(axb)o(axc).

B. H. Arnold [1] investigated distributive lattices (L ; A, v) with an operation
such that (L ! %) is a semilattice and the operation  is distributive with A and v. In
[4] there were investigated pairs of distributive lattices (L ; A, v), (L; N, U) such
that each of the operations A, v is distributive with each of the operations N, u. In
this note we shall show that the results of [1, Th. 16] and [4] are valid also without
assuming the distributivity of the mentioned lattices.

In the lattices (L ; A, v) the order will be denoted by =<, that in the semilattice
(L;n) by c (i.e. xcy iff xny=x). Lattice operations in the lattice of
equivalence relations in a set M will be denoted by A and v . @ will denote the
least equivalence relations (equality), ¢ the greatest one. ©@. @ will denote the
product of equivalence relations @, @ in the usual sense.

1 Results

Theorem 1. Let L=(L; A, v) be a lattice. There is a 1—1 correspondence
between semilattice operations n in L such that n is distributive with A and v,
and pairs of congruence relations ©,, ©, in L such that O.AO,=w,
(anb)vceO,(avc)a(bvce) (i=1,2) for each a, b, ceL, and a<b implies
.a0,6,b. .

The congruence relations ©; corresponding to N are given as follows. a©,b iff
anb=avb, a@®,b iff anb=anAb. Conversely, given ©, and ©,, anb is the
uniquely determined element c for which anb ©,c6,avb.

If the desired operation N exists, then L is distributive.
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Theorem 2. Let L=(L; A, v) be a lattice. There is a 1— 1 correspondence
between the operations N as in Theorem 1 and representations of L as a subdirect
product of distributive lattices A, B such that if (a, b), (a’, b') are elements of the
subdirect product and (a, b)<(a’', b'), then (a, b') belongs to this subdirect
product. The subdirect representation belonging to an operation n is that given by
congruence relations ©,, ©, from Theorem 1. The operation n corresponding to
a subdirect representation @:L— A X B is given as follows. If @(x)=/(a,b),
@e(y)=(a', b'), then xny=q@ '(ana’, bvb').

Theorem 3. a) The semilattice (L ; N) of Th. 1 turns out to be a lattice') iff the
corresponding congruence relations ©,, ©, commute.

b) The semilattice (L; n) of Th. 2 turns out to be a lattice if the subdirect
factorization is a direct one.

In both cases the lattice (L; n, U) is distributive and the operation U is
distributive with A and-v, too.

Theorem 4. a) If for two lattices, (L; A, V) and (L; n, V), the operation N is
distributive with A and v, then the operation U Is distributive with these
operations too and both lattices are distributive.

b) Let L,=(L; A, v) and L,=(L; n, v) be lattices. The operation N is
distributive with A and v iff there are distributive lattices A =(A; A, v), B=(B;
A, V) and a map @: L— A X B such that @ is an isomorphism of L, onto the direct
product A X B and an isomorphism of L, onto the direct product A X B (B being
the dual of B).

Remark 1. In Theorem 1 four distributive laws are postulated:
xn(yaz)=@xny)a(xnz), xA(ynz)=(xAy)n(xAz),
xn(yvz)=(xny)v(xnz), and xv(ynz)=(xvy)n(xvz). None of these laws
can be omitted as the following example shows. Let L,, L, be lattices on the set
{a, b, c} given by the chains L,: a<b<c, L,: ac ccb. There hold the first three

identities but the last does not.

This example shows also that in Theorem 4 it would not be sufficient to suppose
only that one of the operations of L, is distributive with one operation of L,.

Remark 2. From theorems [4, Th. 3.4] and [5, Th. 3.6] there immediately
follows the following weakening of Theorem 4b). If each operation of L, is
distributive with each operation of L,, then there is an isomorphism of L, onto
a direct product of two lattices A and B which is also an isomorphism of the lattices
L, and A X B.

2. Some lemmas

2.0. Lemma. Congruence relations ©, & of a lattice (L ; A, v) commute iff for
each a,beL, a<b, aO®b is equivalent with a®Ob.

') i.e. there is an operation U on L such that (L; n, U) is a lattice
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Proof. The condition is obviously necessary. Suppose it is satisfied and let x,
y €L, xOz and z®Py. Then x Ay A zPx A zOx, hence ¢ € L exists with x Ay A zOtDx,
so that y@yvt. Further, x Ay AzOy Az®Py, hence yAz@POyvt, yAzOPy vt and
1Oy Az so that tOPy v ¢, xPtPBOy v tOy, hence xPBOy. This shows that OP < PO,
which implies @@ = @O

In the paragraphs 2.1—2.5.9 we suppose that (L; A, v) is a lattice (with the
ordering relation <), (L; n) is a semilattice (with the ordering relation <) and
that the operation n is distributive with both operations A and v.

2.1. From the distributivity of n with the operations A, v it follows immediately
(see [1]) xAy<xny<xvy, xnycxAy, xnycxvy, xn(xAy)=xA(xny),
xn(xvy)=xv(xny). These relations will be used freely in what follows.

22.asx<band achb imply acxch.
~ Proof. anx=an(xab)=(anx)a(anb)=(anx)ra= (a/\x)na ana=a,
bnx=(bvx)n(avx)=(bna)vx=avx=x.

23. u<x,u<y,ucxand ucy imply xny=xny.

Proof. us<sxay<uxand ucxyield, by 2.2, ucxAycx. Similarly, xAyc y. It
follows that xAycxny, hence xAy =xny (using 2.1).

2.4. Let the semilattice (L ; N) form a lattice (L; N, L) (see the footnote‘))
Then a<aub<b holds for any a<b.

Proof. [av(aub)]n[ba(aub)] = ([av(aub)lnb)a([av(aub)ln(aub))=
=[(anb)vb]lalav(aub)] = balav(aub)], hence :

(N balav(aub)]cav(aub),

: balav(aub)]cba(aub).
Further, an(bAlav(aub)])=(anb)ara=a, hence
(2) acbnafav(aub)].

Using 2.1 we get bn(bA[av(aub)]):bn(bn[av(aub)]) (bna)vb=b,
hence

3) | bcbalav(aub)].

Further, [av(aub)]n(aub) = av(aub), [ba(aub)]n(aub) = ba(aub),
.hence

4) av(aub)caub, ba(aub)caub.

From (2) and (3) it follows that aub < b A[a v (aub)], which combined with (1)
and (4) yields av(aub)=aub=ba(aub), which proves the assertion.

2.5. Define the relations @,, @, in L as follows. a®,b iff anb=av b, a®,b iff
anb=a~nb.
2.5.1. O, is an equivalence relation in L.
Proof. Reflexivity and symmetry are obvious. Let a©,b, bO,c. Then
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anb=anb,bnc=bnc,
anbac=(anb)a(bac)=(anb)a(bnc)=(arb)n(anc)nbn(bac)=
=(anb)n(anc)nbn(bnc)=anbnecn(anc)=anbnc, since anccanac.
From the relations anbAac<a,c; anbac=anbncca, c it follows by 2.3 that
anc=aAnc, hence a®,c.
~ 2.5.2. O, is a congruence relation in the lattice (L; A, V).
Proof. Let a@,b, ie., anb=anb. Then (anc)n(bac) = (anb)ac=

=anbac = (anc)a(bac), hence ancO.bac. Further, (avc)a(bve) <
(ave) n (bve) = (anb)ve = (anb)vc<(avc) A (bvc), which yields
avc@.bvec.

2.5.3. O, is a congruence relation in the lattice (L; A, V).

Proof. It suffices to consider the semilattice (L ; n) and the lattice dual to (L ;
A, V), and to use 2.5.2.

2.54. O,, O, are congruence relations in the semilattice (L ; N).

Proof. a®,b implies (anc)n(bnc) = (anb)nc = (avb)nc =
=(anc)v(bnc), hence anc@®,bnc. The proof for @, is similar.

2.5.5. 6,.An60,=0w.

The assertion follows immediately from the definition 2.5.

2.5.6. anb®,anb, anb@.avb. ’

The assertion follows immediately from 2.5 and 2.1.

2.5.7. a<b implies a®,0,b.

The assertion follows from 2.5.6.

2.5.8. If the semilattice (L ; N) forms a lattice (see the footnote')), then a®,0,b
for each a<b.

Proof. Using 2.4 we get a®,aub6,b.

2.5.9. The lattice (L; A, v) Is distributive.

Proof. Using 2.5.6 we get for arbitrary x, y, zeL:(x vy)AZO,(xny)Az=
=(xAZ2)N(yA2)O,(xAZ)v(yAaz). On the other hand, (xvy)AzO,(xvy)nz=
=(xnz2)v(ynz)O(xAz)v(yaz). This gives (xvy)az = (xAz)v(yAz) by
2.5.5.

3. Proofs of the Theorems

Proof of Th. 1. The existence of the congruence relations @,, @, for a given
semilattice (L ; n) and the distributivity of the lattice (L ; A, v) are consequences
of 2.5.2, 2.5.3, 2.5.5, 2.5.7 and 2.5.9.

Conversely, let ©,, ©, be congruence relations in L satisfying the given
conditions. These conditions ensure the existence of the operation n. Obviously N
is idempotent and commutative. The elements d,=(anb)nc, d,=an(bnc)
satisfy di@anbnac, d@,avbvce (i=1,2), hence d,O,ABO,d,, which yields
d =d,.
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To prove the distributivity of the operation n with A and v we use the definition
of N (i.e. 2.5.6) and the supposed distributivity of quotient lattices L/ O, (i =1, 2).
The elements u, =(anb)nc, u,=(anc)a(bnc)satisfy anb acOu, O,(anb)ve
(i=1,2), hence u,=u, Similarly we get (anb)ac=(anc)n(bac) and the
distributivity of the operations n and v.

One can easily verify that if @,, @, are congruence relations corresponding to
a given operation N, then the semilattice operation corresponding to @,, @,,
coincides with n. Similarly, if we start with @,, ©,, construct N and then the
corresponding congruence relations, we get @,, @,. This yields the correspondence
stated in the theorem.

Proof of Theorem 2. Let (L ; n) be a semilattice with the property stated in
the theorem and ©,, ©, the congruence relations from Th. 1. Then the lattice L is
isomorphic to a subdirect product of lattices L/®,, L/©, under the mapping
‘@: x—([x]6,, [x]@,) ([x] O, is the class of the congruence relation ‘©,, containing
x) (see e.g. [3, § 20]). By Th. 1 the lattices L/®; are distributive. Let (a, b),
(a’, b') have the same meaning as in the theorem. Then elements u, v € L exist
with @(u)=(a, b), p(v)=(a’', b'), u<v. By Th. 1 there is t€ L with u6,t6,v.
Then @(t)=(a, b').

Conversely, let ¢: L A X B be an isomorphism of the lattice L to a subdirect
product of lattices A, B having the properties stated in the theorem. Let @,, ©, be
the corresponding congruence relations in L [3, § 20]. Then &,A©,=w and L/6,
are isomorphic to A and B, respectively, hence they are distributive. If a, be L,
a<b, p(a)=(a, a’), p(b)=(b, b'), let ¢ be the element of L with ¢(¢)=(a, b').
Then a®,t@,b, hence the congruence relations @,, @, have the properties of
Theorem 1 so that there is a semilattice operation N in L which is distributive with
the operations A, v. The relations x A y@,xNny@,x v y yleld the last assertion of
Th. 2 concerning the operation N.

Proof of Th 3 a) If the lattice (L ; N, U) exists, then @,.0,=6,. 6, by 2.0,
2.5.7 and 2.5.8. Conversely, let ©,.6,=6,.6,. Then for a<b we get by Th. 1
a®,6,b, hence a@,6,b, too. By Th. 1 there is a semilattice operation U in L,
which is distributive with the operations A, v, satisfying anbG,aubB,avb.
Hence (aub)na@anb)na®,a, (aub)na®(avb)na®,a, which vyields

(aub)naB®,ABa, ie., (aub)na=a. Similarly we get (anb)ua=a using
anbO,anb@,avb. Hence (L; N, L) is a lattice. The distributivity of ‘this lattice
follows by Th. 1 (or by 2.5.9) from the distributivity of the operation A with the
operations N, U.

b) Since a®,0,b for a<b, we get O,v O, =. Hence the subdirect product is
a direct product iff ®,. ©,= 6,. ©,. By a), this is equivalent to the condition that
(L; n) forms a lattice. .

Proof of Th. 4. The assertion a) follows from Theorems 1 and 3. The assertion b)
follows from Theorems 2 and 3.
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CTPYKTYPHI C TPETbEN JUCTPUBYTUBHOW ONEPALIMEV
SIn lky6uk—Munan Konubuap
Pe3iome
ﬂyCTb (L; A, v)—cTpyKkTypa. B 3T0it cTaTie ucciienyeTcs GuHapHas onepauus N Ha MHOXecTBe L
obnanaiolas creqyomnuMn ceoicTBaMu: (a) (L ; N) ABnsieTcA NONyCTPYKTYpoit ; (6) onepauus N GyaeT

AUCTPHOYTHBHOM OTHOCHTENLHO KaXIOH M3 onepauuit A 1 V. JlokazaHo o6obLieHHe OQHOTO pe3yibTa-
Ta ApHOJIbAA.
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