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MEASURABILITY OF REAL FUNCTIONS
DEFINED ON THE PRODUCT OF METRIC
SPACES

GRAZYNA KWIECINSKA

Let (T, d, %, A) be a complete metric space with a metric d, with a o-finite
G;-regular complete measure A defined over a g-field ¥ of subsets of T.
Denote by A* the outer measure corresponding to A.
Let & be a family of A-measurable sets with nonempty
(1) interiors of a positive and finite measure A, the boundaries
of which are of A measure zero.

Definition 1. The sequence {Ii} k-, < o is said to converge to the point ty€ T iff
toeInt (L) for k=1, 2, ... and the sequence of diameters 6(I,) converge to zero as
k approches infinity.

This will be denoted by L— t.

Let us note that according to the definition due to Bruckner ([1], p. 30) the pair

(o4, —) forms a differentiation basis for the space (T, d, ¥, 1).

Definition 2. Let Ac T and t,e T. The upper (lower) bound of the set of
. _A*(AnI)
numbers 11[.2 (L)
exists) is called the upper (lower) external density of A at t, with respect to o and
is denoted by D*(t,, A)(DXte, A)).
If D%(t, A)= D%(t, A), then their common value is called the external density
of A at t, with respect to & and is denoted by D*(t, A).
If A € ¥, then the respective external densities are called densities with respect
to & and denoted by D,(t, A), Di(t, A) and D(t, A), respectively.
A point t, is called a density point of the set A with respect to s if there exists
a set Be ¥ such that Bc A and D(t, B)=1.
Assume that
(2) the family & is countable and for every t € T there is a sequence of sets { I} £-1
from o converging to .
Moreover assume that

taken from all the sequences I,— t, (for which this limit
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(3) o has the density property, i.e. for every set A< T the A measure of set
{te A: D*(t, A)<1} is equal to zero.

Definition 3. The function g: T—R is called approximately upper (lower)
semicontinuous at the point t,e T with respect to Aiff for every ae R if f(t))<a
(f(t)>a), then there exists a set Fe¥X such that Fc{teT: f(t)<a}
(Fc{teT: f(t)>a}) and D(t,, F)=1.

A function that is simultaneously approximately lower and upper semicontinu-
ous at t,€ T with respect to & is called approximately continuous at ¢, with respect
to oA.

A function that is approximately continuous (approximately lower semicon-
tinuous) (approximately upper semicontinuous)) in any point t, € T with respect to
s is called approximately continuous (approximately lower semicontinuous)
(approximately upper semicontinuous)) with respect to sf.

Lemma 1. If the function g: T— R is A-measurable, then g is A-almost
everywhere approximately continuous with respect to .

Proof. Indeed, by Lusin’s theorem for every positive ¢ there exists a closed set
Fc T such that the function g|¢ is continuous and A(T— F)<e. Since & has the
density property almost every point of the set F is the density point of this set with
respect to . Therefore the function g is A-almost everywhere approximately
continuous with respect to .

Definition 4. The A-measurable function g: T— R is said to be degenerate
(positively degenerate) at the point tye T with respect to sf when there exists
a open interval Uc R such that g(t)e U and the upper (lower) density of the
counterimage g~'(U) at t, with respect to s is equal to zero.

Definition 5. ([4], definition 4). The function g: T— R has the property (G)
with respect to A iff for every positive ¢ there exists a set 1€ o such that

A(ANnI)>0 and osc g <e, where U s the set of density points of AnI with respect
U
to A belonging to Anl.

Theorem 1. Let the A-measurable function g: T— R be positively nondegener-
ate at every point of the closed set A< T. Then the A-measurable function

_[g(x) for xe A
f(x)—{ 0 for x¢éA

has the property (G) with respect to A.
Proof. Let E€ X be a set of a positive A measure and let € >0 be fixed.
Assume that A(E — A)>0. Then there is a point t € T such that t,e E— A and
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D(t, E— A)=1. As the set A is closed, it follows from property (2) of the family
o that there exists a set I € of such that t, € Int (I) and In A =@. Therefore for te T

we have f(t)=0. Hence osc f=0<¢ and A(EnI)>0.
I

Assume now that A(E— A)=0. Then we notice that all density points of E
bolong to A. In order to show that
A6 1) there exists a set I'e of suchthat A(InNENnA)>0 and osc f<¢, where V is
\%

the set of density points of In ENn A with respect to sf belonging to InEn A,
assume that 1) does not hold. Then we have:

2) if for the set J € o the inequality A(JAEN A)>0 holds, then osc f> ¢, where
w

W is the set of density points of JNENA with respect to & belonging to
JNnENnA.
We shall construct a sequence of points {#}i-1c ENA and a sequence {L} x-1c
& such that the condition 2) leads to a contradiction.
Let t,e ENnA be a point such that
3) D(t,, EnA)=1 and
4) the function f is approximately continuous at #; with respect to <.
The existence of point ¢, follows from the density property of & and from
lemma 1.
Let I, e o be the set such that
5) tyelnt (I,) and
£
6 A(I,nEnA)>l . A (Iln{te EnA: |f()—f(t)| <—8-}> 1
A(L) 2 A(L) 2°
The existence of the set I, follows from 3) and 4).

Let Gl={ teEnA: |f(6)—f(1)| 229} Then

7) A(G,)>0.
Indeed. Assume that
8) A(Gl)=0.

Then for points te(I,nENA)— G, the inequality |f(t)—f(t1)|<§ holds and

therefore osc f<e.
(hNnEnA)-G;

If |f(t) - f(t,)| sgfor the points t e [MENANG, such that D(¢t, [nEnA)=1,

then osc f<e on the set of the density points of the set nEnA, which
contradicts 2). Therefore there exists a point s;e LnENANG, such that

D(s;, LnEnA)=1 and |f(s,)—f(t,)|>%. But the function f is positively non-
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degenerate at the point s,(s;€A) and D(s;, [mnEnA)=1, thence
A ({ te LnEnA: [f(t)— f(t)l>§})>o, which is contradictory with 8). There-

fore 7) holds true.
Let t,e G;nInt (I,) be a point such that
9) D(t;, G))=1 and
10) f is approximately continuous at t, with respect to <.
Again the existence of point t, follows from the density property of &/ and from
lemma 1.
Let I, e & be such that

11) nelnt (), CI (L)< Int (), (L)< and

AMLAENA)_ 2 A(Izn{teEnA: |f(t2)—f(t)|<§e}> 5

12) W_>§ and A(h) >§.

The existence of set I, follows from 9) and 10). Similarly as before the set
G2={te LNnENA: lf(tz)—f(t)lz-gz-} is A-measurable and has a positive measure

A.

Proceeding analogously we define the sequence {Ii}k-;of the sets from & and
the sequence {#}%-; such that
13) t € GrinInt (1), D(_tk, G «-1)=1 and f is approximately continuous at the
point . with respect to &, where

Gii={teLinEnA: |f(tk_,)_f(¢)|>§£},

14) s.elnt (), C1 (L) cInt (T_y), 6(Ik)<—2% and

AMDNENA) _ k

) k+1 2nd

15)

A (Ikn{teEr\A: ,f(tk)—f(l)l<§}> k
_ eA) Zk+1

for k=1,2,....
Since # € Gk-1, we have

16) f(t-)= f(8)|=5 for k=1,2, ...
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The set [ I, consists of one point #. As the function f is positively nondegener-
k=1

ate at t, with respect to & (toe N I;J\A) we have shown that
k=1

D, (to, {t: |f(t) — ()| <%}) >0.

Denote by «a this density. Moreover the sequence of sets { I}, is a convergence to
t, hence there exists a natural number n such that for k>n

A (Ikn{t: lf(to)"f(‘)|<§£})

a
A(Ik) >§ and

A (Ikn{teEnA: If(8)—f(0)] <§})>1 a
A 2"

Therefore for every k>n
{t: If(to)—f(t)|<§£}n{teEnA: If(t)—f(tk)|<§}nlk=#ﬂ.

Theace for k>n the following inequality holds | f(to)—f(tk)|<§ , which con-

tradicts 16). Thus the negation of 1) leads to a contradiction. Therefore 1) holds
true. The proof of the theorem is completed.

Lemma 2 ([2],lemma 2). Let (X, M, u) be a measurable space with the o-finite
measure u. Let g: X— R be such that for any €>0 for a class of sets 9, =

{DeM: osc g<g} satisfies the following condition:
D

(d) for any set B € M with a positive measure there exists a set D € 9, such that
Dc B and u(D)>0.
Then the function g is [i-measurable, where [i stands for the completion of u.

(Davies has proved the lemma under the assumption that is finite, whereas
o-finiteness is sufficient).

Let for every i=i, ..., n(X, o, 4, w;) be a space as (T, d, #, L) was, i.e. let
every (X, o, Mi, u;) be a complete space with a o-finite G,-regular complete
measure Y defined over the o-field A of subsets of X;.

Moreover let for every i=1,...,n % c M be a family which satisfies the
conditions (1), (2) and (3) of family .

Let (X, 0, M, p)= (X1 X ... X X, 01X ... X Qn, My X ... X M,, y X ... X u,) where
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M1 X ... X W, denotes the completion of the measure i X ... X &,. Moreover let
F=%x..x%F,={F. F=F,x...xF,, Fe% for i=1, .., n}.

We note that & has the density property because every family %; has the density
property (see [1], p. 2 and 34).

Let Ac X=X, y)XXiX X4+, where Xi_n,=XiX..XXi.; and Xun=
XiaX...x X, . Thenthesets Ay, .., @ 5.1 ..0 = {XE€Xi: (X1, ..., X.) €A} and

A ex .= {(xu ciey Xich Xidh +oey xn)e Xi—l)x X(i+13 (xl, cery xn)EA}

are called a section of the set A with respect to (X, ..., Xi—1, Xi+1, ..., X,) and
a section of the set A with respect to x; respectively.

Lemma 3. Let A € Ml. For every fixed i=1, ..., n there exists a set Bc A and
B e M such that u(A — B) =0, every point (x,, ..., x,) € B is the density point of
B with respect to ¥ and for every point (x4, ..., x,) € B

() D(x;, B, ... x_,@%.1...x,) =1 and
(ii) D((x1, ...y Xiz1, Xis1s -+es Xn), B @.x 0. )=1.
The proof of this lemma is analogous to the proof of lemma 2 of [7].

Lemma 4. Let A € M. There exists a set B< A and B € M such that u(A — B)=

0 and for every point (x, ..., X,)€ B
(i) D((xy, ..., x.), B)=1,

(ii) for every i=1,...,n D(xi, By, .. xi-1. @ 5101, ... x) = 1,
(iii) D((x2, ..., Xa), By .. )=1.

Proof. In accordance with lemma3 (i=1) for the set A there exists
a p-measurable subset A, of A such that u(A-—A,)=0, for every point
(X15 ..oy X,) € A; D((x1, ..., %), A1) =1, D(x1, (A))e,53,...»,) =1 and D((x, ..., X.),
(A)),, e, .)=1. Againin accordance with lemma 3 (i =2) for the set A, there exists
a p-measurable subset A, of A, such that u(A;— A,;)=0 and for every point
(X1, .. X)) € Az D((x1, .5 Xa), A2)=1, D(x2, (A2)xs, @ 5:....5,)=1 and

D((xl’ X3y «ony xn)) (AZ)., x2, ®, )= 1.
Let C,= A, — A,. It is clear that

[ 25) X...X M,,({(x2, cey x"): ”T(Cl). X2 - x,.)>0}) =0.
Let Dy ={(x2 ..., Xa): U¥(c1)e, . ..x)>0} and let

Fl = {(X3, seey x,.): “f(Dl)O,xg.....xn)>O}(l"3 X...X “n(Fl)=0)

and Hy={x:: 12X ...X(C)x, e, .)>0} (u;(H)=0). For B, take B;=
A, —[(Xy x D))u(Xi x X X F))u(H, X X; X ... x X,)]. Evidently for every point
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(x15 ..., x,)€B; we have D((xi,..., %), Bi)=1, D(x;, (Be s..x)=1,
D(x;, (B))xas. ..., )=1 and D((xs, ..., x,), (Bi),.e,.. )=1.

As a sequel to the set B; in accordance with lemma3 (i = 3) there
exists a pu-measurable subset A; of B; such that u(B,— A;)=0 and for every
point (xi, ..., %) € As D((x1, ..., X»), A3z) =1, D(x3, (As)sy 5 @50 . xs) = 1
and D((xi, X2, X4y ...» %), (As)e,@.s.e,..) =1. Let G = B, — A; and let
Dyyo= {(x2, .., x):  ui(Cesx...x) >0} and  D,o = {(x1, X3y ..0r Xn):

(G @msnnn)>0} 2 X . X, (D1 )=0 and py X psX ... X, (D,2)=0
because u(C)=0.
Let F;1,1={(x3, ..., X.): u3((D2,1)e, xs, ... x) >0},

Fy1.2={(x2 X5 .-0» Xa): U3((D2, 1)1, @ 5. ... x2) >0},
Fr21={(x3, ..., xa): pt((Dz2)e.x.... ) >0},

Fa22={(x1, X4 ..., X): P5((D2,2)s,. @ . ... 2) >0}
and
H2= {x,: Ilzx X M‘,‘: ((Al —AS)xl,..u.)>0}-

Evidently all these sets are of respective measure zero.

Let B,=A;—[(Xi X D3, )u{(x, ..., X): (x1, X3, ..y X, )€ D, 5 and
e X u(Xi X Xo X Fp, 1, )u{(x1 -..r Xa): x € X; and x:€X; and
(x2, X4y ooy X)) €EF, 1 2 JUXi X Xo X Fa 5 )U{(X1y ooy X))t (X145 X4y o0y Xa)EF a5
and (x;, x3) € o X5} U(H X X, X ... X X))].

For every point (x4, ..., Xx,) € B, D((x1, ..., X,), B.)=1, D(x1, (B2)e, x5, ...z.) =1,
D(x;, (B2).es. ... 5 )= 1, D(xs, (Bs) 0.5, ...xa )=1,D((x2, ..., X,), (Ba)e... )=
1. Proceeding analogously in accordance with lemma 3 (i = n) we define for the set
B._;a u-measurable set A, ¢ B,_,such that u(B,_.— A,) =0 and for every point
(x15 ..., X, ) EA, D((xy, ..., x,), A)=1, D(xn, (A, ..o 0)=1 and
D((xi, ..., Xu-1), (A4)... @ x)=1.Let C,_,= B,_,— A,. Evidently u(C,-;) =0. Let

Dn—l, 1= {(xb ey xn) : ",‘1‘ ((Cn-l)., X2y ey x..) >0}9
Dn—l. 2= {(xl» X35 00y X,.) : ”{((Cn—l)xl. ® x, ..., xn) >0}’

.........................................................................................

Dn—l. n-1= {(xl, [ERTY xn—2, xn): ut—l((cn—l)a. cies Xn—2, @, Xn)>0}'

Evidently all these sets are of respective measure zero.
Moreover the sets

Fu—l. 1,1<= {(xb sy xn): “‘:((D n-1, 1) ®, x3, ..., x) >0}9
Fu—l. l.2= {(xb X4y - .y xn): “g((Dn—l. l)xz, ®, xq,..., x,.) >0}9

Fooi1,n1= {(xz, ceey xn—l): m((Dn—l,I)ﬂz...., x,.—l..)>0} and



Fn—1,2.l= {(xs, vy xn)I u;lk((Dn—-l.2)., X3y oo x,.)>0},
Fn—1,2,2 = {(xl’ X4y oony x’l): “§:((Dﬂ_1.2)xl., X4, ..., Xn )>O}’

Fn—l, n—1,1 = {(x2’ ceey xn—2, xn): “lal= ((Dn—l. n—l)., X2y ey Xn=2y x,.) >O}7
Fn—l, n-1,2= ((xl, X3y «euy xn—2, xn) : “?((Dn—l, n—l)q,., X3y ooy Xn—2, x,.) > 0}

............................................................................................................

Fn—l, n—=1,n-2 = {(xl, ooy xn-J, xn) : .un*—2((Dn-l, n—l)xl. vy Xp—-3, @, x,.) >0}
Fn—l, n—1,n-1 = {(xh ey xn—2): ut((Dn—l, n—-l)xl, e x,._z,.)>0} and

H,_i={x:: o X ... X p*,((A1— As) 1, e,.) >0} are of respective measure zero too.
Let

B=A, —[(Xi X Duo1,1)U{(X15 -0y X2): (X1, X3, ..., Xa) €ED,_1.2and € X5} U ... U
{(xty ooty X) 2 (X1, 2vs Xy Xa) ED oy prand x,-1€ X u} U (Xi X Xo X F oy 1) U
{(x1, .0, Xa): Xx1€X)5, x3€X; and (X3, X4y .., Xa)€F,_1.12) U ... U (XiX
Froi1,a-1XX) U (XiXXoX Focz2.0) U {(x, ..., %) (%1, X4, @, x,) € F,_1.22and
(x2, x3) € X X X5} U ... U{(X1, o0y Xa): (X1, X3y oony Xu) € Facy, 2, a-1X X, and x; € X5}
U .o U A{(X1, .00y %) 1€ X and (xz, ...y Xpo2, Xa) € Fuy pr, and x,-1€ X1} U
{(x1, -os Xa) 2 (X1, X3, ooy Xnoz, Xa) € Foigno12, %€ X5 and x,0,€ X001} U ..o U
{1, o %) (X1, 0000 Xn-3) € Fngnornz and  (Xaoz, Xaoi) € Xa2Xai) U
(Fa-1, n-1,n-1 X Xa-1 X X)U(H,-1 X X(5)].

By this definition B satisfies all the conditions of the lemma and this completes
the proof.

Let f: X—> R be a function. Then the function f,, ., , @ s.. .. (X)=
f(x1, ..., x,) is called as wusually a section of f with respect to
(X1 «vey Xicty Xis1s eeny Xn)

Let (f)={(x1,..» %) 3 fr .. x-1.8 ... IS DOt approximately continu-

i=1,..,n
ous at x; € X; with respect to %,}.

Lemma 5 ([7], lemma 5). Let f: X—R be a p-measurable function. Then
u(2(f))=0.

For the function f: X>R we denote by A(f)=

{(x1 ooy X0): I fu . xii1 @ 5.1 1S DOsitively degenerate at the point x,

i=2,..,n-1

with respect to & or the section f,, . . _.e is degenerate at the point x, with
respect to %,}.

Theorem 2. Let f: X—R be a function such that all its sections

frrn oo 511, @, xis1, ... x, AT€ Yi-measurable (i=2, ..., n) and all its sections f o, »,, ... », have
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the property (G) with respect to %,. Then the function f is u-measurable iff
u(A(f)=0.

Proof. This theorem holds true for n=2 (see [4], theorem 4).

Assume that
(») if for the function f: X;X...x X,— R all its sections f,, . . ., e x....x aI€

n

w-measurable for every i =3, ..., n and all its sections fe, ., ... », have the property

(G) with respect to %, then fis y, X ... X y,-measurable iff u, X ... X 4, (A;i(f))=0
where

Al(f)={(x2’ ceey xn): 3 fxz,--‘. Xi=1, @, Xis1, o Xn

i=3,..,n-1

is positively degenerate at the point x; € X; with respect to & or f,, .. _,e is
degenerate at x, with respect to %,}.

Let f be such as in this theorem. If f is the u-measurable function, then
u(A(f)) =0 because A(f)c P(f) and in accordance with lemma 5 u(®(f))=0.

Assume that u(A(f)) =0. It is sufficient to show that the function f satisfies the
assumptions concerning the function g of lemma 2.

Let Ee M, u(E)>0, e>0and let { I, } - be the sequence of all sets belonging to
%, and let {K,}%-: be the sequence of all closed intervals with rational ends and
lengths smaller then e.

Let Q={(x2 ..., X.): (x2, ..., X,) € X(2, Ee, sy, ... x, € My and ul(Es, ., ...)>0}.

The set Qis u, X ... X y,-measurable and u, X ... X u,(Q)>0. Let Q, , be a set of
points (x,, ..., x,) € Q such that
(l) ul(IrnE..xz,~--.tn)>0
@ii) if D(xy, LNEq.,..x)=1and x;e LnE,,,, ..., then f(x,, ..., x,) e K.

Evidently Qo J Q. ,. Moreover Q< J Q,, because all sections fe ., .. ., have
the property (G) with respect to %,. Therefore Q=] Q,,,. Thus there exists

a couple of positive integers (7o, so) such that p, X ...x u* (Q,,s)>0 because

U2 X ... X u, (Q)>0. Let
P={(xz2 ..., X.): D*((x2y .++s Xn); Qrp.so)=1}.

The measure p; X ... X u, is G, regular and %, X ... X %, has the density property,

thence Pe M, X ... X M, and p X ... X ph, (P)= i X ... X p* (Q,,. ) >0.
Let F=En(I,X P). Evidently Fe .l and u(F)>0 because for all points

(X2, s X) € Qro iy U2 X ... X s (Feg, 1, .. ) >0. Let M= F — A(f). For the set M, in
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accordance with lemma 4, there exists a set Hc M such that u(M— H) =0, for
every point (xi, ..., x,) € H

D((xy, ..., X.), H)=1 and for every i=1,...,n
D(xis Hxl. cies Xi—1, @, Xit1, .ny x,,) = 1 and
D((xZ’ ey xn)7 Hxl.O, ) = 1-

Evidently Hc E and u(H) >0. To prove the theorem, in accordance with lemma 2
it is sufficient to show that f(x,, ..., x.) € K,, for every point (x,, ..., x,) € H.

Let (x?, ..., x) be a point of the set H such that f(x9, ..., x2) € K,,. Every point of
H,, o, .. is the density point of H,, e,., therefore

H, o €MX.. XM and wX..Xu,(H, e.)>0.

Moreover every subset of H,, e .. Of positive measure and the set Q,,,, have
common points. Let f.ce .. : X0 . .—R. For every i=2,..,n
fei® o xi1 @ xier, .. xa IS the pi-measurable function. Moreover by theorem 1 all
sections f,,9 e . ... x, have the property (G) with respect to %, because the functions
fxi® @ x...x, are positively nondegenerate at every point x, with respect to %,

((x%, x2, ..., x.) € A(f)). Notice that X ... X u, (H0 e,..0A(f)x%e,.)=0. Then
if we assume that

_(faom.. (X2 ..y Xa) for (xz, ..., X,)€ Hpoe, ..
f(xz, e xn)_{ 0 for (xZ, veey x,.)dH,,ﬂ_.,,_’

then, according to (x), the function f,° e, is t X ... X y,-measurable. In result the
set

(futa..) H(K,)EM X ... X M, and as
fxxo,.. (Om, ,D)C Ko then

(+%) X ... X phy (Hyo,o,.. = (fuc.0,..) 7 (K,))=0.

On the other hand f(xS ..., x) € K,, and the function f,c o, 0, .0 is positively
nondegenerate at the point x% with respect to %,, thence we infer that

u’zk(Hxlo‘ ®. x x,.“m(fxlo. x50 ., x,.“)il(R - K:o)) >0.
For every point
X2 € Hx?‘.,tg,...,x: r-\f(xo 0 xo)_l (R - qu)
13 Ty
the sections f, 0 e x° ...° are nondegenerate at x° with respect to %;, thence
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U2 X “3: (Hnoﬁ- ®, x° ..., x° ﬁ(£°,., ®, x40, ..., x )_1 (R - K )) >0.

Proceeding analogously we infer that for every point
(X2, ceey xn—l) € Hno.., e @, x,.on(fxlo. e,..0 x,.o) _I(R - Kxo)

the sections f x,° ,.... s, are nondegenerate at the point x with respect to %,,
therefore

X ... X p% (Hyoo, .. N(foe,.. ) (R=K, ))>0,

which contradicts (x *). The function f of n variables is u-measurable. Thence by
the mathematical induction theorem 2 holds true.

Remark 1. The following theorem is not true:

Theorem ([5], theorem 1). Let the function f: R"— R be such that all its
sections f,,. .. x_.@x...x (1=1, ..., n) are measurable in the sense of Lebesque
and all its sections fq, .. . have the property (G). Then the function f is
measurable in the sense of Lebesque iff

m,(R"—D(f))=0
where m, denoted the Lebesque measure in R" and

D(f)= {(xl’ ceey xn): for i= 1’ ey N fxl,..‘. Xi—1, @, Xi41, - Xn
is nondegenerate at the point x;}

This is stated in the example given in the paper [6] by Z. Grande. Indeed, the
theorem:

Theorem 3 ([6] theorem 1). Assume that the continuum hypothesis holds. Then
there exists a function F: R X R— R of Lebesque nonmeasurable such that all its
sections Fo, , and F,e are of Lebesque measurable and nondegenerate at any
point te R. '

It is sufficient to take the function f: R*— R such that

f(x1, X2, X3) = F(x3, x3).

Let f: X— R be a function such that all its sections §, ,, .., are y,-measurable.
Denote by B(f) ={(x1, ..., X.) € X: f, ,.... . is NOt approximately continuous with
respect to % at x;€X;} and C(f)={(x1, ..., Xa) € X: fo x....x. IS positively

degenerate at x,; € X; with respect to %, }.

Theorem 4. Let f: X— R be a function such that for i=1, ..., n all its sections
Frr oo xies, @ xia1, ..o xa aT€ Wi-measurable.
Then the conditions :

(i) the function f is u-measurable,
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(i) u(A(f)JuB(f))=0  and
(iii)) u(A(HUC(H)=0
are equivalent.

Proof. If the function f is u-measurable, then u(A(f)uB(f))=0 because
A(H)uB(f) = ®(f) and by lemma 5 (i) implies (ii). Also (ii) implies (iii) because
A(H)u C(f) c A(f)uB(Y). 1t is sufficient to show that (iii) implies (i).

Let u(A(f)uC(f))=0 and let A=X-[A(f)uC(f)]. The measure u is G;
regular and & has the density property, thence there exists a sequence { Ay} %-1 of
closed sets of positive and finite measure such that A,c A.,; and

u (A -0 Ak> =0.
k=1
Let

[ f(x1y e x0) for (i, ..., X.) € Ax
filx, ..o x,.)—{ 0 for (X1, ..., %) € A

As almost everywhere lim fi(x;, ..., x,) = f(xi, ..., x,) with respect to the mea-
k—»o0

sure u, it is sufficient to show that the functions f, satisfy the assumptions of
theorem 2. According to the assumption all sections (fi)e, ,, ... x, aT€ 4;-measurable
and at almost every point of the closed set (Ay)e, », ... », are positively nondegener-
ate with respect to % because (xi, ..., x,) ¢ C(f). Here we infer from theorem 1
that the function f has the property (G) with respect to %,. Moreover
p(A(f)u C(f)) =0, therefore u(A(fi))=0. Thence by theorem 2 the functions f,
are u-measurable. The proof of the theorem 4 is completed.
Returning to our space (T, d, %, A) let¥ be a o-field enclosing Borel sets of T.

Definition 6. The function g: T— R has the property (H) with respect to A iff
for every point t e T there exist two open and nonempty sets U(t) and V(t) such
that D,(t, U())>0, D,(t, V(¢))>0, fluwo(y is upper semicontinuous and f|vy. (s
is lower semicontinuous at t.

Theorem 5. The function g: T— R which has property (H) with respect to A is
A-almost everywhere continuous.

Proof. Denote by D, the set of points of discontinuity of the function g.
Assume that A(D,)>0. We can assume that g is bounded. Let A=
{teD,: D(t, D,)=1} and let Bc A be a closed set such that:

(a) for every Ieof: Int (D)NnB+#@=>A(InB)>0. Denote by m the essential
infimum of g on the set B. Let t;e B be a point such that D(#, B)=1 and
1
4
the point ¢, there exists a open nonempty set U(t,) such that D,(t;, U(#,))>0 and

g(t)) <m+= . The function g has the property (H) with respect to &, therefore for

. L 1
9| uapo ey i1 upper semicontinuous at s,. Therefore g(t) — g(t,) <z for te U(t,). As
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D.(t;, U(t,))>0 and D(t,, B)=1, there exists I, e such that Cl (I;) = U(t,) and
BnlInt (1) # 9. Evidently

1 1.1 1
g(t)<g(t1)+z<m+z+z— m+§ for tel.
Let s, € BnInt (I,) be a point such that D(s,, BnInt (I;)) = 1. The existence of
point s, follows from (a). As g has the property (H) with respect to &, for the point
51 there exists an open monempty set V(s,) < Int (I,) such that D.(s:, V(s:))>0

. . . 1
and g|vi po(e is lower semicontinuous at s,. Therefore g(sl)—g(t)<z for

te V(sl). .
As D(s;, BnInt (I))=1and D,(s;, V(s:)) >0, there exists a set J; € o such that

Cl (Jy) = V(s1), BnInt (J;)#@ and 6(J;)<1. Evidently osc g <1, because g(t)<
i

m +; and g(8)>g(s))— i Therefore we have a set J; e such that BnInt (J;) =

0, 6(J;)<1 and osc g<1 on the set J,.
Proceeding analogously we define the sequence {J.}i-; of the sets from o such
that
() Cl (J)cInt (Je-1)
(ii) BnInt (J,)#0

(iii) (*S(J,,)<l and osc g<l on the set J;.
k k

The set BA[) C1 (Ji)#0. Let toe [} BACl (Ji). As for k=1, 2, ... e Int (Ji),
k=1

k=1
the oscillation of the function g at the point 1, is equal to zero i.e. t, ¢ D,. On the
other hand 4 € B, therefore t € D,, which is contradictory with &€ D,. The proof
of the theorem is completed. Theorem 5 is a generalization of theorem 1 of [3].
Remark 2. Let Sc T be a countable dense set. If the function g: T— R has

the property (H) with respect tos, then: (R) lim inf g(¢) < g(s)<lim sup g(¢) for
res fes

every seS.

Theorem 6. Let f: X— R be a function such that all its sections fe, ,,, ..., are
u:-measurable and all its sections f,, ... . @ x.1,...x. have the property (H) with
respect to %, for every i=2, ..., n.

Then f is a u-measurable function.

Proof. This theorem for n =2 holds by the theorem given in the paper [8] by E.

Marczewski and Cz. Ryll-Nardzewski.

Theorem 7 ([8], theorem 2). Let f: YXT—R, where Y is a space with
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a measure %, be a function such that all its sections fe, ; are »-measurable and all its
sections f,, e are A — almost everywhere continuous and satisfy the condition (R).

Then the function f is i — measurable, where fi= %X A.
Assume that if g: X;x...x X,_;— R is a function such’ that all its sections
Je, xs, ... sy aT€ Y — measurable and all its sections g,,, .. «_, @, x.1, ... z..y Dave the

property (H) with respect to & for i=2,...,n—1, then g is uy X ... Xt o,
— measurable. Let f: X; X ...X X,— R satisfy the condition of theorem 6. Then
the function

f..., .,x,.(xb ceey Xn—-1 )= g(xl, ey xn—l) iS “1 X...X un—l

measurable. Therefore f: X,_;)X X,— R as the function of two variables is u
— measurable. The proof of the theorem is completed.

REFERENCES

[1] BRUCKNER, A. M.: Differentiation of integrals. Amer. Math. Monthly 78, 1971, 1—54.

[2] DAVIES, R. O.: Separate approximate continuity implies measurability. Proc. Comb. Phil. Soc. 73,
1973, 461—465.

[3] GRANDE, E.: Sur les fonctions ayant la proprieté (H). Demonstratio Mathematicae, 1, 1983,
125—131.

[4] GRANDE, Z.: La mesurabilité des fonctions de deux variables et de la superposition F(x, f(x)).
Dissertationes Mathematicae, 159, 1978.

[S] GRANDE, Z.: Sur la mesurabilité des fonctions de plusieurs variables. Math. Slovaca 28, 1978,
113—118.

[6] GRANDE, Z.: Deux exemples de fonctions non mesurables. Colloq. Math. 40, 1979, 305—309.

[7] KWIECINSKA, G.: On the measurability of real functions defined on product-spaces. Math.
Slovaca 31, 1981, 319—331.

[8] MARCZEWSKI, E.—RYLL-NARDZEWSKI, Cz.: Sur la mesurabilité des fonctions de plusieurs
variables. Ann. Soc. Polon. Math., 25, 1953.

Received June 4, 1984

Universytet Gdanski
Instytut Matematyki
ul. Wita Stwosza 57
80-952 Gdansk
POLAND

280



M3MEPUMOCTDb JEMCTBHUTEJILHBIX &YHKLIW,
3AJAHHBIX HA JEKAPTOBOM NPON3BENEHHHN
METPUYECKUX IMPOCTPAHCTB

Grazyna Kwiecifiska

Pesiome

3Ta paGoTa COCTOMT M3 ABYX 4acTH. B mepBo#l yacTH HaxopsiTcs HeoGXOAMMOE M NOCTaTOYHOE
YCNOBHA H3MEPHUMOCTH RCHCTBATENBHBIX (PYHKLMA, 32aHHBIX HAa A€KaPTOBOM NpoH3BeneHuu n (n>2)
METPHYECKHX NPOCTPAHCTB C MEPaMA, KOTOPbIE YRORJIETBOPAIOT HEKOTOPHIM AONONHHUTENLHBIM YCIO-
BAAM. Bropas 4acTh COREpXHT TeopeMy, KOTOpas CBA3aHa c TeopeMo# JleGera o H3MepHMOCTH
¢yHRUMM IBYX MepeMeHHbIX.
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