Grażyna Kwiecińska
Measurability of real functions defined on the product of metric spaces

Persistent URL: http://dml.cz/dmlcz/129033

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1986

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use.*

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://project.dml.cz
MEASURABILITY OF REAL FUNCTIONS
DEFINED ON THE PRODUCT OF METRIC
SPACES

GRAŻYNA KWIECIŃSKA

Let \((T, d, \mathcal{H}, \lambda)\) be a complete metric space with a metric \(d\), with a \(\sigma\)-finite \(G_b\)-regular complete measure \(\lambda\) defined over a \(\sigma\)-field \(\mathcal{H}\) of subsets of \(T\).

Denote by \(\lambda^*\) the outer measure corresponding to \(\lambda\).

Let \(\mathcal{A}\) be a family of \(\lambda\)-measurable sets with nonempty (1) interiors of a positive and finite measure \(\lambda\), the boundaries of which are of \(\lambda\) measure zero.

Definition 1. The sequence \(\{I_k\}_{k=1}^{\infty} \subseteq \mathcal{A}\) is said to converge to the point \(t_0 \in T\) iff \(t_0 \in \text{Int}(I_k)\) for \(k = 1, 2, \ldots\) and the sequence of diameters \(\delta(I_k)\) converge to zero as \(k\) approaches infinity.

This will be denoted by \(I_k \to t_0\).

Let us note that according to the definition due to Bruckner ([1], p. 30) the pair \((\mathcal{A}, \to)\) forms a differentiation basis for the space \((T, d, \mathcal{H}, \lambda)\).

Definition 2. Let \(A \subseteq T\) and \(t_0 \in T\). The upper (lower) bound of the set of numbers \(\lim_{k \to \infty} \frac{\lambda^*(A \cap I_k)}{\lambda(I_k)}\) taken from all the sequences \(I_k \to t_0\) (for which this limit exists) is called the upper (lower) external density of \(A\) at \(t_0\) with respect to \(\mathcal{A}\) and is denoted by \(D^*_u(t_0, A)(D^*_l(t_0, A))\).

If \(D^*_u(t_0, A) = D^*_l(t_0, A)\), then their common value is called the external density of \(A\) at \(t_0\) with respect to \(\mathcal{A}\) and is denoted by \(D^*(t_0, A)\).

If \(A \in \mathcal{H}\), then the respective external densities are called densities with respect to \(\mathcal{A}\) and denoted by \(D_u(t_0, A)\), \(D_l(t_0, A)\) and \(D(t_0, A)\) respectively.

A point \(t_0\) is called a density point of the set \(A\) with respect to \(\mathcal{A}\) if there exists a set \(B \in \mathcal{H}\) such that \(B \subseteq A\) and \(D(t_0, B) = 1\).

Assume that (2) the family \(\mathcal{A}\) is countable and for every \(t_0 \in T\) there is a sequence of sets \(\{I_k\}_{k=1}^{\infty}\) from \(\mathcal{A}\) converging to \(t_0\).

Moreover assume that
(3) \(\mathcal{A} \) has the density property, i.e. for every set \(A \subseteq T \) the \(\lambda \) measure of set
\{ \(t \in A : D^\dagger(t, A) < 1 \) \} is equal to zero.

Definition 3. The function \(g : T \to \mathbb{R} \) is called approximately upper (lower)
semicontinuous at the point \(t_0 \in T \) with respect to \(\mathcal{A} \) iff for every \(a \in \mathbb{R} \) if \(f(t_0) < a \)
\((f(t_0) > a) \), then there exists a set \(F \in \mathcal{H} \) such that \(F \subseteq \{ t \in T : f(t) < a \} \)
\((F \subseteq \{ t \in T : f(t) > a \}) \) and \(D(t_0, F) = 1 \).

A function that is simultaneously approximately lower and upper semicontinuous
at \(t_0 \in T \) with respect to \(\mathcal{A} \) is called approximately continuous at \(t_0 \) with respect to \(\mathcal{A} \).

A function that is approximately continuous (approximately lower semicontinuous) (approximately upper semicontinuous)) in any point \(t_0 \in T \) with respect to \(\mathcal{A} \) is called approximately continuous (approximately lower semicontinuous) (approximately upper semicontinuous)) with respect to \(\mathcal{A} \).

Lemma 1. If the function \(g : T \to \mathbb{R} \) is \(\lambda \)-measurable, then \(g \) is \(\lambda \)-almost
everywhere approximately continuous with respect to \(\mathcal{A} \).

Proof. Indeed, by Lusin's theorem for every positive \(\varepsilon \) there exists a closed set
\(F \subseteq T \) such that the function \(g|_F \) is continuous and \(\lambda(T - F) < \varepsilon \). Since \(\mathcal{A} \) has the
density property almost every point of the set \(F \) is the density point of this set with
respect to \(\mathcal{A} \). Therefore the function \(g \) is \(\lambda \)-almost everywhere approximately
continuous with respect to \(\mathcal{A} \).

Definition 4. The \(\lambda \)-measurable function \(g : T \to \mathbb{R} \) is said to be degenerate
(positively degenerate) at the point \(t_0 \in T \) with respect to \(\mathcal{A} \) when there exists
a open interval \(U \subseteq \mathbb{R} \) such that \(g(t_0) \in U \) and the upper (lower) density of the
counterimage \(g^{-1}(U) \) at \(t_0 \) with respect to \(\mathcal{A} \) is equal to zero.

Definition 5. ([4], definition 4). The function \(g : T \to \mathbb{R} \) has the property \((G) \)
with respect to \(\mathcal{A} \) iff for every positive \(\varepsilon \) there exists a set \(I \in \mathcal{A} \) such that
\(\lambda(A \cap I) > 0 \) and \(\text{osc}_{U} g \leq \varepsilon \), where \(U \) is the set of density points of \(A \cap I \) with respect to \(\mathcal{A} \) belonging to \(A \cap I \).

Theorem 1. Let the \(\lambda \)-measurable function \(g : T \to \mathbb{R} \) be positively nondegener-
earate at every point of the closed set \(A \subseteq T \). Then the \(\lambda \)-measurable function

\[
f(x) = \begin{cases}
g(x) & \text{for } x \in A \\ 0 & \text{for } x \notin A \end{cases}
\]

has the property \((G) \) with respect to \(\mathcal{A} \).

Proof. Let \(E \in \mathcal{H} \) be a set of a positive \(\lambda \) measure and let \(\varepsilon > 0 \) be fixed.

Assume that \(\lambda(E - A) > 0 \). Then there is a point \(t_0 \in T \) such that \(t_0 \in E - A \) and
As the set A is closed, it follows from property (2) of the family \mathcal{A} that there exists a set $I \in \mathcal{A}$ such that $t_0 \in \text{Int}(I)$ and $I \cap A = \emptyset$. Therefore for $t \in T$ we have $f(t) = 0$. Hence $\text{osc} f = 0 \leq \epsilon$ and $\lambda(E \cap I) > 0$.

Assume now that $\lambda(E - A) = 0$. Then we notice that all density points of E belong to A. In order to show that

A6 1) there exists a set $I \in \mathcal{A}$ such that $\lambda(I \cap E \cap A) > 0$ and $\text{osc} f \leq \epsilon$, where V is the set of density points of $I \cap E \cap A$ with respect to \mathcal{A} belonging to $I \cap E \cap A$, assume that 1) does not hold. Then we have:

2) if for the set $J \in \mathcal{A}$ the inequality $\lambda(J \cap E \cap A) > 0$ holds, then $\text{osc} f \leq \epsilon$, where W is the set of density points of $J \cap E \cap A$ with respect to \mathcal{A} belonging to $J \cap E \cap A$.

We shall construct a sequence of points $\{t_k\}_{k=1}^{\infty} \subset E \cap A$ and a sequence $\{I_k\}_{k=1}^{\infty} \subset \mathcal{A}$ such that the condition 2) leads to a contradiction.

Let $t_1 \in E \cap A$ be a point such that

3) $D(t_1, E \cap A) = 1$

4) the function f is approximately continuous at t_1 with respect to \mathcal{A}.

The existence of point t_1 follows from the density property of \mathcal{A} and from lemma 1.

Let $I_1 \in \mathcal{A}$ be the set such that

5) $t_1 \in \text{Int}(I_1)$ and

6) $\frac{\lambda(I_1 \cap E \cap A)}{\lambda(I_1)} > \frac{1}{2}$

and

$$\lambda \left(I_1 \cap \left\{ t \in E \cap A : |f(t) - f(t_1)| < \frac{\epsilon}{8} \right\} \right) > \frac{1}{2} \lambda(I_1).$$

The existence of the set I_1 follows from 3) and 4).

Let $G_1 = \left\{ t \in E \cap A : |f(t) - f(t_1)| \geq \frac{\epsilon}{2} \right\}$. Then

7) $\lambda(G_1) > 0$.

Indeed. Assume that

8) $\lambda(G_1) = 0$.

Then for points $t \in (I_1 \cap E \cap A) - G_1$ the inequality $|f(t) - f(t_1)| < \frac{\epsilon}{2}$ holds and therefore $\text{osc}_{(I_1 \cap E \cap A) - G_1} f < \epsilon$.

If $|f(t) - f(t_1)| \leq \frac{\epsilon}{2}$ for the points $t \in I_1 \cap E \cap A \cap G_1$ such that $D(t, I_1 \cap E \cap A) = 1$, then $\text{osc} f \leq \epsilon$ on the set of the density points of the set $I_1 \cap E \cap A$, which contradicts 2). Therefore there exists a point $s_1 \in I_1 \cap E \cap A \cap G_1$ such that $D(s_1, I_1 \cap E \cap A) = 1$ and $|f(s_1) - f(t_1)| > \frac{\epsilon}{2}$. But the function f is positively non-
degenerate at the point \(s_i(s_i \in A) \) and \(D(s_i, I_i \cap E \cap A) = 1 \), thence
\[\lambda \left(\left\{ t \in I_i \cap E \cap A: \ |f(t_i) - f(t)| > \frac{\epsilon}{2} \right\} \right) > 0 \], which is contradictory with 8). Therefore 7) holds true.

Let \(t_2 \in G_i \cap \text{Int} (I_i) \) be a point such that
9) \(D(t_2, G_i) = 1 \) and
10) \(f \) is approximately continuous at \(t_2 \) with respect to \(A \).

Again the existence of point \(t_2 \) follows from the density property of \(A \) and from lemma 1.

Let \(I_2 \in A \) be such that
11) \(t_2 \in \text{Int} (I_2) \), \(\text{Cl} (I_2) \subset \text{Int} (I_1) \), \(\delta(I_2) < \frac{1}{2} \) and

\[\lambda (I_2 \cap E \cap A) > \frac{2}{3} \quad \text{and} \quad \lambda (I_2 \cap \left\{ t \in E \cap A: |f(t_2) - f(t)| < \frac{\epsilon}{8} \right\}) > \frac{2}{3}. \]

The existence of set \(I_2 \) follows from 9) and 10). Similarly as before the set
\[G_2 = \left\{ t \in I_2 \cap E \cap A: |f(t_2) - f(t)| \geq \frac{\epsilon}{2} \right\} \] is \(\lambda \)-measurable and has a positive measure \(\lambda \).

Proceeding analogously we define the sequence \(\{I_k\}_{k=1}^{\infty} \) of the sets from \(A \) and the sequence \(\{t_k\}_{k=1}^{\infty} \) such that
13) \(t_k \in G_{k-1} \cap \text{Int} (I_{k-1}) \), \(D(t_k, G_{k-1}) = 1 \) and \(f \) is approximately continuous at the point \(t_k \) with respect to \(A \), where

\[G_{k-1} = \left\{ t \in I_{k-1} \cap E \cap A: |f(t_{k-1}) - f(t)| \geq \frac{\epsilon}{2} \right\}, \]

14) \(t_k \in \text{Int} (I_k) \), \(\text{Cl} (I_k) \subset \text{Int} (I_{k-1}) \), \(\delta(I_k) < \frac{1}{2^{k-1}} \) and

\[\frac{\lambda (I_k \cap E \cap A)}{\lambda (I_k)} > \frac{k}{k+1} \quad \text{and} \quad \frac{\lambda \left(I_k \cap \left\{ t \in E \cap A: |f(t_k) - f(t)| < \frac{\epsilon}{8} \right\} \right)}{\lambda (I_k)} > \frac{k}{k+1} \]

for \(k = 1, 2, \ldots \).

Since \(t_k \in G_{k-1} \), we have
15) \(|f(t_{k-1}) - f(t_k)| \geq \frac{\epsilon}{2} \) for \(k = 1, 2, \ldots \).
The set \(\bigcap_{k=1}^{\infty} I_k \) consists of one point \(t_0 \). As the function \(f \) is positively nondegenerate at \(t_0 \) with respect to \(\mathcal{A} \left(t_0 \in \bigcap_{k=1}^{\infty} I_k \cap A \right) \) we have shown that

\[
D_1 \left(t_0, \left\{ t : |f(t_0) - f(t)| < \frac{\varepsilon}{8} \right\} \right) > 0.
\]

Denote by \(\alpha \) this density. Moreover the sequence of sets \(\{ I_k \}_{k=1}^{\infty} \) is a convergence to \(t_0 \), hence there exists a natural number \(n \) such that for \(k > n \)

\[
\frac{\lambda \left(I_k \cap \left\{ t : |f(t_0) - f(t)| < \frac{\varepsilon}{8} \right\} \right)}{\lambda(I_k)} > \frac{\alpha}{2} \quad \text{and}
\]

\[
\frac{\lambda \left(I_k \cap \left\{ t \in E \cap A : |f(t_0) - f(t)| < \frac{\varepsilon}{8} \right\} \right)}{\lambda(I_k)} > 1 - \frac{\alpha}{2} .
\]

Therefore for every \(k > n \)

\[
\left\{ t : |f(t_0) - f(t)| < \frac{\varepsilon}{8} \right\} \cap \left\{ t \in E \cap A : |f(t_0) - f(t_0)| < \frac{\varepsilon}{8} \right\} \cap I_k \neq \emptyset.
\]

Hence for \(k > n \) the following inequality holds \(|f(t_0) - f(t_0)| < \frac{\varepsilon}{8} \), which contradicts 16. Thus the negation of 1) leads to a contradiction. Therefore 1) holds true. The proof of the theorem is completed.

Lemma 2 ([2], lemma 2). Let \((X, \mathcal{M}, \mu)\) be a measurable space with the \(\sigma\)-finite measure \(\mu\). Let \(g: X \rightarrow \mathbb{R}\) be such that for any \(\varepsilon > 0\) for a class of sets \(\mathcal{D}_\varepsilon = \{ D \in \mathcal{M} : \text{osc } g \leq \varepsilon \} \) satisfies the following condition:

(d) for any set \(B \in \mathcal{M}\) with a positive measure there exists a set \(D \in \mathcal{D}_\varepsilon\) such that \(D \subset B\) and \(\mu(D) > 0\).

Then the function \(g\) is \(\bar{\mu}\)-measurable, where \(\bar{\mu}\) stands for the completion of \(\mu\).

(Davies has proved the lemma under the assumption that is finite, whereas \(\sigma\)-finiteness is sufficient).

Let for every \(i = 1, \ldots, n\), \((X_i, \varrho_i, \mathcal{M}_i, \mu_i)\) be a space as \((T, d, \mathcal{K}, \lambda)\) was, i.e. let every \((X_i, \varrho_i, \mathcal{M}_i, \mu_i)\) be a complete space with a \(\sigma\)-finite \(G_\delta\)-regular complete measure \(\mu_i\) defined over the \(\sigma\)-field \(\mathcal{M}_i\) of subsets of \(X_i\).

Moreover let for every \(i = 1, \ldots, n\) \(\mathcal{F}_i \subset \mathcal{M}_i\) be a family which satisfies the conditions (1), (2) and (3) of family \(\mathcal{A}\).

Let \((X, \varrho, \mathcal{M}, \mu) = (X_1 \times \ldots \times X_n, \varrho_1 \times \ldots \times \varrho_n, \mathcal{M}_1 \times \ldots \times \mathcal{M}_n, \mu_1 \times \ldots \times \mu_n)\) where
\(\mu_1 \times \ldots \times \mu_n\) denotes the completion of the measure \(\mu_1 \times \ldots \times \mu_n\). Moreover let
\[\mathcal{F} = \mathcal{F}_1 \times \ldots \times \mathcal{F}_n = \{F: F = F_1 \times \ldots \times F_n, F_i \in \mathcal{F}_i \text{ for } i = 1, \ldots, n\}.

We note that \(\mathcal{F}\) has the density property because every family \(\mathcal{F}_i\) has the density property (see [1], p. 2 and 34).

Let \(A \subseteq \mathcal{X} = X_{i-1} \times X_i \times X_{i+1}\), where \(X_{i-1} = X_1 \times \ldots \times X_{i-1}\) and \(X_{i+1} = X_{i+1} \times \ldots \times X_n\). Then the sets \(A_{x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n} = \{x_i \in X_i: (x_1, \ldots, x_n) \in A\}\) and \(A_{x_1, \ldots, x_i, \ldots, x_n} = \{(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n) \in X_{i-1} \times X_{i+1}: (x_1, \ldots, x_n) \in A\}\) are called a section of the set \(A\) with respect to \((x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n)\) and a section of the set \(A\) with respect to \(x_i\) respectively.

Lemma 3. Let \(A \in \mathcal{M}\). For every fixed \(i = 1, \ldots, n\) there exists a set \(B \subseteq A\) and \(B \in \mathcal{M}\) such that \(\mu(A - B) = 0\), every point \((x_1, \ldots, x_n) \in B\) is the density point of \(B\) with respect to \(\mathcal{F}\) and for every point \((x_1, \ldots, x_n) \in B\)
(i) \(D(x_i, B_{x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n}) = 1\) and
(ii) \(D((x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n), B_{x_1, x_i, \ldots, x_n}) = 1\).

The proof of this lemma is analogous to the proof of lemma 2 of [7].

Lemma 4. Let \(A \in \mathcal{M}\). There exists a set \(B \subseteq A\) and \(B \in \mathcal{M}\) such that \(\mu(A - B) = 0\) and for every point \((x_1, \ldots, x_n) \in B\)
(i) \(D((x_1, \ldots, x_n), B) = 1\),
(ii) for every \(i = 1, \ldots, n\) \(D(x_i, B_{x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n}) = 1\),
(iii) \(D((x_2, \ldots, x_n), B_{x_1, x_2, x_n}) = 1\).

Proof. In accordance with lemma 3 \((i = 1)\) for the set \(A\) there exists a \(\mu\)-measurable subset \(A_1\) of \(A\) such that \(\mu(A - A_1) = 0\), for every point \((x_1, \ldots, x_n) \in A_1\) \(D((x_1, \ldots, x_n), A_1) = 1\), \(D(x_1, (A_1)_1, x_2, \ldots, x_n) = 1\) and \(D((x_2, \ldots, x_n), (A_1)_1, x_3, \ldots, x_n) = 1\). Again in accordance with lemma 3 \((i = 2)\) for the set \(A_1\) there exists a \(\mu\)-measurable subset \(A_2\) of \(A_1\) such that \(\mu(A_1 - A_2) = 0\) and for every point \((x_1, \ldots, x_n) \in A_2\) \(D((x_1, \ldots, x_n), A_2) = 1\), \(D(x_2, (A_2)_1, x_3, \ldots, x_n) = 1\) and
\[D((x_1, x_3, \ldots, x_n), (A_2)_1, x_2, \ldots, x_n) = 1.\]
Let \(C_1 = A_1 - A_2\). It is clear that
\[\mu_2 \times \ldots \times \mu_n(((x_2, \ldots, x_n): \mu_1(C_1)_{x_2, x_3, \ldots, x_n} > 0)) = 0.\]

Let \(D_1 = \{(x_2, \ldots, x_n): \mu_1(D_1)_{x_2, x_3, \ldots, x_n} > 0\}\) and let
\[F_1 = \{(x_3, \ldots, x_n): \mu_2(D_1)_{x_3, x_4, \ldots, x_n} > 0\}(\mu_3 \times \ldots \times \mu_n(F_1) = 0)\]
and \(H_1 = \{x_1: \mu_2 \times \ldots \times \mu_n((C_1)_{x_1, x_2, \ldots, x_n}) > 0\}(\mu_1(H_1) = 0)\). For \(B_1\) take \(B_1 = A_2 - [(X_1 \times D_1) \cup (X_1 \times X_2 \times F_1) \cup (H_1 \times X_2 \times \ldots \times X_n)]\). Evidently for every point
(x_1, \ldots, x_n) \in B_1$ we have \(D((x_1, \ldots, x_n), B_1) = 1 \), \(D(x_1, (B_1)_{x_2, \ldots, x_n}) = 1 \), \(D(x_2, (B_1)_{x_1, x_3, \ldots, x_n}) = 1 \) and \(D((x_2, \ldots, x_n), (B_1)_{x_1, \ldots}) = 1 \).

As a sequel to the set \(B_1 \) in accordance with lemma 3 \((i = 3)\) there exists a \(\mu \)-measurable subset \(A_3 \) of \(B_1 \) such that \(\mu(B_1 - A_3) = 0 \) and for every point \((x_1, \ldots, x_n) \in A_3 \) \(D((x_1, \ldots, x_n), A_3) = 1 \), \(D(x_3, (A_3)_{x_1, x_2, \ldots, x_n}) = 1 \) and \(D((x_3, x_2, x_1, \ldots, x_n), (A_3)_{x_1, x_2, \ldots}) = 1 \). Let \(C_2 = B_1 - A_3 \) and let \(D_2, 1 = \{(x_2, \ldots, x_n): \mu^*(\{(x_2)_{x_3, \ldots, x_n}\}) > 0\} \) and \(D_2, 2 = \{(x_1, x_3, \ldots, x_n): \mu^*(\{(x_1)_{x_2, \ldots, x_n}\}) > 0\} \) because \(\mu(C_2) = 0 \).

Let \(F_2, 1, 1 = \{(x_3, \ldots, x_n): \mu^*(\{(D_2, 1)_{x_3, \ldots, x_n}\}) > 0\} \),
\[F_2, 1, 2 = \{(x_2, x_4, \ldots, x_n): \mu^*(\{(D_2, 1)_{x_2, x_4, \ldots, x_n}\}) > 0\}, \]
\[F_2, 1, 3 = \{(x_3, \ldots, x_n): \mu^*(\{(D_2, 2)_{x_3, \ldots, x_n}\}) > 0\}, \]
\[F_2, 2, 2 = \{(x_1, x_4, \ldots, x_n): \mu^*(\{(D_2, 2)_{x_1, x_4, \ldots, x_n}\}) > 0\} \]
and
\[H_2 = \{x_1: \mu^* \times \mu^*_n((A_1 - A_3)_{x_1, \ldots}) > 0\}. \]

Evidently all these sets are of respective measure zero.

Let \(B_2 = A_3 - [(X_1 \times D_2, 1) \cup \{(x_1, \ldots, x_n): (x_1, x_3, \ldots, x_n) \in D_2, 2 \text{ and } x_2 \in X_2 \}\cup (X_1 \times X_2 \times F_2, 1, 1) \cup \{(x_1, \ldots, x_n): x_1 \in X_1 \text{ and } x_3 \in X_3 \text{ and } (x_2, x_4, \ldots, x_n) \in F_2, 1, 2\}\cup (X_1 \times X_2 \times F_2, 1, 2) \cup \{(x_1, \ldots, x_n): (x_1, x_4, \ldots, x_n) \in F_2, 2, 2 \text{ and } (x_2, x_3) \in X_2 X_3 \}\cup (H_2 \times X_2 \times X_3 \times X_n)] \).

For every point \((x_1, \ldots, x_n) \in B_2 \) \(D((x_1, \ldots, x_n), B_2) = 1 \), \(D(x_1, (B_2)_{x_2, \ldots, x_n}) = 1 \), \(D(x_2, (B_2)_{x_1, x_3, \ldots, x_n}) = 1 \), \(D(x_3, (B_3)_{x_2, x_4, \ldots, x_n}) = 1 \), \(D((x_3, \ldots, x_n), (B_2)_{x_2, \ldots}) = 1 \). Proceeding analogously in accordance with lemma 3 \((i = n)\) we define the set \(B_{n-2} \) a \(\mu \)-measurable set \(A_n \subset B_{n-2} \) such that \(\mu(B_{n-2} - A_n) = 0 \) and for every point \((x_1, \ldots, x_n) \in A_n \) \(D((x_1, \ldots, x_n), A_n) = 1 \), \(D(x_1, (A_n)_{x_3, \ldots, x_n, \ldots, \ldots}) = 1 \) and \(D((x_1, \ldots, x_{n-1}), (A_n)_{x_n, \ldots, \ldots}) = 1 \). Let \(C_{n-1} = B_{n-2} - A_n \). Evidently \(\mu(C_{n-1}) = 0 \). Let
\[D_{n-1, 1} = \{(x_2, \ldots, x_n): \mu^*_1((C_{n-1})_{x_2, \ldots, x_n}) > 0\}, \]
\[D_{n-1, 2} = \{(x_1, x_3, \ldots, x_n): \mu^*_2((C_{n-1})_{x_1, x_3, \ldots, x_n}) > 0\}, \]
\[\vdots \]
\[D_{n-1, n-1} = \{(x_1, \ldots, x_{n-2}, x_n): \mu^*_n((C_{n-1})_{x_1, \ldots, x_{n-2}, x_n}) > 0\}. \]

Evidently all these sets are of respective measure zero.

Moreover the sets
\[F_{n-1, 1, 1} = \{(x_3, \ldots, x_n): \mu^*_2((D_{n-1, 1})_{x_3, \ldots, x_n}) > 0\}, \]
\[F_{n-1, 1, 2} = \{(x_2, x_4, \ldots, x_n): \mu^*_2((D_{n-1, 1})_{x_2, x_4, \ldots, x_n}) > 0\}, \]
\[\vdots \]
\[F_{n-1, 1, n-1} = \{(x_2, \ldots, x_{n-1}): \mu^*_n((D_{n-1, 1})_{x_2, \ldots, x_{n-1}, \ldots}) > 0\} \] and
Let $f: X \to R$ be a function. Then the function $f_{x_1, \ldots, x_{n-1}, \bullet, x_{n+1}, \ldots, x_n}(x_i) = f(x_1, \ldots, x_n)$ is called as usually a section of f with respect to $(x_1, \ldots, x_{n-1}, \bullet, x_{n+1}, \ldots, x_n)$.

Let $\Phi(f) = \{(x_1, \ldots, x_n): \exists i, f_{x_1, \ldots, x_{i-1}, \bullet, x_{i+1}, \ldots, x_n} \text{ is not approximately continuous at } x_i \in X_i \text{ with respect to } \mathcal{F}_i\}$.

Lemma 5 ([7], lemma 5). Let $f: X \to R$ be a μ-measurable function. Then $\mu(\Phi(f)) = 0$.

For the function $f: X \to R$ we denote by $A(f) = \{(x_1, \ldots, x_n): \exists i, f_{x_1, \ldots, x_{i-1}, \bullet, x_{i+1}, \ldots, x_n} \text{ is positively degenerate at the point } x_i\}$ with respect to \mathcal{F}_i or the section $f_{x_1, \ldots, x_{n-1}, \bullet}$ is degenerate at the point $x_n\text{ with respect to } \mathcal{F}_n$.

Theorem 2. Let $f: X \to R$ be a function such that all its sections $f_{x_1, \ldots, x_{i-1}, \bullet, x_{i+1}, \ldots, x_n}$ are μ-measurable $(i = 2, \ldots, n)$ and all its sections $f_{\bullet, x_2, \ldots, x_n}$ have...
the property (G) with respect to \mathcal{F}_1. Then the function f is μ-measurable iff $\mu(A(f)) = 0$.

Proof. This theorem holds true for $n = 2$ (see [4], theorem 4).

Assume that

(1) if for the function $f: X_2 \times \ldots \times X_n \to \mathbb{R}$ all its sections $f_{x_2, \ldots, x_{i-1}, \bullet, x_{i+1}, \ldots, x_n}$ are μ_i-measurable for every $i = 3, \ldots, n$ and all its sections $f_{\bullet, x_3, \ldots, x_n}$ have the property (G) with respect to \mathcal{F}_2, then f is $\mu_2 \times \ldots \times \mu_n$-measurable iff $\mu_2 \times \ldots \times \mu_n (A_i(f)) = 0$.

\[A_i(f) = \{(x_2, \ldots, x_n): \exists f_{x_2, \ldots, x_{i-1}, \bullet, x_{i+1}, \ldots, x_n} \]

is positively degenerate at the point $x_i \in X_i$ with respect to \mathcal{F}_i or $f_{x_2, \ldots, x_{n-1}, \bullet}$ is degenerate at x_n with respect to \mathcal{F}_n.

Let f be such as in this theorem. If f is the μ-measurable function, then $\mu(A(f)) = 0$ because $A(f) \subset \Phi(f)$ and in accordance with lemma 5 $\mu(\Phi(f)) = 0$.

Assume that $\mu(A(f)) = 0$. It is sufficient to show that the function f satisfies the assumptions concerning the function g of lemma 2.

Let $E \in \mathcal{M}$, $\mu(E) > 0$, $\varepsilon > 0$ and let $\{I_k\}_{k=1}^\infty$ be the sequence of all sets belonging to \mathcal{F}_1 and let $\{K_k\}_{k=1}^\infty$ be the sequence of all closed intervals with rational ends and lengths smaller then ε.

Let $Q = \{(x_2, \ldots, x_n): (x_2, \ldots, x_n) \in X_2 \times \ldots \times X_n \in \mathcal{M}_1$ and $\mu_1(E_{x_3, \ldots, x_n}) > 0\}$. The set Q is $\mu_2 \times \ldots \times \mu_n$-measurable and $\mu_2 \times \ldots \times \mu_n (Q) > 0$. Let $Q_{r,s}$ be a set of points $(x_2, \ldots, x_n) \in Q$ such that

(i) $\mu_1(I \cap E_{x_2, \ldots, x_n}) > 0$

(ii) if $D(x_1, I \cap E_{x_2, \ldots, x_n}) = 1$ and $x_1 \in I \cap E_{x_3, \ldots, x_n}$, then $f(x_1, \ldots, x_n) \in K_r$.

Evidently $Q = \bigcup_{r,s} Q_{r,s}$. Moreover $Q \subset \bigcup_{r,s} Q_{r,s}$ because all sections f_{x_2, \ldots, x_n} have the property (G) with respect to \mathcal{F}_1. Therefore $Q = \bigcup_{r,s} Q_{r,s}$. Thus there exists a couple of positive integers (r_0, s_0) such that $\mu_2 \times \ldots \times \mu_n^* (Q_{r_0, s_0}) > 0$ because $\mu_2 \times \ldots \times \mu_n (Q) > 0$. Let

\[P = \{(x_2, \ldots, x_n): D^*((x_2, \ldots, x_n), Q_{r_0, s_0}) = 1\}.

The measure $\mu_2 \times \ldots \times \mu_n$ is G_3 regular and $\mathcal{F}_2 \times \ldots \times \mathcal{F}_n$ has the density property, hence $P \in \mathcal{M}_2 \times \ldots \times \mathcal{M}_n$ and $\mu_2 \times \ldots \times \mu_n (P) = \mu_2 \times \ldots \times \mu_n^* (Q_{r_0, s_0}) > 0$.

Let $F = E \cap (I_k \times P)$. Evidently $F \in \mathcal{M}$ and $\mu(F) > 0$ because for all points $(x_2, \ldots, x_n) \in Q_{r_0, s_0}$ $\mu_2 \times \ldots \times \mu_n (F_{x_2, \ldots, x_n}) > 0$. Let $M = F - A(f)$. For the set M, in
accordance with lemma 4, there exists a set $H \subset M$ such that $\mu(M - H) = 0$, for every point $(x_1, \ldots, x_n) \in H$

$$D((x_1, \ldots, x_n), H) = 1 \text{ and for every } i = 1, \ldots, n$$
$$D(x_i, H_{x_1, \ldots, x_{i-1}, \bullet, x_{i+1}, \ldots, x_n}) = 1 \text{ and}$$
$$D((x_2, \ldots, x_n), H_{x_1, \bullet, \ldots, \bullet}) = 1.$$

Evidently $H \subset E$ and $\mu(H) > 0$. To prove the theorem, in accordance with lemma 2 it is sufficient to show that $f(x_1, \ldots, x_n) \in K_{x_0}$ for every point $(x_1, \ldots, x_n) \in H$.

Let (x_1^0, \ldots, x_n^0) be a point of the set H such that $f(x_1^0, \ldots, x_n^0) \in K_{x_0}$. Every point of $H_{x_1, \bullet, \ldots, \bullet}$ is the density point of $H_{x_1, \bullet, \ldots, \bullet}$, therefore

$$H_{x_1, \bullet, \ldots, \bullet} \in M_2 \times \ldots \times M_n \quad \text{and} \quad \mu_2 \times \ldots \times \mu_n (H_{x_1, \bullet, \ldots, \bullet}) > 0.$$

Moreover every subset of $H_{x_1, \bullet, \ldots, \bullet}$ of positive measure and the set Q_{x_0, x_0} have common points. Let $f_{x_1^0, \bullet, \ldots, \bullet} : X_{x_1^0, \bullet, \ldots, \bullet} \to R$. For every $i = 2, \ldots, n$ $f_{x_1^0, \ldots, x_{i-1}^0, \bullet, x_{i+1}^0, \ldots, x_n^0}$ is the μ-measurable function. Moreover by theorem 1 all sections $f_{x_1^0, \bullet, \ldots, x_n}^0$ have the property (G) with respect to \mathcal{F}_2 because the functions $f_{x_1^0, \bullet, x_3, \ldots, x_n}$ are positively nondegenerate at every point x_2 with respect to \mathcal{F}_2 ($(x_0^0, x_2, \ldots, x_n) \notin A(f)$). Notice that $\mu_2 \times \ldots \times \mu_n (H_{x_1^0, \bullet, \ldots, \bullet} \cap A(f_{x_1^0, \bullet, \ldots, \bullet})) = 0$. Then if we assume that

$$f(x_2, \ldots, x_n) = \begin{cases} f_{x_1^0, \bullet, \ldots, \bullet}^0 (x_2, \ldots, x_n) & \text{for } (x_2, \ldots, x_n) \in H_{x_1^0, \bullet, \ldots, \bullet}, \\ 0 & \text{for } (x_2, \ldots, x_n) \notin H_{x_1^0, \bullet, \ldots, \bullet}, \end{cases}$$

then, according to ($*$), the function $f_{x_1^0, \bullet, \ldots, \bullet}^0$ is $\mu_2 \times \ldots \times \mu_n$-measurable. In result the set

$$(f_{x_1^0, \bullet, \ldots, \bullet})^{-1} (K_{x_0}) \in M_2 \times \ldots \times M_n \quad \text{and as} \quad f_{x_1^0, \bullet, \ldots, \bullet} (Q_{x_0, x_0}) \subset K_{x_0} \quad \text{then}$$

$$(**)
\overline{\mu_2 \times \ldots \times \mu_n (H_{x_1^0, \bullet, \ldots, \bullet} - (f_{x_1^0, \bullet, \ldots, \bullet})^{-1} (K_{x_0}))} = 0.$$

On the other hand $f(x_1^0, \ldots, x_n^0) \in K_{x_0}$ and the function $f_{x_1^0, \bullet, x_3^0, \ldots, x_n^0}$ is positively nondegenerate at the point x_2^0 with respect to \mathcal{F}_2, thence we infer that

$$\mu_2^0 (H_{x_1^0, \bullet, x_3^0, \ldots, x_n^0} \cap (f_{x_1^0, \bullet, x_3^0, \ldots, x_n^0})^{-1} (R - K_{x_0})) > 0.$$

For every point

$$x_2 \in H_{x_1^0, \bullet, x_3^0, \ldots, x_n^0} \cap (f_{x_1^0, \bullet, x_3^0, \ldots, x_n^0})^{-1} (R - K_{x_0})$$

the sections $f_{x_1^0, x_2^0, x_3^0, \ldots, x_n^0}$ are nondegenerate at x_2^0 with respect to \mathcal{F}_3, thence
\[
\mu_2 \times \mu_3 \left(H_{x_0} \cap (f_{x_0} \cap \cdots) \cap (R - K_0) \right) > 0.
\]

Proceeding analogously we infer that for every point \((x_2, \ldots, x_{n-1}) \in H_{x_1} \cap \cdots \cap (f_{x_1} \cap \cdots) \cap (R - K_0)\)
the sections \(f_{x_1, x_2, \ldots, x_{n-1}}\) are nondegenerate at the point \(x_1^0\) with respect to \(\mathcal{F}_n\), therefore
\[
\mu_2 \times \cdots \times \mu_{n-1} \left(H_{x_0} \cap (f_{x_0} \cap \cdots) \cap (R - K_0) \right) > 0,
\]
which contradicts \((**)\). The function \(f\) of \(n\) variables is \(\mu\)-measurable. Thence by the mathematical induction theorem 2 holds true.

Remark 1. The following theorem is not true:

Theorem ([5], theorem 1). Let the function \(f: \mathbb{R}^n \to \mathbb{R}\) be such that all its sections \(f_{x_1, \ldots, x_{i-1}, x_i, x_{i+1}, \ldots, x_n}\) \((i = 1, \ldots, n)\) are measurable in the sense of Lebesgue and all its sections \(f_{x, x_2, \ldots, x_n}\) have the property \((G)\). Then the function \(f\) is measurable in the sense of Lebesgue iff
\[
m_n(\mathbb{R}^n - D(f)) = 0
\]
where \(m_n\) denoted the Lebesgue measure in \(\mathbb{R}^n\) and
\[
D(f) = \{(x_1, \ldots, x_n): \text{for } i = 1, \ldots, n \text{ } f_{x_1, \ldots, x_{i-1}, x_i, x_{i+1}, \ldots, x_n}
\text{ is nondegenerate at the point } x_i\}
\]

This is stated in the example given in the paper [6] by Z. Grande. Indeed, the theorem:

Theorem 3 ([6] theorem 1). Assume that the continuum hypothesis holds. Then there exists a function \(F: \mathbb{R} \times \mathbb{R} \to \mathbb{R}\) of Lebesgue nonmeasurable such that all its sections \(F_{x, x_2, \ldots, x_n}\) and \(F_{x, x_2, \ldots, x_n}\) are of Lebesgue measurable and nondegenerate at any point \(t \in \mathbb{R}\).

It is sufficient to take the function \(f: \mathbb{R}^3 \to \mathbb{R}\) such that
\[
f(x_1, x_2, x_3) = F(x_2, x_3).
\]

Let \(f: X \to \mathbb{R}\) be a function such that all its sections \(f_{x_1, x_2, \ldots, x_n}\) are \(\mu_1\)-measurable. Denote by \(B(f) = \{(x_1, \ldots, x_n) \in X: f_{x_1, x_2, \ldots, x_n} \text{ is not approximately continuous with respect to } \mathcal{F}_1 \text{ at } x_1 \in X_1\}\) and \(C(f) = \{(x_1, \ldots, x_n) \in X: f_{x_1, x_2, \ldots, x_n} \text{ is positively degenerate at } x_1 \in X_1 \text{ with respect to } \mathcal{F}_1\}\).

Theorem 4. Let \(f: X \to \mathbb{R}\) be a function such that for \(i = 1, \ldots, n\) all its sections \(f_{x_1, \ldots, x_{i-1}, x_i, x_{i+1}, \ldots, x_n}\) are \(\mu_i\)-measurable.

Then the conditions:

(i) the function \(f\) is \(\mu\)-measurable,
(ii) \(\mu(A(f) \cup B(f)) = 0 \) and
(iii) \(\mu(A(f) \cup C(f)) = 0 \)
are equivalent.

Proof. If the function \(f \) is \(\mu \)-measurable, then \(\mu(A(f) \cup B(f)) = 0 \) because \(A(f) \cup B(f) \subseteq \Phi(f) \) and by lemma 5 (i) implies (ii). Also (ii) implies (iii) because \(A(f) \cup C(f) \subseteq A(f) \cup B(f) \). It is sufficient to show that (iii) implies (i).

Let \(\mu(A(f) \cup C(f)) = 0 \) and let \(A = X - [A(f) \cup C(f)] \). The measure \(\mu \) is \(G_6 \) regular and \(\mathcal{F} \) has the density property, thence there exists a sequence \(\{A_k\}_{k=1}^{\infty} \) of closed sets of positive and finite measure such that \(A_k \subseteq A_{k+1} \) and \(\mu \left(A - \bigcup_{k=1}^{\infty} A_k \right) = 0 \).

Let
\[
f_k(x_1, \ldots, x_n) = \begin{cases} f(x_1, \ldots, x_n) & \text{for } (x_1, \ldots, x_n) \in A_k \\ 0 & \text{for } (x_1, \ldots, x_n) \notin A_k \end{cases}
\]

As almost everywhere \(\lim_{k \to \infty} f_k(x_1, \ldots, x_n) = f(x_1, \ldots, x_n) \) with respect to the measure \(\mu \), it is sufficient to show that the functions \(f_k \) satisfy the assumptions of theorem 2. According to the assumption all sections \((f_k)_0, x_2, \ldots, x_n \) are \(\mu_1 \)-measurable and at almost every point of the closed set \((A_k)_0, x_2, \ldots, x_n \) are positively nondegenerate with respect to \(\mathcal{F} \) because \((x_1, \ldots, x_n) \notin \Phi(f) \). Here we infer from theorem 1 that the function \(f \) has the property (G) with respect to \(\mathcal{F}_1 \). Moreover \(\mu(A(f) \cup C(f)) = 0 \), therefore \(\mu(A(f_k)) = 0 \). Hence by theorem 2 the functions \(f_k \) are \(\mu \)-measurable. The proof of the theorem 4 is completed.

Returning to our space \((T, d, \mathcal{K}, \lambda) \) let \(\mathcal{K} \) be a \(\sigma \)-field enclosing Borel sets of \(T \).

Definition 6. The function \(g: T \to R \) has the property (H) with respect to \(\mathcal{A} \) iff for every point \(t \in T \) there exist two open and nonempty sets \(U(t) \) and \(V(t) \) such that \(D_u(t, U(t)) > 0, D_u(t, V(t)) > 0, f|_{U(t) \cup V(t)} \) is upper semicontinuous and \(f|_{V(t) \cup U(t)} \) is lower semicontinuous at \(t \).

Theorem 5. The function \(g: T \to R \) which has property (H) with respect to \(\mathcal{A} \) is \(\lambda \)-almost everywhere continuous.

Proof. Denote by \(D_g \) the set of points of discontinuity of the function \(g \). Assume that \(\lambda(D_g) > 0 \). We can assume that \(g \) is bounded. Let \(A = \{ t \in D_g: D(t, D_g) = 1 \} \) and let \(B \subseteq A \) be a closed set such that:
(a) for every \(I \in \mathcal{A} \); \(\text{Int}(I) \cap B \neq \emptyset \Rightarrow \lambda(I \cap B) > 0 \). Denote by \(m \) the essential infimum of \(g \) on the set \(B \). Let \(t \in B \) be a point such that \(D(t, B) = 1 \) and \(g(t) < m + \frac{1}{4} \). The function \(g \) has the property (H) with respect to \(\mathcal{A} \), therefore for the point \(t \) there exists an open nonempty set \(U(t) \) such that \(D_u(t, U(t)) > 0 \) and \(g|_{U(t) \cup U(t)} \) is upper semicontinuous at \(s \). Therefore \(g(t) - g(t) < \frac{1}{4} \) for \(t \in U(t) \). As
Let \(t \in I_1 \).

As \(D(s_1, B \cap \text{Int} (I_1)) = 1 \) and \(D(s_1, V(s_1)) > 0 \), there exists a set \(J_1 \in \mathcal{A} \) such that \(\text{Cl} (J_1) \subseteq V(s_1) \), \(B \cap \text{Int} (J_1) \neq \emptyset \) and \(\delta(J_1) < 1 \). Evidently \(\text{osc} g < 1 \), because \(g(t) < m + \frac{1}{2} \) and \(g(t) > g(s_i) \frac{1}{4} \). Therefore we have a set \(J_1 \in \mathcal{A} \) such that \(B \cap \text{Int} (J_1) = 0 \), \(\delta(J_1) < 1 \) and \(\text{osc} g < 1 \) on the set \(J_1 \).

Proceeding analogously we define the sequence \(\{J_k\}_{k=1}^{\infty} \) of the sets from \(\mathcal{A} \) such that

(i) \(\text{Cl} (J_k) \subseteq \text{Int} (J_{k-1}) \)

(ii) \(B \cap \text{Int} (J_k) \neq \emptyset \)

(iii) \(\delta(J_k) < \frac{1}{k} \) and \(\text{osc} g < \frac{1}{k} \) on the set \(J_k \).

The set \(B \cap \bigcap_{k=1}^{\infty} \text{Cl} (J_k) \neq \emptyset \). Let \(t_0 \in \bigcap_{k=1}^{m} B \cap \text{Cl} (J_k) \). As for \(k = 1, 2, \ldots \), \(t_0 \in \text{Int} (J_k) \), the oscillation of the function \(g \) at the point \(t_0 \) is equal to zero i.e. \(t_0 \notin D_g \). On the other hand \(t_0 \in B \), therefore \(t_0 \notin D_g \), which is contradictory with \(t_0 \in D_g \). The proof of the theorem is completed. Theorem 5 is a generalization of theorem 1 of [3].

Remark 2. Let \(S \subset T \) be a countable dense set. If the function \(g: T \to R \) has the property (H) with respect to \(\mathcal{A} \), then: (R) \(\lim_{t \to s} \inf_{t \in S} g(t) \leq g(s) \leq \lim_{t \to s} \sup_{t \in S} g(t) \) for every \(s \in S \).

Theorem 6. Let \(f: X \to R \) be a function such that all its sections \(f_{s_1, s_2, \ldots, s_k} \) are \(\mu_1 \)-measurable and all its sections \(f_{s_1, s_2, \ldots, s_k-1, s_{k+1}, \ldots, s_n} \) have the property (H) with respect to \(\mathcal{F}_i \) for every \(i = 2, \ldots, n \).

Then \(f \) is a \(\mu \)-measurable function.

Proof. This theorem for \(n = 2 \) holds by the theorem given in the paper [8] by E. Marczewski and Cz. Ryll-Nardzewski.

Theorem 7 ([8], theorem 2). Let \(f: Y \times T \to R \), where \(Y \) is a space with
a measure \(\mu \), be a function such that all its sections \(f_{\bullet,} \) are \(\mu \)-measurable and all its sections \(f_y, \bullet \) are \(\lambda \) — almost everywhere continuous and satisfy the condition (R).

Then the function \(f \) is \(\bar{\mu} \) — measurable, where \(\bar{\mu} = x \times \lambda \).

Assume that if \(g: X_1 \times \ldots \times X_{n-1} \rightarrow R \) is a function such that all its sections \(g_{\bullet, x_2, \ldots, x_{n-1}} \) are \(\mu_i \) — measurable and all its sections \(g_{x_1, \ldots, x_{i-1}, \bullet, x_{i+1}, \ldots, x_{n-1}} \) have the property (H) with respect to \(\mathcal{F} \) for \(i = 2, \ldots, n - 1 \), then \(g \) is \(\mu_1 \times \ldots \times \mu_{n-1} \) — measurable. Let \(f: X_1 \times \ldots \times X_n \rightarrow R \) satisfy the condition of theorem 6. Then the function

\[
f_{\ldots, \bullet, x_n}(x_1, \ldots, x_{n-1}) = g(x_1, \ldots, x_{n-1})
\]

is \(\mu_1 \times \ldots \times \mu_{n-1} \) measurable. Therefore \(f: X_{n-1} \times X_n \rightarrow R \) as the function of two variables is \(\mu \) — measurable. The proof of the theorem is completed.

REFERENCES

Received June 4, 1984

Universytet Gdański
Instytut Matematyki
ul. Wita Stwosza 57
80-952 Gdańsk
POLAND

280
ИЗМЕРИМОСТЬ ДЕЙСТВИТЕЛЬНЫХ ФУНКЦИЙ,
ЗАДАННЫХ НА ДЕКАРТОВОМ ПРОИЗВЕДЕНИИ
МЕТРИЧЕСКИХ ПРОСТРАНСТВ

Grażyna Kwiecińska

Резюме

Эта работа состоит из двух частей. В первой части находятся необходимое и достаточное
условия измеримости действительных функций, заданных на декартовом произведении $n \ (n > 2)$
метрических пространств с мерами, которые удовлетворяют некоторым дополнительным усло-
виям. Вторая часть содержит теорему, которая связана с теоремой Лебега о измеримости
функции двух переменных.