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ABSTRACT. In [6], [7], D. Scott made the first attempt to connect Non-
Standard Analysis and Boolean-valued models and at the same time he introduced
Boolean Analysis, which had been developed subsequently mainly by
G.Takeuti [10].

In this paper we investigate the relationship between the Boolean power R[B]
of R and the elementary stochastic space E in the sense of Kappos [3].
We obtain here that these two spaces are isomorphic. In this way, we obtain
a stochastic interpretation of the Boolean power structure. The development is
similar to Takeuti’s Boolean analysis. The main difference lies in the fact
that we use a full Boolean-valued model, known as Boolean power, and a two-
step procedure: First we develop a restrictive model (a discrete or a kind of
first order model), the Boolean power, in which all the axioms of the reals can
be transferred immediately, and then we complete it using Cauchy sequences
or Dedekind cuts in order to get a model isomorphic to the stochastic space
V. In this way, we avoid the general Scott-Solovay model and we get instead a
model which is more appropriate for generalizing the Robinsonian Infinitesimal
Analysis to Boolean Analysis.

1. Boolean powers

In the following we give the main concepts and results from the theory of
Boolean powers. Let & = (A, R) be a relational structure, i.e. A is a non-
empty set called the Universe, and R is a binary relation on A. Everything we
say for binary relations can be easily extended to more general ones.

AMS Subject Classification (1991): Primary 03C90. Secondary 60B99.
Key words: Boolean powers, Elementary stochastic spaces, Boolean non-standard reals,
Completions.
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Let £ be a first order language with equality, the usual logical syimbuols
A, V, =, 3, ¥V, and variables z, y, vy, vo, ... . In £ we add also a predicate
symbol R which in A is interpreted as . We extend £ to £(A) by adding a
constant symbol a for each element a in A. In the following we shall not make
any difference between R and R or between a and a and use the same symbol
for both.

Let also (B, A,V,—,1g,0g) be a complete Boolean algebra. A B-crtension
UlB) = (A[B], R[B))
of the structure U is defined as follows:

A[B] = {f €BY; a#b— f(a)Af(b) =05 and \/ f(a) = 13}.

ac A

and the Boolean interpretations of the equality and the binary relation are func-
tions from A x A into B, defined by:

EB|(f.9) =\ f@)rg(z),

z€EA

RE(f.9)= \/  fl=)Agy).

z,yEA:R(x,y)

The truth value function || -|| is defined for atomic formulas:

If = gll = E[B|(f,9),
IR(f, 9)ll = RB(f,9),

and for any other formulas ¢, ¢ of L(A[IB%]) inductively:

e Al = llell Al

I=¢ll = -lioll,
Bz, é(@)l=\/ Nl
feAB]

This Boolean-valued structure is called the Boolean power or the Boolean c.r-
tension of the structure U . We say that a sentence ¢ is B-valid if and only if
el = 1.

In order to verify that U[B] is really a Boolean-valued structure. one can
easily check the following:

2
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1.1. THEOREM.

(i) If =gl =1 if and only if f =g as functions,
(i) IS =gll=llg=f
(iii) [[f =gllAllg=hll < lIf=hl,
(iv) If =gl AlloHI < llog)ll
Jor coery f, g, hoin A[B] and every formula ¢ with a free variable x . Note that
ol < llvll is equivalent to ||| — ||| = 1p in every Boolean algebra B.

’

NOTATION. From now on, we use the symbol A# to denote A[B] and the
same symbol is used for all the Boolean extensions of relations or functions that
we are going to use in the following.

The development of Boolean powers is actually a generalization of the “power”
part of the “ultrapower” construction. So a generalization of the Lo$ theorem is
desirable:

1.2. THEOREM. Let ¢ be a formula of the language L(A) with free variables
Iy oy, and fi, ..., fn are in A% . Then

16 dl = [/\fu]

We recall also from [4] the maximum principle:

1.3. THEOREM. For every formula ¢ with one free variable x , there always
exists a g i A# such that

132, ¢(=)ll = lle(g)ll-

1.4. DEFINITION. For every a € A we define a in A¥* to be the function

a(g‘):{IB z'fx:a,

Og  otherwise.

It is clear that for every a in A and for every f in A#

If =all = f(a).
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1.5. THEOREM. The mapping ~: A — A% is a B-elementary embedding. so

for every L(A)-formula ¢ whose free variables are among ry,r>.....r, and
for any ay,as,...,a, we have:

M}zqﬁ(al,...,an) Sl |i¢(61,a,,)|| = lB

If, in addition, we denote ¢ the formula of L(A#) derived from an L£(A)-for-
mula ¢ by putting a “hat”on each constant ¢ included in ¢. we have the
following:

1.6. THEOREM. (Transfer)
Uké < |9ll=1s.

The following Mizing Properties give us a characterization of the elements of
14# .

1.7. THEOREM. (Mizing Properties)
(1) Let T = {t; : i € I} be a pairwise disjoint collection from B and
{fi: i €I} is any collection from A# . Then there is an f € A¥ such that

If = fill >ti  forall i.
If, in addition, \/ t; = 1g (then T is called a resolution of identity), this f is

i€l
unique and can be written in the form

f@y=\ (fix)ats) or f=\/finti,

iel i€l

or, using the “sum” notation,

f:Zfi’ti-

i€l

(2) If {a;: 1€ I} CA and T ={t;: i € I} is a resolution of identity, then
there is a unique function f € A% such that, for all i, ||f = a;|| = t;. This f
will then be denoted by

> it

el
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1.8. Remark. By (1), (2) and the definition of A% | it follows that every
function f € A# can be written in the above form for appropriate pairwise
different a;’s in A and T a resolution of identity in B. In addition, we may

suppose that the resolution is strictly positive (¢; # Og, for all ). This form is
called the reduced representation of f by its values. Such an f is actually the

function
. t; if ©=a;
f(l‘) — k2 . (28]
Og otherwise.

The next theorem gives us an interpretation of subsets of A% :

1.9. THEOREM. Let S = {z € A : (b(x)} be a subset of A. Then S* is
isomorphic to the set {f € A% : ||¢(f)|l =18} .

Proof. By definition we have
S#* = {f € BS : f partitions unity in B}.

Let
C:={feA?: ||g(f)l =1s}.

We need to prove that C = S# . Indeed, we have (by 1.2):

l6hHl =\ 1) =\ f@). (1)
TEA: TES
*(2)

Now let f € C, then ||¢(f)|| =1 so V f(z) =1 and f(z) = O for every
: €S
x € A—S.So f takes positive values only on elements of S, and therefore it

can be thought as an element of S#.

Conversely, if f € S#, then ||¢(f)|| = 1z (by (1)) and f can be extended
from S to A by putting f(z) = Og for each z € A —S. So f isin A¥ and
fecC.

The following theorem, used by Gratzer [1; p. 147] in the definition of
Boolean powers, gives us an interpretation of functions or operators from the
main structure to its Boolean extension:

Tt
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1.10. THEOREM. The Boolean ecxtension of any function F: A" — 1 takecs
the form:
PH(AF) — AT

and F#(g1,...,gn) = g, where g is defined by

gla):=\/ < /\ .(1/((1,')>

Gp.ap €A i=1
Flay, .. «ap)=a

[n=1and =S 7 -t;, then F#(f) =S F(r;)-1;.
i€l izl

[or example, if U is the structure of the real numbers and F = sin. then

sin(f) = > sin(a;) - ¢, and the usual properties of the sine function remain
icl
2 W2

valid in U7 (ie. H(sm#(f)) + (cos(f))” =1 H =1z).

Note that Y~ F(x;) - t; may not be the reduced representation of 7).

el

for some of the F'(x;) may be equal. Then there is an easy wayv to find such a
representation by “adding™ all the corresponding b; s. This is the reason that
we are allowed to use the “sum” notation without loss of generalityv. If [T is a
function between subsets of A. thus F: S — R, then F# isa function from
5% to R

By now we are allowed to use the transfer principle only for first-order for-
rnulas of U and U# . So, formulas like

= (Va) [z e S e o)
which involve variables ranging over subsets of A cannot be transferred from the
main structure to its Boolean extension and conversely. One then has to use the
superstructures over A and A% . This project is under preparation for future

publication. In this paper, we are only interested in the study of the Boolean
power of R in connection with the study of the elementary stochastic space.

2. The Boolean power of R

From now on it is supposed that the structure we are interested in is
R = (R7 Ss +! )

6
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Then the binary relation is just <, and there are also functions + and - that
can be thought as ternary relations so that for every f, g, h € R? we have:
1f<gll="\ fx)rngy),

Y€
i<y

If+g=nhl= \ fl)Agly)Ahz),

r,y,z €%
rby=z

1f-g=nl= \ f(@)rngly) Ah(z).

Ty, zE€F:
rey=z

= Sa t
el

;and g =Y B‘,— - 55, then using Theorem 1.10 we can define
jed

f+#(]: 2 (L,jﬁ‘bj‘(t,,"s‘j),
(ij)elxJ

—

Frg= > ai-bj-(ti-s)),

(ij)elxJ

where f; - 55 is the sum-product notation of #; Asj.
One can see that

If+g=hl=1s < h=f+"g.

In the following. we shall use instead of f 4+# ¢ the simpler form f + ¢.
By the transfer principle, it follows that R# is a Boolean-valued model of

all the first order axioms of the reals, thus the axioms of the totally ordered field
remain true (take truth value 1y ). For instance

(V) (Vy) [z +y =y + ]

or

*137

AN A lety=y+a] =1z,

wERH yelRH#

which means that for all &,y € R#

le+y=y+ul=1p.
Note that “trichotomy” law also holds for

/\ /\ le <yVy<azVvVe=y| =1,

rER# yeR#

=~
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or for every z,y € R#
[z <yllViy <zl Viz=yll=1s.

This, in the usual sense, may seem to be a contradiction, because two functions
may not be comparable. This will be again discussed in 3.8 and the resolution
of this will be apparent.

By Transfer, R# is a B-Archimedean, where the set of naturals is just N .
Alternatively, one can see that R# is also Archimedean since the following is

true:
N llz <all=1g
neN

for every = € R¥ .

3. Measure algebras and elementary stochastic spaces

We recall some definitions and ideas from Kappos [3]. Let (©2..A.P) be a
P -complete probability space, and

N:={NeA: P(N)=0}

be the o-ideal of sets of measure zero. We define on A an equivalence relation
~ by

def
<

A~ B AAB e N,

and let B := A/~ be the quotient algebra. If v is the canonical ¢-homomor-
phism from A to B (where v(A).:= A/=~), then:

=1 1=1
'Y( AZ) = /\ V(Al) 3
1=1 =1

B is clearly a Boolean o -algebra, elements of B are called events, 1z = 0/~ is
the sure, and Og = 2/~ is the impossible event.

On B, we can define the reduction p of the probability measure P byv:
p(a) := P(A), where ~(A) =a.

It is clear that this definition is independent from the choice of the representative
A . The pair (B,p) is called a measure algebra.

8
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3.1. DEFINITION. A random experiment or trial T C B s a positive partition
of unity in B (or resolution of identity, as in 1.7), i.e. if T = {t; : 1 € I},
then t; ’s satisfy the following conditions:
(i) (Viel)lt; #0g],
(11) t; ANtj =0p ofor i # 7,
(i) V ti=1gp.
i€l
The set of all trials is denoted by T . This set can be ordered by the following
relation: »
T<S5 & (Y, e€T)(3s; € 9) [t < s
Note that for any two trials T', S the common refinement
TAS:= {t.,‘/\Sj #0g: t; €T, Sj ES}
always exist. Thus (7, <) becomes a directed set.

3.2. PROPOSITION. The Boolean o-algebra B satisfies the countable chain
condition, and hence it is complete.

Proof. See [3].

3.3. PROPOSITION. Let T = {t; : © € I} be a trial. Then I is at most
countable.

Proof. It follows from countable chain condition.

3.4. DEFINITION. Let T = {t; : i € I} be a trial. Then any function
X:T — R is called an elementary random variable (e.r.v.) on (B,p).

Some special cases of e.r.v.’s are the following:
(1) If T'={1p}, then any X defined on T is called a constant r.v.
(2) f T = {a,—a}, X(a) =1 and X(-a) = 0, then X is called an
indicator r.v. and is denoted by I, .
(3) If T is finite, then any e.r.v. defined on T is called a simple r.v.
We denote € the set of all e.r.v.’s defined on all elements of 7 and call it
the elementary stochastic space on (B, p).

3.5. Remark. For every X € £ there exists a trial T'= {t; : i € I} and
a collection {x; : i € [} of pairwise different reals such that X(¢;) = z; for all
i € I, where I is at most countable. We denote

X=>a1I,. (2)
i€l
This representation is called the canonical (or reduced) representation of X by
indicators.
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3.6. PROPOSITION. Let R# be the Boolean power of R. where = is the
measure algebra defined above. Then for every e.r.v. X there corresponds
unique element of R¥ and conversely.

Proof. Let X be an e.r.v. with reduced representation as in (2). Then
the corresponding fx is

t; if and only if o = r;.
xIr) =
Ix(@) { O otherwise,
which is unique by 1.8.

Conversely, if f = 3 7, -t;, then the corresponding X'y is defined on the
i€l
trial T = {t;: i € I}, and its reduced representation is just (2).
The function fx corresponding to an e.r.v. X is actually the qualitative (or
Boolean) density function of this e.r.v. The quantitative density function would

then be:
p(t;) if and only if = = x;,

ex(r) = {

In £ we can define:

0 otherwise .

X =Y]:=\ [X @) AY @),
TER

X <V|:= \ [XxX'a)AY'(y)].

x,yek:
z<y

Also, we may extend all the relations of R to £ in an analogous way, and define

X+Y = Z (zi +y;)- L1, »

(i,5)€1xJ

X Y = Z (xi-yj) - I, -

(i,j)eIxJ

By these definitions, £ = (£, =, <, +, ) becomes a Boolean-valued structure
which can be seen as an extension of the reals. It is clear that

X =Y =I[fx = fril,

and
X <Y =Ifx <frl.
Also X +Y (or X -Y) corresponds to fx + fy (or f, - fy ) and conversely.
From 3.6 and the above discussion the following theorem has been estal-
lished:

10
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3.7. THEOREM. The structures £ and R* are isomorphic and they both c.-
tend the structure of the real numbers.

3.8 Remarks. We have already seen that, by the theory of Boolean pow-
ers. R (or E) becomes a Boolean-valued model of all the first order axioms
of the reals. If we consider again the trichotomy law, in this case, it means that
the union of the sets that the er.v. X (or its B-density fx ) is greater than,
less than or equal to the er.v. Y (or its B-density fy ) is the whole probability
space.

We have already seen that the elementary stochastic space £ and the cor-
responding Boolean power R7  are made up by discrete r.v.’s. We would like to
extend E to the stochastic space V' of all r.v.’s (see [3]) and accordingly to get a
completion of the Boolean power of R. In this work, we propose two methods for
doing that: The first one is based on the notion of the B-distribution function
and it is equivalent to the Dedekind cuts procedure, while the second is based
on the Cauchy sequences. '

4. Completions of R#

4.1. B-Distributions functions.
We recall some definitions from the theory of Boolean algebras:

Let B be a Boolean algebra. Then, if {by,}nen is a sequence in B, then:

limb, == \/ /\ bx  (lower limit),
n=1 k>n

limb,, = /\ \/ by, (upper limit) ,
n=1 k>n

and, if limb, = limb, = b, then we say that the limit of {b,},en is b and
write:

lim b, =b.

n—oo
Let b: R — B be a function. We say that

lim b(z) = a
r—To

if and only if for every sequence =z, of reals which converges to z;, we have

lim b(x,,) = a. One can also define the limit of the function as = goes to =z
11—

from above or below and write b(x 4+ 0) and b(x —0) respectively. Note that for
monotone functions b(z + 0) and b(x — 0) always exist.
C'ontinuity, continuity from the left or from the right are defined analogously.

11
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4.1.1. DEFINITION. Let f € R# . Then the B-valued function Fy defined for
all reals by:

Fr(z) = If <z =\ f(t)

t<z
is called the B-distribution function (BDF) of f.

It is clear that F is increasing, thus = <y implies that Fy(x) < Fy(y) and
has also the following properties:

4.1.2. PROPOSITION. If Fy 1is the BDF of f, then:

lim Fy(z) = 0g, lim Fy(z) = 1g,

xr——0o0 €r—r0o0

F(z) = lilm Fy(t) forall zeR. (3)
tlx

Proof. Obvious if we use the definition of the limit in Boolean algebras
and the fact that Fy is increasing.

Next we give a well-known theorem for Boolean algebras:

4.1.3. THEOREM. Let B be a complete Boolean algebra that satisfies the count-
able chain condition. Then for any set A CB there is a set B C A which is at

most countable and
VB=\/4, AB=A\A.

By Proposition 4.1.2, it follows that
/\Ff(l‘):OB, \/Ff(l‘)zl[g,
rER z€R

Fp(z)= \ Ff(t)  forall ze€R,

t>r

(4)

and by Theorem 4.1.3, these infimum’s and supremum’s are the same if the index
sets restrict to countable ones. Since Q is dense in R, and F is increasing, one
can show that the required countable sets can be subsets of @, so properties
{4) can be written equivalently:

N Frr)y =08, \/ Fi(r) =18,
reQ reQ
Fi(x) = /\ Fy(t) for all = € R,

teq:
t>a

12
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4.1.4. THEOREM. Let f, g be in R¥* . If F;(r) = F,(r) for every r in Q,
then for every x € R we have Fy(x) = Fy(x).

Proof. Obvious, using (5).

4.2. Homomorphisms of e.r.v.’s.

For every f € R# there is a function H;: D — B, where D is the set of all
intervals of the real line of the form (—o0, x|, defined by:

Hy((—o0,z]) := Fy(x).

This is an order-preserving function that can be extended to a o-homomorphism
between B (the Borel o-algebra on the real line) and B. The following holds:

oo

Hy(-a) = -(Hf(a)) and Hy ( \/ a,—) = \/ Hy(a;) (6)
i=1

=1
for all a,ay,...,a, € B.

4.3. Completion of R¥ .

Until now we have seen that every e.r.v. defines a BDF and a o-homomor-
phism between B and B. However, the opposite is not always true. This will
lead us to the desired completion of R# . First we need some definitions:

4.3.1. DEFINITION. Let F: R — B be an increasing function with the prop-
erties (5). Then F is called a B-distribution function (BDF).

4.3.2. DEFINITION. Let H: B — B be an order-preserving function for which
(6) holds. Then H is called a o-homomorphism from B to B.

Suppose now that F' is a BDF taking only at most countable pairwise dif-
ferent values {b; : i € Z}. Then, since F is increasing and continuous from the
right, all numbers in intervals of the form [z;,z;+1) must take a constant value
b; . Define:

b; —b;_1 ifandonlyif x =z,
flz) = .
Op otherwise.

Then f is clearly in R# . Thus, a BDF of this form defines a unique e.r.v. by:

f(x) = F(z) — \/ F(t).

13
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The same thing is true if H is a o -homomorphism taking only at most countable
pairwise different values {b; : i € Z} for all elements of D. Then all intervals
(—o0, x|, where & € [x;.x;4) take value b; , and the corresponding [ is defined
analogously.

Let D be the class of all BDF that take at most countable pairwise ditferent
values. Then, if we define:

IF=al=\/ [(F(.IT) -V F(q)) A (G(;r) -V (,'((n)]
reR qeE L q-
iF<cl= V |(Fo -V F@) (G- V o)
T < e
and the operations +, - analogously, then the structures (. =. <. +.-) and

R# are isomorphic.

If we extend D to D, , which is the set of all BDF’s. then R# is extended to
RY by adding all the “abstract” r.v.’s that correspond to elements of =2, - .
Then we have to extend the truth value function to all sentences of £(=7 1. The
following theorem is very helpful: ‘

4.3.3. THEOREM. FEuvery BDF defines a class of almost coerywhere (a.c.) cqual
random variables on (2, A, ).

Proof. See [3].

So every element of I, defines a class of a.e. equal r.v.’s on . and especially
elements of D define classes of discrete r.v.’s. Then, if f.¢g € R7 correspond to
.G €D, which by 4.3.3 define X, YV .r.v.'s on Q. we have

I

If=gl=7({wveQ: X(w)

Y(w)}).
[f<gl=~r({we: X(w) <Y .

(£)})

This can also be a definition of ||-]| for atomic formulas of the language of =7
and this definition can be easily extended to the language of the complete model
RY . The following question now arises naturally: What kind of formulas remain
true (B-valid) during this extension? We are not going to answer this question
in detail because the reader may find them in D . Scott [6]. where. using the
notion of Borel functions, it is proved that all the axioms of the real line (totally
ordered complete field) remain true in R*# .

14
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4.4. Connection with Dedekind cuts.
Recall that a Dedekind cut in R is a subset a of @Q such that:
(1) (3.9 € Q) [s € al,
(2) (35 € Q) [s € a],
(3) forall se Q. (s€a) &= (VteQ)t >s —1€ad].
If we transfer this in R? | we get that a B-Dedekind cut a has the properties
(see also [9]):
(D V [[seal = 1s.

s€Q
(2) A lls €all = 0g.
s€3
(3) forall s€e Q. |lseall=V |l €a
te L

[

N

and. il we denote a(s) = ||s € a|. then we have:
(H \/ (I(S)ilu".
€
(2) A a(s) =0y,
sedd
(3) forall s € Q. a(s) = V alt).
te.

We may define that a function a: Q — B is a B-Dedekind cut if and only if the
above relations (1) - (3) hold. However, if we extend a from @ to R by putting

a(r) = /\ a(t)

te
ta

(this extension is unique by 4.1.4), then (1)-(3) are the same with (5). So
to every BDF there corresponds a B-Dedekind cut and conversely, and the
completion procedure of 4.3 is analogous to the Dedekind cuts one.

4.5. Completion using Cauchy sequences.

By Theorem 1.10, a sequence s: N — R can be extended to s#: N# —, 27
and any function a: N¥ — R# is a B-sequence. However, in order to make the
completion of R? | we need usual sequences of the form:

g0 N — R# where s(n) = f, .
We define that lim f,, = 0 if and only if || lim f, = 0] = 1, where:

[ lim f,, = (A)H = /\ \/ /\ ful <ell.

ce:#:. ngeEN n>ng
=>0

We also define that lim f,, = f if and only if [[lim(f, — f) = 0 | = 1g.
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4.5.1. PROPOSITION. If the limit of a sequence f,, exists, then it is unique.

Proof. Let || lim(f, — f) = 0] = || lim(f, —¢) = 0| = 1g. Then
H hm(fn - f) = 6“ A “ linl(fn - g) = 6“ = 1137

and for a given positive £ in R# we have:

\/ /\ (“|fn“f‘<5|I/\Hlfn'_g‘<5“):1’ﬂ%~

noeN n>ng
and since
H]fn'_.ﬂ<5||/\|an‘“'gl<5“§“|fn_f|+|fn—gl<2€H.

we have

V A lf—gl<ell=1g.

no€eEN n>ng

But this equation holds for all positive ¢, so

If=gl=0]=1s or f=g

by Theorem 1.1. (i).
One can easily prove the following:

4.5.2. PROPOSITION.
(1) |[lim f,, = fI| A limgn = gl < [[Lm(fn +g,) = f + gl
(2) [lim fo = fl[ Al limgn = gl| < [[im(fy - gn) = f- gl .
(3) |[[lim f,, = fI| < [[lim(=fn) = —f]|.
(4) Ntim fo = fIl < [lim |fu] = [f]]]

Next we give the definition of a Cauchy sequence and prove that every con-
verging sequence is Cauchy, but the converse is not true.

4.5.3. DEFINITION. Let f, be a sequence of R# _ Then f, is called a Cauchy
sequence if and only if ||fn ts Cauchy|| = 1g, where

Ifn is Cauchyll:= N\ N Il = ful <=l

cer#: nogeN n,m>n,
>0



BOOLEAN POWERS AND STOCHASTIC SPACES

4.5.4. PROPOSITION. If f, and g, are Cauchy sequences, then f, + gn,
fn - gn, etc. are also Cauchy.

Proof. Easy and analogous to 4.5.2.

4.5.5. PROPOSITION. If f, is converging, then it is Cauchy, i.e.

[im fr, = fl| < || fa is Cauchyl]|.

Proof.

=|[[lim f, = fI| A || lim fn = fl|

(A NV Alm-n<sha( A \éNm/Z\mll‘fm—fK%H)

cer#:. noEN n>ng ceR#: ng
e>0 e>0

AV A -a<satfa-n<g]

cer#:. noeEN n,m>ny
€>0

AV A = A+l <l

cer#:. ngeEN n,m>ng
e>0

< AV A = ful<el

eerR#: nopeEN n,m>ng
e>0

IN

=||f» is Cauchy||.

The converse is not true. It is not hard to construct a counter-example of a
Cauchy sequence that is not convergent. Next we define:

cef . -~
faorgn <= |lm(fn —gn)=0|=1p.

It is clear that =~ is an equivalence relation on the set C of all the Cauchy
sequences in R# | and, if lim f, = limg, , then f, ~g,.
Consider the quotient C/~: and let

R¥ :=C/~ .
Then R¥ is the desired completion of R# by means of the Cauchy sequences.
This gives us a completion of E by the same time. From [3] it is well known

that this completion leads to V', the stochastic space which is isomorphic to

17
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the set of all equivalence classes of a.e. equal ordinary r.v.’s defined on the
probability space (€2, .4, ). Similarly, R is the set of all equivalence classcs
of B-densities corresponding to r.v.’s in V. This remark shows us that in fact
the two completions lead to the same result and this is the reason we use the
same symbol for both. The completion by Dedekind cuts has the advantage that
we can extend the truth value function in an obvious way. which mav not he
possible by means of Cauchy sequences.

5. Final remarks

(1) In this paper we have concentrated on the qualitative aspects of ran-
domness without using the quantitative ones, i.e. the probability measure. In
order to develop our theory, we only need a o-ideal N in the o-algebra A. In
connection with this, we quote a relevant remark by Halmos [2]: = ... the
mathematical theory of probability consists of the study of Boolean o-algebras
of sets. This is not to say that all o-algebras are within the domain of proba-
bility theory. In general, statements concerning such algebras and the relations
between their elements are merely quantitative. Probability theory differs from
general theory in that it also studies the quantitative aspects of Boolean alge-
bras.” In future publications, the quantitative aspects such as stochastic sets.
measures and integrals will be examined.

(2) The theory developed so far has a flavor of Infinitesimal Analysis. We
can also define concepts like “internal” or “external” or use the Loeb measures
to complete R¥ | introducing a kind of blending of Infinitesimal and Boolean
methods and deriving the general method of Boolean-valued models into two
steps: The Boolean power followed by an infinitesimal step. These ideas will be
developed in the near future.
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