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BOOLEAN P O W E R S AND STOCHASTIC SPACES 

COSTAS A. DROSSOS — G. MARKAKIS 

(Communicated by Lubomír Kubáček) 

ABSTRACT. In [6], [7], D . S c o t t made the first a t t e m p t to connect Non­
s t a n d a r d Analysis and Boolean-valued models and at the same time he introduced 
Boolean Analysis, which had been developed subsequently mainly by 
G . T a k e u t i [10]. 

Ill this paper we investigate the relationship between the Boolean power 
of R and the elementary stochastic space E in the sense of K a p p o s [3]. 
We obtain here that these two spaces are isomorphic. In this way, we obtain 
a stochastic interpretation of the Boolean power structure. The development is 
similar to T a k e u t i ' s Boolean analysis. The main difference lies in the fact 
that we use a full Boolean-valued model, known as Boolean power, and a two-
step procedure: First we develop a restrictive model (a discrete or a kind of 
first order model), the Boolean power, in which all the axioms of the reals can 
be transferred immediately, and then we complete it using Cauchy sequences 
or Dedekind cuts in order to get a model isomorphic to the stochastic space 
V. In this way, we avoid the general Scott-Solovay model and we get instead a 
model which is more appropriate for generalizing the Robinsonian Infinitesimal 
Analysis to Boolean Analysis. 

1. Boolean powers 

In the following we give the main concepts and results from the theory of 
Boolean powers. Let U = (A, R) be a relational structure, i.e. A is a non­
empty set called the Universe, and i t is a binary relation on A. Everything we 
say for binary relations can be easily extended to more general ones. 

AIMS S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 03C90. Secondary 60B99. 
K e y w o r d s : Boolean powers, E lementary stochast ic spaces, Boolean non-standard reals, 

Completions. 
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Let C be a first order language with equality, the usual logical symbols 
A, V, - i , 3 , V, and variables x, y1 Ui, t>2, . . . . In C we add also a predicate 
symbol 1Z which in A is interpreted as R. We extend C to C(A) by adding a 
constant symbol a for each element a in A. In the following we shall not make 
any difference between 1Z and R or between a and a and use the same symbol 
for both. 

Let also (B, A, V, -i, 1^, OB) be a complete Boolean algebra. A B-crtrns/on 

U[E] = (A[B],./x[B]) 

of the structure U is defined as follows: 

A[E] = {/ G BA ; a^b^ f(a) A f(b) = 0B and \J f(a) = 1 3 } , 
aGA 

and the Boolean interpretations of the equality and the binary relation are func­
tions from A x A into B, defined by: 

E[M](f,g)= \/ f(x)Ag(x), 
xeA 

Rm(f,9)= V f(*)A9(y)-
x,y£A:R(x,y) 

The truth value function || • || is defined for atomic formulas: 

\\f = g\\ = E\B](f,g), 

]\R(f,g)\\ = R{E](f,g), 

and for any other formulas 0, \b of £(A[B]) inductively: 

H 0 A - 0 H = ||«^|| A | | ^ | | , 

||3*,</>(*)ll = V ll^(/)ll-
/€/l[B] 

This Boolean-valued structure is called the Boolean power or the Boolean ex­
tension of the structure hi. We say that a sentence </> is B-valid if and onlv if 

IHI = iB-
In order to verify that U[B>\ is really a Boolean-valued structure, one can 

easily check the following: 
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1.1. T H E O R E M . 

(i) || f = g\\ = IIB if and only if f = g as functions, 

(ii) ll/ = </il = ll.9 = / L 
(iii) I I/ = .0||A||</ = /I||< 11/= li||, 

(iv) ||/ = tf||A|kH/)||<||<K.9)l| 

for every /, g, h in A[M] and every formula ct> with a free variable x . Note that 

\\cp\\ < H^ll is equivalent to \\(fj\\ —• | | ^ | | = 1 B in every Boolean algebra 1 . 

N O T A T I O N . From now on, we use the symbol A& to deno te A[E] and the 

same symbol is used for all the Boolean ex tensions of rela t ions or func t ions that 

we are going to use in the following. 

T h e developmen t of Boolean powers is ac tually a general iza t ion of the "power" 

par t of the u ul t rapower" cons truc t ion . So a general iza t ion of the Los theorem is 

desirable: 

1.2. T H E O R E M . Let (j) be a, formula of the language C(A) with free variables 

j'i,. . . , xn . and / i , . . . , fn are in A^ . Then 

и/i,-.-,/n)ii= V ЛI>«) 
a x ,. .. ,an £ V: 

V | = < £ ( < - ! , . . . , a n ) 
І=l 

We recall also from [4] the m a x i m u m principle: 

1.3. T H E O R E M . For every formula (j) with one free variable x, there always 

exists a g in A& such that 

\\3x,<p(x)\\ = Mg)\\-

1.4. D E F I N I T I O N . For every a G A we define a in A# to be the function 

1 B if x = a , 
a(x) 

OB otherwise. 

It is clear that for every a in A a n d for every / in A^ 

\\f = a\\=f(a). 
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1.5. T H E O R E M . The mapping ^ : A —> A# is a B -e lementary embedding, so 

for every C(A) -formula (f> whose free variables are among x i ,x-2 , . . . , xu and 

for any a i , a 2 , . . . , a n we have: 

U f= (/)(Oi, . . . , a n ) 4=> \\(/>(ai, • • . , a n ) | | = 1E . 

If, in addi t ion, we denote <f> the formula of C(A#) derived from an C(A) -for­
mula cj) by pu t t ing a "ha t "on each constant c included in 0 , we have the 
following: 

1.6. T H E O R E M . (Transfer) 

U^c/y <=> \\$\\ = ln. 

T h e following Mixing Properties give us a character izat ion of the elements of 

A*: 

1.7. T H E O R E M . (Mixing Properties) 

(1) Let T = {ti : i E 1} be a pairwise disjoint collection from B and 

\fi '• i E 1} is any collection from A& . Then there is an f G A^ such that 

11/ = /ill > U for all i. 

If, in addition, \J ti = 1© (then T is called a resolution of identity), this f is 
iei 

unique and can be written in the form 

f(x) = \/ (fi(x)Ati) or f = \Jfihti, 

iei iei 

or, using the "sum" notation, 

iei 

(2) If {ai : i G 1} C A and T = {U : i G / } is a resolution of identity, then 

there is a unique function f G A& such that, for all i, \\f = 2 / | | = t[ . This f 

will then be denoted by 
yyy

jaj-tl. 

iei 
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1.8. R e m a r k . By (1), (2) and the definition of A& , it follows that every 
function / G A# can be written in the above form for appropriate pairwise 
different ai 's in A and T a resolution of identity in B. In addition, we may 
suppose that the resolution is strictly positive (ti ^ OB , for all i). This form is 
called the reduced representation of / by its values. Such an / is actually the 
function 

,, s \ U if x = a,i, 
f(x) = < 

I OB otherwise. 

The next theorem gives us an interpretation of subsets of A& : 

1.9. THEOREM. Let S = {x G A : (f)(x)} be a subset of A. Then S# is 

isomorphic to the set {/ G A# : \\(/)(f)\\ = 1B} • 

P r o o f . By definition we have 

5 # = {/ G IB5 : / partitions unity in E} . 

Let 

C:={feA#: | | 0 ( / ) | | = 1 B } . 

We need to prove that C = S'# . Indeed, we have (by 1.2): 

H(f)\\= V / ( * ) = V f(*)- (!) 
4>(x) 

Now let / G C , then | | ^ ( / ) | | = 1B so V f(x) = 1B and f(x) = 0E for every 
xes 

x G A — S. So / takes positive values only on elements of 5 , and therefore it 
can be thought as an element of S# . 

Conversely, if / G S# , then | |0( / ) | | = 1B (by (1)) a n d / can be extended 
from S to A by putting f(x) = OB for each x G A — S. So / is in A# and 
/ G C 

The following theorem, used by G r a t z e r [1; p. 147] in the definition of 
Boolean powers, gives us an interpretation of functions or operators from the 
main structure to its Boolean extension: 
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1.10. T H E O R E M . The Boolean extension of any function F: A" — A lakes 
the form: 

pit. (A#yi ^ A# ? 

and F^(g\, . . . , g7l) = g , where g is defined, by 

9(a) ~ V ( A !!<(«<)) 
F C u i . . . . „ „ ) = a 

/ / n = 1 OHO7 / = E £» ' '* , *Aen F # ( / ) = V F[^T) • /,- . 
•iei iei 

For example, if hi is the s t ruc ture of the real numbers and F = s in . then 

s i n ^ ( / ) = Yl sin(•/:./) • t,;, and the usual propert ies of the sine function remain 

valid in W# (i.e. || ( s i n # ( / ) ) 2 + ( c o s # ( / ) ) 2 = T || = 1 3 )• 

Note t h a t ^ F(x;) • t; may not be the reduced representat ion of F~*[f). 
iei 

for some of the F(xt) may be equal. Then there is an easy way to find such a 
representat ion by "adding" all the corresponding b,•'s. This is the reason that 
vile are allowed to use the "sum" nota t ion wi thout loss of generality. If I is a 
function between subsets of A, thus F: S —> B, then F~# is a function from 
S# to /?# . 

By now we are allowed to use the transfer principle only for first-order for­

mulas of U and U^ . So, formulas like 

0 = (Vx) [a,eS~0(-*O] 

which involve variables ranging over subsets of A cannot be transferred from t he 

main s t ruc tu re to its Boolean extension and conversely. One then has to use the 

supers t ruc tures over A and A# . This project is under p repara t ion for future 

publicat ion. In this paper , wTe are only interested in the s tudy of the Boolean 

power of R in connection with the s tudy of the e lementary s tochast ic space. 

2. T h e B o o l e a n p o w e r of IR 

From now on it is supposed t h a t the s t ruc tu re we are interested in is 

K:=(U, < , + , • ) . 
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Then the binary relation is just < , and there are also functions -f and • that 
can be thought as ternary relations so that for every f,g,h £ IR9^ we have: 

| | / < . 9 l l = V /(->;)A.g(y), 
.r , y G "r : 

•<<y 

\\f + g = h\\= \ / f(x)Ag(y)Ah(z), 
.r,y,z£\l: 

•r + y = z 

\\f-9 = h\\= V f(x)Ag(y)Ah(z). 

^ / " Yl "i ' 7'/ a n ( l 9 = XI bj - Sj , then using Theorem 1.10 we can define 
it i * jeJ 

f+*9= Y. <^+bj-(U-s3), 
(ij)eix.j 

f-*9= Yl CH^bj-iU-Sj), 
(ij)eixJ 

where /,- • Sj is the sum-product notation of U A Sj . 

One can see that 

\\f + g = h\\ = lB ^=> h = f+*g. 

In the following, we shall use instead of / -\-& g the simpler form / -f- g . 

By the transfer principle, it follows that VJ^ is a Boolean-valued model of 
all the first order axioms of the reals, thus the axioms of the totally ordered field 
remain true (take truth value fg). For instance 

| |(V*)(Vy) [x+ y = ?/ + *•]|| = 1 B , 

or 

A A Wx + y = y + x\\ = 1 © ' 

which means that for all x,y G M# 

\\x + y = y + x\\ = 1E • 

Note that ''trichotomy" law also holds for 

A A 11̂  < ;VV77 < X'V.X = H|| = 1 B , 
.r£!K# yeR# 
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or for every x,i/G R^ 

\\x <y\\V\\y <x\\y\\x = y\\ = 1B . 

This, in the usual sense, may seem to be a contradiction, because two functions 
may not be comparable. This will be again discussed in 3.8 and the resolution 
of this will be apparent. 

By Transfer, R# is a B-Archimedean, where the set of naturals is just N^: . 
Alternatively, one can see that 1R# is also Archimedean since the following is 
true: 

f\ \\x < n\\ = 1B 
nGN 

for every x £ R^ . 

3. Measure algebras and elementary stochastic spaces 

We recall some definitions and ideas from K a p p o s [3]. Let (fi. A, P) be a 
P -complete probability space, and 

Af:={NeA: P(N) = 0} 

be the a -ideal of sets of measure zero. We define on A an equivalence relation 
* by 

A^B 4=> AABeM, 

and let B := A/~ be the quotient algebra. If 7 is the canonical tj-homomor-
phism from A to B (where 7(A)•:= A / « ) , then: 

( 00 \ 00 

\jAi =V7(^), 
2 = 1 / 2 = 1 

/ OO \ OO n П^ =Л^)-
\i = l / 2=1 

7 ( - A ) = - 7 ( A ) . 

B is clearly a Boolean cr-algebra, elements of B are called events, 1$ = 0/% is 
the sure, and 0$ = f2/« is the impossible event. 

On B, we can define the reduction p of the probability measure P by: 

p(a) := P(A) , where 7(A) = a . 

It is clear that this definition is independent from the choice of the representative 
A. The pair (B, p) is called a measure algebra. 

8 
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3 .1 . DEFINITION. A random experiment or trial T C I is a positive partition 
of unity in B (or resolution of identity, as in 1.7), i.e. if T = {U : i G / } . 
then t j 's satisfy the following conditions: 

(i) (\/iel)[u^QB], 

(ii) U A tj = 0B 'for i ^ j , 
(iii) V U = 1B • 

iei 
The set of all trials is denoted by T . This set can be ordered by the following 

relation: 

T ^S 4=> (VU G T) (3 s3 G S) [U < Sj]. 

Note that for any two trials T, S the common refinement 

T A S := {U A Sj + 0E : U G T , ^ e 5} 

always exist. Thus (T, ^ ) becomes a directed set. 
3.2. PROPOSITION. The Boolean a-algebra B satisfies the countable chain 
condition, and hence it is complete. 

P r o o f . See [3]. 

3.3. PROPOSITION. Let T = {t{ : i G 1} be a trial. Then I is at most 
countable. 

P r o o f . It follows from countable chain condition. 

3.4. DEFINITION. Let T = {U : i G / } be a trial. Then any function 
X: T —> R is called an elementary random variable (e.r.v.) on (B,p) . 

Some special cases of e.r.v.'s are the following: 

(1) If T = {1B} 7 then any X defined on T is called a constant r.v. 
(2) If T = {a,-na} , X(a) = 1 and X(-^a) = 0, then X is called an 

indicator r.v. and is denoted by Ia . 
(3) If T is finite, then any e.r.v. defined on T is called a simple r.v. 

We denote £ the set of all e.r.v.'s defined on all elements of T and call it 
the elementary stochastic space on (B, p). 

3.5. R e m a r k . For every X G £ there exists a trial T = {ti : i G / } and 
a collection {xi : i G / } of pairwise different reals such that X(U) = Xi for all 
i G / , where / is at most countable. We denote 

X = J > . / t i . (2) 
iei 

This representation is called the canonical (or reduced) representation of X by 
indicators. 
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3 .6 . P R O P O S I T I O N . Let IR# be the Boolean power of IR, where 1 is ih( 

measure algebra defined above. Then for every e.r.v. X there corresponds a 

unique element of W& and conversely. 

P r o o f . Let X be an e.r.v. wi th reduced representa t ion as in (2 ) . Then 

the corresponding fx is 

f tj if and onlv if x — Xj , 
fx(x) = < 

{ 0© o therwise , 

which is unique by 1.8. 

Conversely, if / = Yl x-h • tj , then the corresponding Xj is defined on t he 
iei 

trial T — {t{ : i £ 1} , and its reduced representat ion is jus t (2) . 

The function fx corresponding to an e.r.v. X is actual ly the qual i ta t ive (or 

Boolean) densi ty function of this e.r.v. T h e quant i ta t ive densi ty function would 

then be: 
f p(U) if a n d only if x = x} , 

^xW = 1 n +v, • 
|̂  0 otherwise . 

In £ we can define: 

\X = Y\\:= \ / [X-1(x)AY~í(x)], 
x(ER 

\X<Y\\:= V [X~1(x)AY-í(y)]. 
x,yčR: 

x<\y 

Also, we may extend all t h e relations of IR t o £ in an analogous way, and define 

X + Y:= Yl (xi + Vj) • TUsj , 
(i,j)€lxJ 

XY:= Y. (vi-Vi)-!^-
(ij)eixJ 

By these definitions, £ = ( £ , - = , < , + , • ) becomes a Boolean-valued s t ruc tu re 

which can be seen as an extension of the reals. It is clear t h a t 

pr = yy = ||/A = / y | | , 

and 

\\X<Y\\ = \\fX <fy\\. 

Also X + Y (or X • Y) corresponds to fx + / y (or fx • fy ) and conversely. 

From 3.6 and the above discussion the following theorem has been es tab­

lished: 

10 
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3.7. THEOREM. The structures S and 7?# are isomorphic and they both ex­
tend the structure of the real numbers. 

3.8. R e m a r k s . We have already seen that, by the theory of Boolean pow­
ers, R# (or E) becomes a Boolean-valued model of all the first order axioms 
of the reals. If we consider again the trichotomy law, in this case, it means that 
the union of the sets that the e.r.v. X (or its B-density fx ) is greater than, 
less than or equal to the e.r.v. Y (or its IB-density fy ) is the whole probability 
space. 

We have already seen that the elementary stochastic space E and the cor­
responding Boolean power M^: are made up by discrete r.v.'s. We would like to 
extend E to the stochastic space V of all r.v.'s (see [3]) and accordingly to get a 
completion of the Boolean power of R. In this work, we propose two methods for­
doing that: The first one is based on the notion of the B-distribution function 
and it is equivalent to the Dedekind cuts procedure, while the second is based 
on the Cauchy sequences. 

4. Completions of R# 

4.1. B-Distributions functions. 

We recall some definitions from the theory of Boolean algebras: 

Let B be a Boolean algebra. Then, if {bn}n<EN is a sequence in B, then: 

l imb n := y Д bk (lower limit) , 
n = l к>n 

oo 

l imb n := Д \f bк (upper limit) , 

n=l k>n 

and, if h m b n = l imb n — b, then we say that the limit of {bn}n€^ is b and 
write: 

lim bn == b . 
n—->oo 

Let b: K —> B be a function. We say that 

lim b(x) — a 
X-+XQ 

if and only if for every sequence xn of reals which converges to x{) we have 
lim b(xn) = a. One can also define the limit of the function as x goes to x() 

from above or below and write b(x + 0) and b(x — 0) respectively. Note that for 
monotone functions b(x -f 0) and b(x — 0) always exist. 

Continuity, continuity from the left or from the right are defined analogously. 

11 
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4.1.1. DEFINITION. Let f e R # . Then the B -valued function Ff defined for 
all reals by: 

Ff(x) := | | / < x\\ = \ / /(*) 
t<X 

is called the B -distribution function (BDF) of f . 

It is clear that Ff is increasing, thus x < y implies that Ff(x) < Ff(y) and 
has also the following properties: 

4.1.2. P R O P O S I T I O N . If Ff is the BDF of f, then: 

lim Ff(x) = OB , lim FAx) = 1B , 
x —• — oo x —• oo 

Ff(x) = limFf(t) for all x e R. [3) 

t[x 

P r o o f . Obvious if we use the definition of the limit in Boolean algebras 
and the fact that Ff is increasing. 

Next we give a well-known theorem for Boolean algebras: 

4.1.3. THEOREM. Let B be a complete Boolean algebra that satisfies the count­
able chain condition. Then for any set A C B there is a set B C A which is at 
most countable and 

\/B = \jA, A B = A ^ 

By Proposition 4.L2, it follows that 

/\Ff(x)=0B, \/Ff(x) = lB, 
xeu xeu . t, 

A ( 4 ) 

Ff(x)= j\Ff(t) for all x e R , 
t>x 

and by Theorem 4.L3, these infimum's and supremum's are the same if the index 
sets restrict to countable ones. Since Q is dense in R, and Ff is increasing, one 
can show that the required countable sets can be subsets of Q, so properties 
(4) can be written equivalently: 

/\Ff(r) = On, \/Ff(r) = lB, 
reQ r£Q 

A ( 5 ) 

Ff(x) = f\ Ff(t) for all x E K, 
t € Q : 
t>x 

12 
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4 . 1 . 4 . T H E O R E M . Let f , g be in R # . If Ff(r) = Fg(r) for every r in Q . 

then for every x £ R we have Ff(x) = Fg(x) . 

P r o o f . Obvious, using ( 5 ) . 

4 . 2 . H o m o m o r p h i s m s of e . r . v . ' s . 

For every / £ R # there is a func t ion Hf : V —» B , where 79 is the set of all 

in tervals of the real line of the form ( —oo, x] , defined by: 

Hj((-^,x]):=Ff(x). 

This is an order-preserving func t ion that can be ex tended to a cr-homomorphism 

be tween B ( the Borel a -a lgebra on the real line) and B . T h e following holds: 

Hf(^a) = -^(Hf(a)) and Hf(\/aA=\J Hf(at) (6) 
\i = l J 2=1 

for all o , f l i , . . . , a n G 8 . 

4 . 3 . C o m p l e t i o n of R # . 

Un t i l now we have seen thcit every e.r.v. defines a B D F and a cr-homomor-

phism be tween B and B . However, the opposi te is no t always true. This will 

lead us to the desired comple t ion of R # . Fi rs t we need some definitions: 

4 . 3 . 1 . D E F I N I T I O N . Let F: R —> B be an increasing function with the prop­
erties (5) . Then F is called a B-dis tr ibut ion function (BDF). 

4 . 3 . 2 . D E F I N I T I O N . Let H: B —» B be an order-preserving function for which 

(6) holds. Then H is called a a-homomorphism from B to B . 

Suppose now that F is a B D F taking only a t mos t coun table pairwise dif­
ferent values {bi : i G Z} . Then , since F is increasing and con t inuous from the 
right , all numbers in in tervals of the form [xi,Xi+i) mus t take a cons tan t value 
bj. Define: 

f bi - 6i_i if and only if x = xt, 
j{x) — < 

L OB o therwise . 

Then / is clearly in R # . Thus , a B D F of this form defines a unique e.r.v. by: 

f(x) = F(x)- \J F(t). 

13 
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The same th ing is t rue if H is a a -homomorphism taking only at most countable 

pairwise different values {bj : i G Z} for all elements of T>. Then all intervals 

( — 00, :T] , where x £ [xtl :L7;+i) take value bj , and the corresponding / is defined 

analogously. 

Let D be t he class of all B D F t h a t take at most countable pairwise different 

values. Then , if we define: 

.rGlK 

F = G\\:=\I\ (F(X) - \J F(q)) A (G(X) - \J (!(,,) 

x<y 

F < G\\ : = V (F('r) - V F('l)) A (G^ ~ V C!^ 
q e:, 
Ч<> 

and t h e operat ions + , • analogously, t h e n t h e s t ructures (D . = . < . + . • ) and 

UJt are i s o m o r p h i c 

If we extend D to D* , which is t h e set of all B D F ' s , then R # is ex tended to 
P # EC by adding all t h e "abstract ' 1 r.v. :s t h a t correspond to e lements of 

T h e n we have t o extend the t r u t h value function to all sentences of £ ( ? , 

following theorem is very helpful: 
. T 

4 . 3 . 3 . T H E O R E M . Every BDF defines a class of almost everywhere (a.(.) (qual 

random variables on (12, A, P) . 

P r o o f . See [3]. 

So every element of D* defines a class of a.e. equal r.v."s on il. and especially 

(dements of D define classes of discrete r .v. 's . Then , if f.g G R^ correspond to 

F, G e D , which by 4.3.3 define I , 7 , r.v. 's on Q , we have 

\\f = g\\='y{{u>eSl: X(u>) = Y(.>)}) < 

\\f<g\\=7{{u;en: X(UJ)<Y(U;)}). 

This can also be a definition of || • || for a tomic formulas of the language of R^ . 

and this definition can be easily extended to the language of the complete model 

R* . T h e following question now arises natural ly : What kind of formulas remain 

true (E -va l id ) during this extension? We are not going to answer this question 

in detail because the reader may find t h e m in D . S c o t t [6]. where, using the 

notion of Borel functions, it is proved t ha t all the axioms of the real line (totally 

ordered complete field) remain t rue in R * . 

14 
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4 . 4 . C o n n e c t i o n w i t h D e d e k i n d c u t s . 

Recall t ha t a Dedekind cut in 1R is a subset a of Q such tha t : 

(1) ( 3 , s £ Q ) [ . s e a ] , 

('--) ( 3 . s e Q ) [ . s 0 t t ] , 

(3) for all ,s G Q , (,s G a) <=> ( V / G Q) [t > s -> t G a] . 

II' we transfer this in 1R# , we get t h a t a. U-Dedekind cut a, has the propert ies 
(sec also [9]): 

(1) V ||* G a|| = 1 B , 
• s f Q 

(--) A II* e "II = : °B^ 

(3) for all ,s G Q . ||.s G a|| = V II* ^ «ll , 
K>. : 
/ > . s 

and. if we denote a(,s) = ||,s G a|| , then we have: 

(1) V « ( * ) = ' a -

(2) A « ( • " ) = " a -

(:i) for all . S G Q . « ( . S ) = V «(!)• 
/ £ . , : 
t>.s 

We may define t h a t a. function a: Q —> IB is a M-Dedekind cut if and only if the 
above relations (I) (3) hold. However, if we extend a from Q to IK by pu t t ing 

a(x) := f\ a(t) 
tC .,: 
t > . r 

(this extension is unique by 4.1 .4) , t hen ( l ) - ( 3 ) are the same with (5 ) . So 

to every BDF there corresponds a B-Dedekind cut and conversely, and the 

completion procedure of 4.3 is analogous to the Dedekind cuts one. 

4 . 5 . C o m p l e t i o n u s i n g C a u c h y s e q u e n c e s . 

By Theorem 1.10, a sequence ,s: N -> R can be extended to , s # : N # -* IR# . 

and any function a: N # —+ IR# is a B-sequence. However, in order to make the 

completion of IR# , we need usual sequences of the form: 

,s: N -> IR# , where s(n) = fn . 

We define t ha t lim/,,. = 0 if and only if || lim fn = 0 || = 1 B , where: 

| | H m / „ = 0 | l : = A V A IM/»I< £I!-
eG' '#: ?io6N n>n() 

£ • > ( ) 

We also define t ha t lim fn = / if and only if || l i m ( / n ~ / ) = 0 II — l e • 
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4.5.1. PROPOSITION. If the limit of a sequence fn exists, then it is unique. 

P r o o f . Let || l im(/n - / ) = 0 || = || l im(/n - g) = 0 || = 1B . Then 

II l im(/n - / ) = 0 || A || l im(/n - g) = 0 || = 1B , 

and for a given positive e in ]R# we have: 

V A ( l l l / n - / l < £ l l A l l l / n - f f l < ^ l l ) = lB-
noGN n>no 

and since 

II |/n - /I < e || A || \fn - g\ < e || < || | / n - f\ + \fn - g\ < 2e || , 

we have 

V A m/-ff i<£ i i = iB. 
noGN n>no 

But this equation holds for all positive e, so 

I N / = I7| = 0 | | = 1 B or f = g 

by Theorem 1.1. (i). 

One can easily prove the following: 

4 .5 .2 . P R O P O S I T I O N . 

(1) | | l im/ n = / | | A | | l i m g „ = g | | < || l im(/n + gn) = f + g\\ . 
(2) || l im/„ = f\\ A || hmgn = g\\ < || l im(/n • gn) = f • g\\ . 
(3) | | l im/ n = / | | < | | l i m ( - / n ) = - / | | . 
(4) | | l i m / n = / | | < | | l i m | / n | = | / | | | . 

Next we give the definition of a Cauchy sequence and prove that every con­
verging sequence is Cauchy, but the converse is not true. 

4.5.3. DEFINITION. Let fn be a sequence of R# . Then fn is called a Cauchy 
sequence if and only if \\fn is Cauchy || = 1© , where 

| | /n is Cauchy|| := A V A \\\fn ~ fn<\ < s \\ . 
eG;R#: n0GN n,m->n0 

e > 0 

16 
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4.5.4. PROPOSITION. If fn and gn are Cauchy sequences, then fn -f gn , 

fn ' 9n , e^c- a r e a^so Cauchy. 

P r o o f . Easy and analogous to 4.5.2. 

4.5.5. PROPOSITION. If fn is converging, then it is Cauchy, i.e. 

| | l im/n = f\\ < | |/n is Cauchy \\. 

P r o o f . 

| | l i m / n = / | | 

= | | l i m / n = / | | A | | l i m / n = / | | 

- ( A V A| I/»-/K|||) A ( A V A||I/--/K|||) 
^ ., - r _ T ^ . ^m.-u- ^ . _ ^ r v i ^, ^ єЄS#: П 0 Є N П > П 0 є>0 

єЄt#: n 0 ЄN m > n 0 
в>0 

A V A ||l/"-/l<|A l/m-/l< 
eЄЖ#: noЄN n,m>no 

є > 0 

< Л V Л lll/n-/l + l/n.-/ï<г 
eєк#: noЄN n,m>no 

< A V A m/«-/-i<ei 
e6R#: noGN n,m>no 

e > 0 

= ||/n is Cauchy || . 

The converse is not true. It is not hard to construct a counter-example of a 
Cauchy sequence that is not convergent. Next we define: 

fn ~ 9r 
def 

| l im(/n - gn) = 0 | | = lj 

It is clear that « is an equivalence relation on the set C of all the Cauchy 

sequences in R# , and, if lim fn = \imgn, then / n ~ gn • 

Consider the quotient Cj« and let 

Rf :=C/« . 

Then Rf is the desired completion of R# by means of the Cauchy sequences. 
This gives us a completion of E by the same time. From [3] it is well known 
that this completion leads to V, the stochastic space which is isomorphic to 

17 
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the set of all equivalence classes of a.e. equal ordinary r.v.'s defined on the 
probability space (£l,A,P). Similarly, Kf is the set of all equivalence classes 
of B-densities corresponding to r.v.'s in V . This remark shows us that in fact 
the two completions lead to the same result and this is the reason we tise the 
same symbol for both. The completion by Dedekind cuts has the advantage that 
we can extend the truth value function in an obvious way. which may not be 
possible by means of Cauchy sequences. 

5. Final remarks 

(1) In this paper we have concentrated on the qualitative aspects of ran­
domness without using the quantitative ones, i.e. the probability measure. In 
order to develop our theory, we only need a a -ideal J\f in the a -algebra A. In 
connection with this, we quote a relevant remark by H a 1 m o s [2]: " . . . the 
mathematical theory of probability consists of the study of Boolean rr-algebra^ 
of sets. This is not to say that all cr-algebras are within the domain of proba­
bility theory. In general, statements concerning such algebras and the relations 
between their elements are merely quantitative. Probability theory differs from 
general theory in that it also studies the quantitative aspects of Boolean alge­
bras." In future publications, the quantitative aspects such as stochastic sets. 
measures and integrals will be examined. 

(2) The theory developed so far has a flavor of Infinitesimal Analysis. We 
can also define concepts like "internal" or "external" or use the Loeb measures 
to complete IR# , introducing a kind of blending of Infinitesimal and Boolean 
methods and deriving the general method of Boolean-valued models into two 
steps: The Boolean power followed by an infinitesimal step. These ideas will be 
developed in the near future. 
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