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ON MINIMAL GRAPHS OF DIAMETER 2 WITH 
EVERY EDGE IN A 3-CYCLE 

JAN PLESNlK 

1. Introduction 

Given a graph G (in the sense of [1] or [8]), V(G) and E(G) denote its 
vertex-set and edge-set, respectively. The distance of two vertices u and v is 
denoted by d(u, v) and the diameter of G by diam(G). A graph G with 
diam(G) = k is called a minimal graph of diameter k if diam(G — e)>k for every 
edge e e E(G). These graphs (often called diameter-critical graphs) have been 
studied by several authors. See, for example, [4], [6], [7], [9], and [10] and certain 
parts of the surveys [2] and [3]. The characterization of these graphs seems to be 
a difficult problem. Nevertheless, there are some partial results. For example, those 
minimal graphs of diameter 2 which are planar and contain no 3-cycle are 
completely described in [10]. Also (analogously defined) minimal tournaments are 
fully characterized [11]. In several papers there are considered graphs of diameter 
k without cycles of length 3, 4, ..., fc + 1. Clearly, such graphs are minimal. In 
particular, for k = 2 we have minimal graphs of diameter 2 without 3-cycles. On the 
other hand, one can require minimal graphs of diameter 2 with every edge in 
a 3-cycle. A few years ago I conjectured that such graphs do not exist. Note that the 
validity of this conjecture would imply a simple proof of a result from [5]: Every 
bridgeless graph G of diameter 2 admits an orientation of diameter at most 6. 
Actually, there are two possibilities. (1) The radius of G is 1; then a desired 
orientation can be found very easily (even by Th. 2 of [5] G admits an orientation 
of radius 2 and thus of diameter at most 4). (2) The radius of G is 2 ; then any 
minimal spanning subgraph G' of G with diam(G') = 2 is bridgeless and hence the 
simple proof of Th. 5 from [5] applies whenever G' has at least one edge not 
contained in a 3-cycle. If every edge of G' lies in a 3-cycle, then the authors of [5] 
use a more complicated proof. Unfortunately, as we will see, our conjecture is not 
valid. 

For brevity, a minimal graph of diameter k is called a fc-MT graph if every its 
edge lies in a 3-cycle. It is the main purpose of this paper to present an infinite class 
of 2-MT graphs. Some remarks and open questions involve also the planarity and 
outerplanarity, and fc-MT graphs with fc^3. 
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2. Diameter two 

Here we give two classes of examples of 2-MT graphs. The first consists of graphs 
A(r) (r = l , 2, ...) in Fig. 1. One can easily verify that the diameter of A(r) is 2, 
the deletion of any edge increases the diameter, and any edge lies in a 3-cycle. Thus 
A(r) is a 2-MT graph. 

Fig. 1. The graph A(r) 

The second class is more complicated and therefore we give its members, 
denoted by B(s, t), in detail. The graph B(2,3) is in Fig. 2 and generally graphs 
B(s, t) with 5 ^ 2 and t^2 can be described as follows. 

Fig. 2. The graph B(2,3) 

V(B(S, t))={u,V0,Vi, ...,Vs,Voo, Woi, ..., w0r, w n , . . . , Wi,, ..., w s l , . . . , wst}, 

E(B(s, t))= {uvo, uvu ..., UVS}\J{V0VX, v0v2, ..., v0vt} 
S t t 

u { V0 Woo} u U U { VMj} u U { Woo Wo, } 
i = 0 / = l ; = 1 

U l j U {Wo-Wffc} 
j = l l^jKk^t 

U l j U {WikW)k}. 
Jc=-1 o^i<j^s 
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And again, it is a routine matter to verify that the diameter of B(s, t) is 2, every 
edge is contained in a 3-cycle, and no edge can be deleted without increasing the 
diameter. 

We see that the minimum degree of A(r) is 2 and that of B(s, t) is min {s + 1, 
t+ 1}. Thus we have established the following assertion. 

Theorem 1. For every integer d^2 there exist infinitely many 2-MT graphs 
with minimum degree d. 

As every graph A(r) is planar, we have 
Theorem 2. There exist infinitely many planar 2-MT graphs with minimum 

degree 2. 

Fig. 3. A planar 2-MT graph with minimum degree 3 

Fig. 3 shows a planar 2-MT graph with minimum degree 3 (even it is 3-connec-
ted). However, we know no other such graph and therefore we put the following 
question. 

Problem 1. Do there exist infinitely many planar 2-MT graphs with minimum 
degree at least 3? We conjecture that the answer is negative. 

k = 3 k« 4 k« 5 

Fig. 4. Examples of k-MT graphs 

Theorem 3. There exists no outerplanar 2-MT graph. 
Proof. Suppose that there is an outerplanar 2-MT graph G. Clearly, G is 

without cutvertices (otherwise G is a star). If G is properly imbedded in the plane, 
then the boundary of the exterior face is a circuit corresponding to a hamiltonian 
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cycle Z of G. Since G has at least two vertices, say, vx and u2, of degree 2 (see e.g. 
[8]), it is useful to deal with them. As they are incident only with edges of Z, 
d(vu v2)4=l (otherwise the third vertex of the 3-cycle containing the edge vxv2 

would be a cutvertex). Thus d(vx, v2) = 2 in G as well as in Z. A simple case 
analysis shows that the length of Z cannot be 4, 5, or 6. Therefore let it be at least 
7 and let uu u2 and u0 be such vertices that uxvxu0v2u2 is a section (a path) of Z. 
Since G is not a star, there exists a vertex x not adjacent to u0. Then one sees that 
at least one of the distances d(vx, x) and d(v2, x) exceeds 2. This contradiction 
completes the proof. 

R e m a r k . The reader has certainly observed that the graph A(r) (see Fig. 1) 
has r vertices with the same neighbourhood. In this way we can sometimes form 
new minimal graphs from smaller ones, but in general such an operation does not 
preserve the minimality (cf. [7]). Nevertheless, one can obtain a new 2-MT graph, 
e.g., from that of Fig. 2 by adding one or more copies of u. Adding a copy of the 
top vertex in Fig. 3, we also obtain a 2-MT graph, but we lose the planarity. 

3. Larger diameters 

Now we present classes of fc-MT graphs with k ^ 3. These are illustrated in Fig. 4 
for k = 3, 4, and 5. Each of these graphs of diameter k consists of the (2k — 
l)-cycle C and one or more internally disjoint paths of length 2 for each edge of C, 
where the paths join the ends of the edge. If the ends of each edge of C are joined 
by exactly one path of length 2, then we get outerplanar k-MT graphs. In general 
we get at least planar /c-MT graphs and hence we have 

Theorem 4. For every integer k^3 there exist an outerplanar and infinitely 
many planar k-MT graphs with minimum degree 2. 

Problem 2. Describe all outerplanar fc-MT graphs for every k^3. 
Problem 3. Do there exist fc-MT graphs with fc^3 and minimum degree at 

least 3? 
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О МИНИМАЛЬНЫХ ГРАФАХ ДИАМЕТРА 2 С КАЖДЫМ РЕБРОМ В 3-ЦИКЛЕ 

}ап Р1е§тк 

Резюме 

Показывается, что существует бесконечный класс минимальных графов диаметра 2 с каждым 
ребром в 3-цикле. Частично исследуется и существование таких графов для больших диаметров. 
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