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Matli. Slovaca 32,1982, No. 3,209—227 

REGULATORS OF TYPE a 
OF LATTICE ORDERED GROUPS 

FRANTISEK SIK 

The purpose of the present paper is to investigate the lattice ordered groups 
(/-groups) having a base by using the algebraic and topological methods. (Note that 
in[9,10,12],the /-groups having a base are called /-groups of kind a ;see Definition 
1.2 and Lemma 1.4.) The algebraic examination is carried out by means of the 
so-called regulators, i.e. the indexed systems of prime subgroups having the zero 
meet and the topological examination by means of the topology induced on 
a regulator (structure space). For terminology and notations, cf. [13] I and [10]. 
A short review is also given in sec. 0 of the present paper. Other structure spaces 
were dealt with by S. J. Bernau [1]. His spaces are defined on the systems of all 
prime z-subgroups. Similar considerations will be included in another paper. Prime 
subgroups need not be z-subgroups, while minimal prime subgroups do it. The 
regulators of type a are formed by minimal prime subgroups and are equipped with 
a topology inherited from the hull-kernel topology defined in [1]. 

In the present paper it is proved that there exists (up to equivalence) at most one 
regulator of type a of an /-group, namely the set of all maximal polars (1.9). The 
existence of the regulator of type a characterizes the /-groups having a base (1.10). 
A topological characterization to a regulator of be of type a is given in 1.13 (the 
induced space is discrete). A topological characterization of /-groups having a base 
is given in 3.5 (the set of all isolated points is dense in (9t, G) provided that the 
standard regulator (9t, u)* is similar to a reduced one) and in 2.4 (the union of all 
atoms of the lattice 3K(9., G) is a djnse subset of (91, G) assuming only the 
standardness of (91, u)). 

The similarity of a standard regulator (91, u ) to a regulator of type a is described 
by the relation 5K(9t, G) = .D?(9t, G) (3.1). The property $fl(9t, G) = 9K(9t, G) is 
then characterized by a number of ecuivalent conditions in 2.10 and 3.6. In 
Theorem 3.7, where the results of Theorem 3.6 are specified for a completely 
regular regulator (91, u), this equality is described by conditions of various kinds. 

* The symbol u has the same meaning as the symbol |J in the preceeding papers [10], [13]. 
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An algebraic condition reads: The set of all minimal prime subgroups / with 
Z(J)^=0 is equal to the set of all maximal pohrs of G. A set condition: Every 
ultraantifilter x on /7'(G) with Z(UAT)^=0 is principal. A topological condition: 
The space (!H, G) is locally connected. If the regulator (iH, u ) is reduced, the above 
condition reads: The space (iH, G) is discrete. In sec. 4 conditions are studied 
under which the regulators )Hn and iHr are of type a or finite and of type a. The 
results are given in 4.5, 4.7 and 4.8. 

0.1 A regulator (iH, u ) of an /-group G is a set iH (=£0) and a mapping u . 
iH—>:?(G), the family of all prime subgroups of G such that n { u x : xe iH} ~ {0}. 
(iH, u ) is called standard if u x ^ G for every jre.7., reduced if *, yeiH, x ^ y => 
u x | | u y and completely regular if it has the following property: x e iH, fe G, fe ux 
implies that there exists g e G such that /<5g and g e UJC (/(5a means | / | A g\ =0 ) . 
(iH, u ) is said to be finite if the setiHis finite. Two special types of regulators (the 
n'-regulator and r-regulator) are defined in 0.5. 

Let (.). , u , ) be a regulator of an /-group G, ( /= 1, 2). The regulator (iH-., u ) is 
said to be similar (equivalent) to the regulator (iH,, Ui) if there exists an 
/-isomorphism a of G onto G2 and a surjection (a bijection) /?: IĤ  onto iH such 
that /eui/3jr = a / e u x for every / e G and every jte!H2 or equivalently 
aui/Lc = u2Jt for every ;ceiH2. (The mapping f$ is continuous, open and closed 
(a homeomorphism) with respect to the induced topology defined in sec. 0.2 
below, [13] II 4.2.) 

An equivalence of (iH , u ) and (,H2, u^) with G = G^ ( - G) and a = idG is 
called an equality. 

Let (iH, u ) be a regulator of G. Take x € iH and define x = {> e .).: u x - u y } , 
JH = {x: x e !•){} and u x = UJT. Then u is a mapping of iH into ^ ( G ) and (H, u ) is 
a regulator similar to (.H, u ) , the so-called simplification of (IH, u ) . 

0.2 For / e G define Z(f) = {xe iH: / € u x } . If (iH, u ) is a standard regulator of 
G, then (G=£ {0} and) the set ^ = {Z(/) : / e G } is a base of closed sets for 
a topology on the set iH ([13] I 1.2). This topology (in the sense of Bourbaki) is 
called the topology induced on iH by the l-gro>ip G. The corresponding topological 
space is denoted by (iH, G). 

0.3 Let (iH, u ) be a regulator of an /-group G. We define 

W(A) = {feG:feux fore/ery xeA} (0cAc!H), 
Z(P) = {x e ! H : / e u x fort very feP} (0 P_G). 

If A = {x} or P= {/} is a singleton, we w i t e ^(x) or Z(f) instead of V({x}) or 
•Z({/}), respectively. W and Z are evide-,tly dual isotone mappings between the 
sets exp iH and exp G ordered by inclusion *P(x) — UJC and Z(f) coincides with the 
notation in 0.2. We denote by s)f(iH, G) or 3J.(JH, G) or C(iH, G) the system of ail 
closed or regular closed or clopen sets of (W, G), respectively. 
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0.4 The Boolean algebra of all polars of G is denoted by v(G). Being 0 =£ A c G, 
we define A' = {g e G: gbf for every / e A } . Then the complement of a polar if in 
r(G) is /<'. J7'(G) : = { / ' : / e G} or 77(G) : = { / ' : / e G} is the system of all dual 
principal or principal polars of G, respectively. 77' (G) and 77(G) are sublattices of 
the lattice T(G). 

0.5 By an ultraantifilter on a v -semilattice A there is meant a maximal antifilter 
on A and an antifilter is a dual notion to that of a filter. The family of all 
ultraantifilters on A is denoted by U(A). If A is a v-semilattice of subsets of G 
(e.g. A = T(G) or = 77'(G) or = 77(G)) and xeU(A), we define ux = \j{KeA: 
Kex}. An ultraantifilter x is called standard if u*=£ G. If G=£{0}, every 
xeU(77'(G)) is standard and every xeU(A), where A=T(G) or 77(G), is 
standard iff G has a weak unit. The set of all standard ultraantifilters on r(G) is 
denoted by US(F(G)). Assuming A = r(G) or T7'(G) or 77(G) and x e U(A), then 
u * is a prime subgroup of G. (Us(/")> u ) and (U(77'), u ) — briefly denoted by SRr 

and ST./J, respectively, are standard regulators of G, the latter is reduced and 
completely regular, ffir or ?Rn is called the F-regulator or the TT-regulator of G, 
respectively. 

Put A=Us(r) or = a v-semilattice, respectively. Then the set 

X' = { U / ' : / e G } or E= {UK: Ke A}, 

where UK= {xeU(A): Kex} (Ke A), is a base of open sets for a topology on 
LL(T(G)) or U(A), respectively. 

(U,(T(G)), S') or (11(A), D , 

respectively, is the notation of the corresponding space. 

1.1 Definition. A regulator (JR, u ) of an /-group G is called a regulator of type a 
(of type 0) if n { u y : ye% y*x}*{0} (={0}) for every xeW. If (ffi, u ) is 
a regulator of type a oC G, then G=£ {0} and (SR, u ) is clearly reduced (and hence 
standard). 

1.2 Definition. An /-group G is said to be an /-group of kind a (of kind 0) if an 
arbitrary polar of G different from G is contained in a maximal polar of G (if in G 
no maximal polar exists). A representable /-group is of kind a iff G has an 
irreducible representation (see the following Proposition 1.3 and [5] 3.11). In [9] 
p. 407, I called the corresponding realization a realization of type a. 

By a maximal polar of G there is meant a dual atom of the lattice T(G) of polars 
of G. Dually, a minimal polar of G is defined. 
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1.3 Lemma. The set of all dual atoms of T( G) is equal io the set of all dual atoms 
of 17 (G). 

Proof. <= • A dual atom of T(G) (— a maximal polar of G) is a dual principal 
polar because its disjoint complement, a minima! polar of G, is a principal polar 

3 : If K is a dual atom of IT(G), then K' is a minimal polar of G. If not, there 
exists aeG such that a" K', {()}=£« =£K', hence a K, G± a' =£ K, a con­
tradiction Consequently, K is a maximal polar of G ( a dual atom of T(G)) 

1.4 Proposition. An I group G+ {0} is of kind a iff G has a base. 
Proof follows from [5] Theorem 3 4 

1.5 Lemma. Let ("H, u ) be a regulator of an I group G If there exists x e .1. such 
that M— n{ny: y e M, y=£ x} =£ {0}, then ux — M' is a maximal polar of G 

Proof. Denote J ux. Suppose KeT(G), K+G and K M'. There holds 
JnM-{()}, hence M'_J. Thus we have K M' J. If K£ J, then K' J K, 
whence K=G a contradiction. Consequently, K J M' and M' is a maximal 
polar of G since clearly M' =£ G 

1.6 Corollary. h\ery regulator of an l-group of kind fi is of type (3. 

1.7 Theorem. A standard regulator ())i, u ) of an I group G is of type a iff the 
mapping u is injective and ux a (maximal) polar of G for every x e)H. 

Proof. Every regulator ())\, u ) of type a is reduced, thus the mapping u is 
injective. By 1.5, UJT is a maximal polar of G for every jreW. 

Conversely, let the condition of Theorem be fulfilled, xesM and M=n{u_y: 
yeM, y£x}. By the definition of a prime subgroup (ux) M holds. Since 
u * n M = { 0 } , we have (UJT)' M, hence (ux)' — M. Consequently M£ {0} and 
("){, u ) is of type a. 

1.8 Nole. An analogical assertion as in 1.6 for / groups of kind /3 is not true, in 
general, for /-groups having a base, namely there does not hold the following 
statement: 
(*) Every reduced regulator of an /-group having a base is of type a. 
Indeed, the set of all minimal prime subgroups of an arbitrary / group G=£ {0} is 
a reduced regulator ([13] II 1 5(1)). If G has a base and if there exists a minimal 
prime subgroup of G, which is not a maximal polar, then by 1.7 this regulator is not 
of type a A characterization of /-groups whose every minimal prime subgroup is 
a (maximal) polar is given in 4 6. 

1.9 Corollary. (1) Let an l-group G± {0} have a base Then the set of all 
maximal polars of G together with the identical mapping is a ) egulator of type a of 
G. 

(2) If (;)t, u ) is a regulator of type a of an I group G, then \ ux: x e ))i} is the set 
of all maximal polars of G 

212 



Proof. (1) By 3.4 [5] the intersection of the set 91 of all prime subgroups that are 
polars is zero. Each of these polars is maximal or equal to G, [12] III 7.15. Hence 
the set of all maximal polars of G together with the identical mapping is a standard 
regulator of G. This regulator is of type a by 1.7. 

(2) By 1.7 UJC is a maximal polar of G for every Jt e 91. G has a base. In fact, for 
G£Le r(G), L = L v r n { u j t : Jte9t} — n{L v rUJt: Jte 91}. From the maximality 
of the polar u JC, L v r uj t = G o r L c UJC. The set of Jt e 91 with the property L c: ujf 
is clearly nonempty, hence G is of kind a and by 1.4 G has a base. Now if {UJT: 
.re 91} is not the set of all maximal polars of G, then by (1), n{uj t : Jte91} =£ {0}, 
a contradiction. 

1.10 Theorem. Let G be an l-groupi^ {0}. 77ien the following conditions are 
equivalent. 

(1) G has a base. 
(2) Every polar is an intersection of maximal polars of G 
(3) There exists a regulator of type a of G. 
Proof. 1=>3. By 1.9(1). 
3 ^>2. If (91, u ) is a regulator of type a, then ujt (jt e 91) is a maximal polar of G 

by 1.7. Since n{uj t : jre9i} = {0} for an arbitrary LeT(G) L = L v r n { u J t : 
r e 91} = n { L v r u J t . Jte9i}. From the maximality of the polar ujt it follows that 
L v r u j t = G or L c u x . Consequently, L = n{uj t : xedi, L c u j t } . 

2=>1. From (2) it follows that G is of kind a, hence G has a base by 1.4. 

1.11 Proposition. Let (91, u ) be a standard regulator of G Then the following 
conditions are equivalent. 

(a) (91, u ) is similar to a regulator of type a. 
(b) 77?e simplification of the regulator (91, u ) is of type a. 
(c) ujt is a (maximal) polar of G for every x e 91. 
Proof. Let (91, u ) be the simplification of (91, u ) . 
a=>b. If (91, u ) is similar to a regulator (91,, u , ) of type a and a, fi the 

corresponding mappings (see 0.1), then for every jte91 {0} =£an{ui/3y: 
/Sye9iI, fiy^fix} = n { u y . )>ei)i, u y ^ u j r } — n { u y : ye91, y=£jf} because for 
the reduced regulator (911, Ui) there holds /Sy — /3r = u_y = u.r (jt, _ye9t). 

b=^>c. By 1.7 ujt is a maximal polar of G for every jt e JTL Hence ujt is a maximal 
polar of G for every Jte91. 

c=$>a. If ujt is a polar of G (jte91), then ujt is a maximal polar ([5] 2.2 or [12] III 
7.15). The simplification of (91, u ) is a regulator of type a by 1.7 and (91, u ) is 
similar to it. 

1.12 Note. By [12] II 4.16, every / group G=£ {0} has a regulator. Moreover, for 
every regulator (9.., u . ) of G there exists a reduced, completely regular regulator 
(9t2, u 2) and a mapping <p: 91i onto 912 such that u,x^u2<p(x) (jte91i). As <p(jt) 
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(xeMi), we define a minimal prime subgroup contained in u . r and for u 2 the 
identical mapping will be chosen. The regulator (:)i2, u ) is evidently reduced and 
by [13] II 1.4 completely regular. 

1.13 Theorem. A standard regulator (M, u ) of an l-group G is of type a iff the 
topological space (:)i, G) is discrete. 

Proof. If (!)i, u ) is of type a and jtelli, then there exists 0=£ fe n{u_y: _y eM, 
y^jc} , thusJ) i^Z( / ) 2 ))l\{x} and hence Z( / ) - J ) i \ {v} . Thus {JC} is an open set. 

If (9i, G) is a discrete space and xeyM. then {y: _ye:)i, y±x} is a closed set. 
hence there exists feG such that xeZ(f) and yeZ(f) for y±x. Thus 
0±fen{uy:ye?H, y±x}. 

1.14 Proposition. Let (;)i, u ) be a standard tegulator of an l-group G. Then G is 
of kind fi iff the lattice iPi(;)i, G) has no atom. 

Proof. The assertion follows from the fact that the existence of an atom of the 
lattice 9W(!)i, G) is equivalent to the existence of a dual atom of T(G) ([13] I 2.18), 
i.e. to the existence of a maximal polar of G. 

1.15 Theorem. An I group G4= {0} is of kind /3 /// there exists a reduced 
regulator of type /3 of G. 

(See [9] Satz 11). 
Proof. Let G* {0} be of kind /J. There exists a reduced regulator of G and this 

is of type /? by 1.6. 
Conversely, let (JK, u ) be a reduced regulator of type /S of G and L a maximal 

polar of G. The set of all x e 9. with \JX 3 L has at least two elements. Otherwise, 
there holds n{u_y: y e))\} 2 L ' =£ {0} or for some rce^i, n{u_y: _y e!)i\{;t}} :=> 
L' £ {0}, a contradiction. Choose x, ye?R, x4=y with ujcnu_y D L . Since (!)i, u ) is 
reduced, there exist a, beG such that 0<a e ux\uy, 0<b e u_y\u* and 
a /\b = 0 . Since L is a prime subgroup ([12] III 7.15 or [5] 2.2) there holds a e L or 
beL ([5] 2.3 or [2] 2.4.1), thus aeuy or beux, a contradiction. 

1.16 Corollary. A reduced regulator (W, u ) of an l-group G is of type _9 ;'// the 
lattice -OT(ffi, G) has no atom. 

Proof. By 1.15 the condition may be replaced by the following one: G is of kind 
/3. If this is the case, then by 1.6 (ffi, u ) is of type /ft. Conversely, if (;)t u ) is 
reduced and of type /3, G is of kind /? by 1.15 

2.0 By 1.9 the role of maximal polars in the regulators of type a i> described. In 
the following (sec. 3) we try to clarify the participation of maximal polars in 
reduced regulators of /-groups having a base, in other words, to what extent the 
reduced regulators of /-groups having a base "approximate" the regulators of type 
a. Sec. 2 has an auxiliary character 
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2.1 Definition. ([2] 2.3.1) Let / be a solid subgroup of an /-group G and GIJ the 
set of left cosets of G modulo / . Defining a + J^b + J = there exists fe G such 
that a+f^b (a, beG) we obtain a binary relation &, which is a distributive 
lattice ordering on GIJ. If (9t, u ) is a regulator of G, x e 9t and fe G, f(x) means 
the coset of GIKJX containing / . /(0) will be denoted by u*, too. 

2.2 Lemma. A regulator (9t, u ) of an l-group G=£ {0} is reduced iff for x, ye~\, 
x£y there exists fe G such that f(x)>yjx and f(y)<vy. 

Proof. Let regulator (9t, u ) be reduced and x, >»€9t, x+y. Then there exist 
0eu*\u .y and AeujAux. Denote #i = \g\ — \g\A|A|, AI = | A | - | 0 | A | A | . Thus 
0<gxeKjx\\jy, 0<Aieuy\ujc and Q\bh\. The element f=—gx + h\ fulfils the 
condition/(x) = f+yjx = — fld + Ai + u * = AI + U J O U X (<7I and Ai commute) 
and f(y) = f+uy = - ^ i + Ai + uy = -g1 + vy<vy. 

Conversely, let the condition hold. Pick x, yeSH, x4=y. By supposition, there 
exists fe G such that f(x)>ux and f(y)< uy. Then f*(x)>ux and f~(y)<uy 
because f*^f^f~. From the relation f*bf and f* e u* it follows that f~eux and 
similarly f* e uy. Finally, f e ujc\uy and f* e ujAu*, thus the regulator (9t, u) is 
reduced. 

2.3 Proposition, a) A regulator of an l-group which is similar to a reduced 
regulator is standard. 

b)Ifa reduced regulator is similar to a reduced regulator, then the similarity is an 
equivalence. 

c) A regulator which is equivalent to a regulator of type a is itself of type a. 
d) A reduced regulator which is similar to a regulator of type a is itself of type a. 
Proof. Let (9t., u,) be a regulator of an /-group Gt (i = 1, 2), let (9t2, u2) be 

similar to (9tt, u t ) , a and /3 mappings from the definition of the similarity (0.1). 
a) If (9ti, Ui) is reduced and U2JC = G2 for some Jte9t2, then Ui/3x = a_ 1u2x = 

Gi, hence (9tt, Ui) is not reduced, which is a contradiction. 
b) If (9tf, u,) (i = l, 2) is reduced and x, ye~~2, x£y, then v2x£u2y, hence 

Ui/3x = a_ ,u2 .r =£ a~l\j2y = UijSy. Since Ui is injective, we have fix4:p>y, thus 
the mapping /S is a bijection. 

c) Let (9ti, Ui) be of type a and let the similarity be an equivalence. Take x e 9t2. 
Then n{yj2y: ,ye9t2, y±x} = n{aui/5y: >>€9t, y±x} = an{uiz : ze9ti, 
z^fix} ± {0}, hence (9t2, u2) is of type a. 

d) Let (9ti, Ui) be of type a and (9t2, u2) reduced. Since both regulators are 
reduced, the similarity is an equivalence by b), and by c) (9t2, u2) is of type a. 

2.4 Theorem. An l-group G has a base iff for a standard regulator (9t, u ) the 
union of a subset ~\ of atoms of the lattice 3R(~~, G) is a dense subset of the space 
(% G). 
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Note. If the condition of Theorem is fulfilled, then 91 is the set of all atoms of the 
lattice W(?H, G). 

Proof. Let G have a base and let (.Tt, u ) be a regulator of type a of G (1.10). 
Then {UJC: jre.Tt} is the set of all maximal polars (1.9(2)), n{ujr : jre.Tt} = {0} 
(1.10) and hence JH = Z(n{uJ t : Jteffi}) = VW{Z(KJX): x e » t } 
= C/, : ( I .G,(U{Z(UJC): jre-T.}) and Z (UJC) is an atom of the lattice 3T?0Ti, G), [13] 
I 2.18 and 2.19. 

Let (9t, u ) be a standard regulator of G. Let 91 = {Av: ve/V} be a set of atoms of 

the lattice Wl(?ft, G) and | J Av a dense subset of the space (.Tt, G). Then 
» e N 

do*, c, f (J A ) = JH, whence V -w;4» = % {0} = V ( V wAv) = f l ^ 4 » and every 
\ » e N / »eN \ » e N / »eN 

VAy is a maximal polar of G, and so the set ST., = { WAV: veN) together with the 
identical mapping is a regulator of G because maximal polars are prime subgroups, 
[12] III 7.15 or [5] 2.2. This regulator is of type a by 1.7. By 1.9(2), JR, is the set of 
all maximal polars of G, hence 91 is the set of all atoms of 9T.(.Tt, G). 

2.5 Lemma. Let (.Tt, u ) be a standard regulator of an l-group G and let A c ,R. 
Then yeA*>n{ux: xeA}c\jy, especially ye i o u x c u v . 

Proof. We have: Z(f)^Ao{x: fe\jx) ^ Aofe n{ujc: xeA). Hence 
yeAoyeZ(f) for every fe G such that Z(f)s.AofeKjy for every / e n { u j c : 
j r e / 4 } * > u y 2 n { u j r : xeA}. 

2.6 Proposition. Let (JT., u ) be a standard regulator of an l-group G and x e ;Ti. 
The following conditions are equivalent. 

1. UJC is a polar of G. 
2. UJC is a maximal polar of G. 
3. jceSTTJOTt, G). 
4. JC is an atom of the lattice .TJ.(.Ti, G). 
If the regulator (.T., u ) is reduced, then the following condition is equivalent to 

the preceding ones. 
5. x is an isolated point of the space (.Tt, G). 
Proof. 1=>3. If u j t e r ( G ) , then x = ZV(x) = Z(KJx)eW(m, G) ([13] I 2.8 

and 2.18). 
3^4. I fv4 is an open subset of (Si,G),0^A ex and A£x,thenxeA,hence the 

closed set x\A contains the point x. Consequently xc.x\A, a contradiction. 
4 => 2. If x is an atom of Wl(% G), then Y*(jt) = WZW(x) = V(x) = UJT is 

a maximal polar of G ([13] I 2.4 and 2.8). 
2 ^ 1 is evident. 
If (3., u ) is reduced, then by 2.5, x = x for every x e JTt, i.e. (.Tt, G) is a Ti-space 

and we have there: 
jte3W(.Tt, G ) O J C is an isolated point of (.Tt, G). 
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2.7 Definition. The atoms of the lattice of closed sets of a topological space P will 
be called trivial closed sets of P. Analogously for open or clopen sets. 

Some simple lemmas concerning the preceding notions follow. 

2.8 Lemma, a) If the trivial open sets of P form a partition on P (say S), then the 
trivial closed sets of P form a partition on P (say R) and R — S holds. 

b) IfTisa trivial closed set of P and Int 7>=0, then Tisa trivial open set of P. 
Proof, a) The blocks Tof S are closed sets. If some Tis not trivial closed, there 

exists a closed set Vc. Tsuch that 0=£ V± T. Then X = (P\V)nTis an open set, 
V c T , 0=£X=£ T and T is not trivial open. 

b) If 0=£ A c T and A is open, then either T\A = 0 or T\A is a proper closed 
subset of T, hence T= A, i.e. T is a trivial open set. 

2.9 Lemma. Lef P be a topological space, A, B^P and A = P\B. Then there 
holds 

\ntB=B = ln\A=A. 

i.e. the complement of a regular closed set is a regular open set and conversely. 

Proof. Suppose Int B=B. Then 

A = P\B => A = P\B => P\A = P\P\B = Int B => P\A = 

= Int B= B => A = P\B = P\P\A-lnt A => A = Int A. 

Suppose Int A = A. Then 

P\B = A = Int A = P\P\A => B = P\A = P\P\B -

= Int B=>B = Int B 

2.10 Proposition. Let P be a topological space. The following conditions are 
equivalent. 
1. a) P contains a base for closed sets formed by open sets. 

b) P is a locally connected space. 
2. Every base for closed sets of the space P is formed by open sets. 
3. Trivial open sets form a partition on P. 
4. Every closed set of P is open (= every open set of P is closed). 
5. Ac.P, A open in P => Int A = A (i.e open sets of P are regular open). 
6. Tl(P) = W(P) (i.e. closed sets of P are regular closed) 
1. x is an open set of P for every xeP 
8. x e 3)i(P) for every xeP. 

If P is a Ti-space, then evidently the preceding conditions are equivalent to the 
following one. 

9. P is a discrete space. 
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Proof. 1=>3. From [12] IV 9.2 it follows that la => every block T of the 
partition on P, the blocks of which are maximal connected sets, is a trivial closed 
set. 

From lb it follows that Tis an open set ([7] I, Ex. Ua) and by 2.8(b), Tis a trivial 
open set. 

3=>4. By 2.8(a), every nonempty closed set is a union of blocks of the partition 
which is formed by the trivial open sets, hence it is open. 

4=>5. The closure A of every set A c P is open, hence Int A = A. If A is open, 
then it is closed by supposition, hence A = A. Thus Int A = A for every open set A 
of P. 

5=>6. Be9l(P)^P\B = A is open => lntA = A => BeWl(P) (2.9). 
6=>8. xeP=>x€m(P)=>xeW(P). 
8=>7. Choose xeP. If Int *=£;?, then there exists >>ei\Int.f. Since the set 

i \ In t x is closed, there holds Int j i c y c i \ In t x and hence Int ynlnt x = 0. From 
the relation y c i w e obtain Int y c Int x, whence Int y = 0. But this contradicts the 

relations 0 ± y = Int y=0. Finally, Int x = x, and x is an open set. 
7=>2 is evident. 
2=>1. la holds evidently. We prove lb . Every closed set is open because the 

system of all closed sets is a base for closed sets. By 2.8(b) every trivial closed set of 
P is a trivial open set. By [12] IV 9.2 the partition R„ every block of which is 
a maximal connected set of P, is equal to the set of all trivial closed sets of P. Now it 
follows immediately that the space P is locally connected. Indeed, the maximal 
connected sets are trivial open and hence form a base for open sets, [7] I, Ex. Ub. 

3. 

3.1 Theorem. A standard regulator (9t, u ) of an l-group G is similar to 
a regulator of type a iff 3l(?H, G) = 9ft(9t, G). If the condition is fulfilled, then 
G has a base. 

Proof. Let a regulator (9t, u ) of G be similar to a regulator of type a. By 1.9(2) 
and 0.1 UJC is a maximal polar of G for every x e 9t; by 2.6 x e 9JJ(9t, G) and by 
2.10 2K(9., G) = 5R(9t, G). 

Conversely, suppose 2J?(9t, G) = 9?(9t, G). This equality implies T(G) = 
Q(m, G), [13] 12.12 and 2.18, and so T(G) = S2(9t, G) => {V(JC) : jce9t} = {UJC: 

;ce9.}. Hence UJC is a polar for every jce9L By 1.11 (9t, u ) is similar to a regulator 
of type a. By the same theorem the simplification of (9t, u ) is of type a and by 
1.10 G has a base. 

3.2 Proposition. Let a regulator (9t, u ) of G=£ {0} be similar to a reduced 
regulator, a and (i the corresponding mappings (see 0.1) and R the partition 
induced byfion'Si. Then the blocks of R are trivial closed sets of the space (9t, G). 

218 



Conversely, if trivial closed sets of (9t, G) form a partition on 9t, then (9t, u ) is 
similar to a reduced regulator and the simplification of (9t, u) is a reduced 
regulator. 

Proof. Let a regulator (9t, u) of G£{0} be similar to a reduced regulator 
(9ti, Ui) and r=/3" 'y for some ye9ti. If T is not trivial closed, there exist xit 

x2eT and feG such that X\eZ(f) and x2eZ(f). Thus feuxi\ux2 and hence 
a~lfev\f}xi\ui(5x2. This set is empty because /3xi = /3jc2 = y, a contradiction. 

Conversely, let trivial closed sets of (9t, G) form a partition on 9t, say R. Let Ui 
be a mapping of R into &(G) such that UiX = uxo for every x e R and for a fixed 
xaex. Then (R, u,) is a regulator of G. Indeed, choose feG and xeR with 
fe Uii and pick yex. Then fe uacG, i.e. xG e Zn(f), whence y e Zx(/) because x is 
trivial closed. We have got u j t c cuy . Consequently n{uiJt: xeR} c n{ux: 
jf€9t} = {0}. (R, Ui) is reduced. In fact, suppose x, yeR and UiJC^Uiy. Then 
UATo2uyG and by 2.5 xa e C1(<H.c){yG} =y- Hence x = c\(m.o)Xa = y. Finally, 
(R, Ui) is clearly the simplification of (9t, u) . 

3.3 Corollary. Lef (9t, u) be a standard regulator of G. Then the following 
conditions are equivalent. 
1. (9t, u) is similar to a reduced regulator. 
2. The simplification of (9t, u) is a reduced regulator. 
3. The blocks of the equivalence relation R on 9t, defined by the rule xRy = ux = 

uy, are trivial closed sets of (9t, u) . 
Proof. 14>2by3.2. 
2=>3. (9t, u) is similar to its simplification, thus we have 3 by 3.2. 
3=>1 by 3.2. 

3.4 Lemma. Lef (9t, u ) be a regulator of G¥= {0} similar to a reduced regulator, 
a and /? the corresponding mappings and R the partition induced by /? on 9t. 
a) If B is an open set of (9t, G), then B contains every trivial closed set which it 

meets. 
b) If A is an atom of the lattice 3Jv(9t, G), then A is a trivial clopen set of (9t, G) 

and UTeR and TnA±0, then T=A. 
Proof. By 3.2 trivial closed sets of (9t, G) are blocks of the partition R. 
a) Te R, 0 * TnB$> T ^0*T\B^T,T\B closed => T\B = T^> TnB = 0,a 

contradiction. 
b) Choose T, Ve R, Ti= V. By 2.2 and 3.3 for arbitrary xeT and y e V there 

exists fe G such that f(x)>ux and / (y )<uy . Then f*(x)>ux, E(y)<uy and 
so x e 9t\Z(E) and y € 9t\Z(E). Since E<5E, we have (9t\Z(E)) n (9t\Z(E)) = 
0, [13] I 2.15. We have proved the existence of disjoint open neighbourhoods C 
and D of the points x and y, respectively, C=9t\Z(E) and D = 9t\Z(E). Let A 
be an atom of the lattice 2ft(9t, G) such that x, yeInt A (= B). The set A\C is 
closed and 0±DnB g A\C holds. Then 0=£cl(9,.o)(DnB) c A\C~A, a 
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contradiction. It follows that B meets only one block of the partition R, say T. 
Thus 7 D B and by a) T= B. Thus r=cl(;>t.c>r = c\(:H.G,B = A and A is a trivial 
clopen set of (9i, G). 

3.5 Theorem. Let (9i, u ) be a regulator of an l-group G=£ (0) similar to 
a reduced regulator. Then the following conditions are equivalent. 
1. G has a base. 
2. The union S of all atoms of the lattice 3P?(9., G) is a dense subset of (9i, G). 
3. There exists a dense (open) subspace S of the space (9i, G) such that 

9.(S) = iZK(S). 
If (9i, u ) is reduced, the following condition is equivalent to the preceding ones. 

4. The set of all isolated points of the space (9i, G) is a dense subset of (JW, G). 

Note. If condition 2 is true, then the set S from 2 has the property of the set S 
from condition 3. 

Proof. Let {Aa} be the system of all atoms of the lattice 9J?(9i, G). By [13] 
I 2.18 {W(Aa)} is the system of all maximal polars of G. 

1 ̂ > 2. By 1.9 or [5] Theorem 3.4, f] V(Aa) = {0}. It follows that 9i = V » A , = 
a a 

C1,.H c\jAa, [13] I 2 19. Hence the union S of all atoms of the lattice W(di, G) is 
a 

a dense subset of (91, G). 
2=^3. The union S of all atoms of the lattice 9J?(9i, G) is open by 3.4(b) and by 

the supposition a dense subset of (9i, G). Let R be the partition induced by the 
mapping /S defining the similarity of (9i, u ) . By 3.4(b) every Te R which meets S 
is a trivial clopen set of (9i, G). Hence if A e 9?(3i, G) meets S , then A n S is an 
open subset of (9i, G) and a closed subset of the subspace S . It follows that A n 3 
= Snc l ( 3 t . C ) (AnS) = d s ( A n S ) e 3 J f ( S ) , hence 9?(S) = 9K(S). 

3 ^ 1 . Let S be a dense subspace of (9i, G) such that 9?(S) = 9ft(S). Then 
( S , Ui), where Ui = u | 3 is a standard regulator of G, [13] II 4.9. 

It is evident that S n Z | , , 0 ) ( / ) = -Z(3,w,)(/), hence the identical mapping of S is 
a homeomorphism of the space ( S , G) onto the subspace S of (9i, G). Conse­
quently, 9?(3) = 9?(S, G) and 9W(3) = 9J?(S, G). By 3.1 G has a base. 

1 =>4. As in 1 =£>2, 3i = cl(m.G)[jAa, where A , are atoms of the lattice 9Ji(9i, G). 
a 

By 3.4(b) every Aa is a trivial clopen set and is equal to a block of the partition R 
induced on 9i by the mapping fi defining the similarity of (9t, u ) . Since (9i, u ) is 
reduced, the similarity is an equivalence (2.3(b)) and hence /S is one-to-one. 
Therefore, every Aa is an isolated point of (9i, G). 

4=^2 is evident. 
In the following Theorem, the results of Theorem 2.6, 2.10 and 3.1 will be 

summarized. 
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3.6 Theorem. Let (i)l, u ) be a standard regulator of an l-group G. The following 
conditions are equivalent. 
a) The l-group G has a base, the regulator (?H, u ) is completely regular and the 

union of all atoms of the lattice 33c(fR, G) is a closed set of (1R, G). 
b) Any condition of Theorem 2.6 fulfilled for every x e JR. 
c) Any condition of Theorem 2.10 for P=(d\, G). 
d) Any condition of Theorem 3.1. 

Moreover, if (ft, u ) is reduced, then the following conditions are equivalent to 
the preceding ones. 

e) The regulator (i)\, u ) is of type a. 
f) The space (ft, G) is discrete. 

Proof. b = c because 2.6(3) = 2.10(8). 
c = d because both Theorems have the condition 9)?(JR, G) = ^(M, G) in 

common. 
CAd =>a. From c) (2 10(2)) it follows that (ft, u ) is completely regular ([13] II 

1.5). The remaining two conditions follow from d) (G has a base) and c) (2.10(4)). 
a => c (2.10(1)). We shall prove that every point x e ft has a fundamental system 

of connected neighbourhoods ([4] I § 11,6, Df. 4). Thus it will be shown that the 
space (ft, G) is locally connected which is the condition 1(b) of 2.10. If B is 
a neighbourhood of the point x, then there exists fe G such that x e ft\Z(/) _ B. 
Since G has a base, the meet of all maximal polars g'a (aeA) is equal to zero, 

f l g'a= {0} (1.9). It follows that ft = Z(0) = V' *Z(g'a) = cl * G) U Z(g'a) ([13] 
a e A aeA aeA 

I 2.18 and 2.19). Since Z(ga) is a clopen set ([13] II 1.4), the set Z(g'a) = ft\Z(#„) 
is clopen as well. Since {Z(g'a): aeA} is the family of all atoms of the lattice 

9ft(ft, G) ([13] I 2.18) and U Z(g'a) is closed by supposition, then ft = U Z(g'a). 
a e A a e A 

Thus there exists a0 e A such that x e Z(g'ao). Z(g'ao) is a connected neighbourhood 
of the point x because it is clopen and an atom of 9JJ(ft, G). Now Z(f), 
Z(0a)e9ft(JR, G), the set Z(g'a) is an atom of the lattice _*?(ft, G) and intersects 
Z(f') (in x, since x e f t \ Z ( / ) = Z(f')), hence Z(f)^Z(g'a). Consequently 
B _ ft\Z(f) = Z ( / ' ) _ Z(g'a). We have proved that an arbitrary neighbourhood of 
the point x contains a connected neighboruhood of x Thus the space (ft, G) is 
locally connected. Finally, 2.10(la) follows from the complete regularity of (ft, u ) 
([13] II 1.4). 

e => d is evident. 
d => e by 2.3(d). 
e o i by 1.13. 

3.7 Theorem. Let (9t, u , ) be a completely regular regulator of an l-group G. The 
following conditions are equivalent. 
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a) The connected compone its of the space (SM, G) are open. 
b) The space (.1., G) is locally connected. 
c) If J is a minimal prime subgroup of G and Z(J) =£ 0, then J is a (maximal) polar 

of G. 
d) If xe ll(n'(G)) and Z ( u x ) =t= 0, then x is a principal antifilter on TI (G). 
e) Any condition of Theorem 3.6. 

Note. In a topological space the conditions a) and b) are not equivalent in 
general. There holds b=^>a, see [4] I § 11, 6, Prop. 11). 

Proof, a => e (2.10(7)). By [4] I § 11, Ex. 12 the condition a) is equivalent to the 
following one • For an arbitrary x e)H the meet i of all clopen sets containing ir is an 
open set By the definition of the closure x of {x} there holds x r> x. By supposition 
the basic sets Z(f) (fe G) containing x are clopen ([13] II 1.4), hence their meet 
(equal to x) contains x. Thus we have x x and so x is an open set. 

e =£>b is evident. 
b4>a by [4] I § 11, 6 Prop. 11. 
d => c. Choose JemCP(G) with Z(J)±0. There holds J-\JX for some 

xeU(n (G)) (remember that urc = u{a : a ex}), see [2] 3.4.15 Since x is 
a principal antifiltei, it is generated by a maximal element of the lattice 77 (G) say 
a', hence by a maximal polar of G (1 3). Thus UJT = 7 is a maximal polar of G. 

c => e. UiJf is a minimal prime subgroup for every x e SH ([13] II 1.4). Since the 
set Z ( u x) contains x, it is nonempty, and so by c) UiJC is a polar of G. By 1 11 
(!).. Ui) is similar to a regulator of type a (which is one of the conditions of 3.1). 

e=>d. Choose xe 11(77'(G)) with Z(vx)J=Q. Then UAT is a minimal prime 
subgroup of G and since Z(ujr)=£0, there holds u * = u y for some y esM ([13] II 
1 4). By supposition u y i s a maximal polar of G (2.6(2)) Consequently, Uiy = a 
for some aeG, thus x is a principal antifilter on 77'(G) generated by the dual 
principal polar a'. 

3.8 Theorem. Let (!•). , u , ) b e a regulator of type a of an l-group G and (SK2, u ) 
a regulator of G similar to a reduced regulator. Let 3 be the union of all atoms of 
the lattice 2Jt(s>,2, G). Then there exists a continuous, open and closed mapping o 
of the subspace 3 of the space (W2, G) onto the space (^i , G). If the regulator 
(M u 2) is reduced, o is a homeomorphism. 

Proof. The regulator (iHt, u , ) (i = 1, 2) is standard. Define a binary relation o 
between the sets 3 and JHi as follows: a '(jr) = Z«2(uiAr) for every JT e W1. We shall 
show that a is a mapping of 3 onto SRi. Since u , x is a maximal polar of G (1.9(2)). 
ZH2(UIJT) is an atom of the lattice 3M(;Hi, G) ([13] I 2.18). Hence it is a subset of 3 . 
t o r different elements x, yeTfti the sets o \x) and o '(_y) are different because 
the mapping Z«2: T(G) —» 9J?(i>.2, G) is one-to-one. Hence a is a mapping of 
a subset of 3 onto 5Hi. Pick an arbitrary atom A of the lattice 9K(s)i2, G). Then 
'TV(A) is a maximal polar of G and Z H , ' 7 ' H ( A ) is an atom of the lattice 
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9K(9.i, G). Since the space (D.,, G) is discrete by 1.13, this is a singleton, say {x}. 
Hence 

a \X) = Z»I(U1X) = ZM2V«1Z*1V* (A) = Z*,V^(A) = A, 

[13] I 2.4. Thus it is proved that a is a mapping of the set S onto 5R|. Since the 
space (311, G) is discrete, o is an open and closed mapping of the subspace S of the 
space (3i2, G) onto the space (3ti, G)- o is continuous. In fact, as we know, the set 
a '(.*:) = ZK2(U,;C) is an atom of the lattice -Dc(3t2, G), consequently by 3.4(b) it is 
a trivial clopen set of the space (3f2, G). 

If the regulator (SR2, u 2) is reduced, then atoms of the lattice 2ft(3{2, G) are 
singletons, hence the mapping o is one-to one. In this case, <5 is the set of all 
isolated points of (?fl2, G), hence o is a homeomorphism. 

4.1 Lemma. Lef A be a v-semilattice with the greatest element 1. An 
ultraantifilter on A is a principal antifilter iff it is genera ted by a dual a torn of A. 

The proof is straightforward. 

4.2 Lemma. Let A be a v-semilattice with the greatest element 1. If an 
ultraantifilter x on A is a principal anti filter, then x is an isolated point of the 
topological space (H(A), Z). 

Proof. If an ultraantifilter x on A is a principal antifilter and L its generator, 
then L is a dual atom of A (4.1), thus LIL = {x} and hence x is an isolated point of 
(U(A), Z). 

The converse assertion is true only if a supplementary condition is fulfilled. 

4.3 Lemma. Let A be a sublattice of a Boolean algebra 0 with the following 
properties : 
a) The greatest element 1 of 0 belongs to A. 
b) To an arbitrary element Ie 0, I±\, there exists Je A, /=£ 1 with J^I. 

If an ultraantifilter x on A is an isolated point of the topological space (11(A), -T), 
then x is a principal antifilter on A. 

Proof. If x is an isolated point of the space (LI(A), .T), then 11.*."= {x} for some 
Kex. If A: is not principal, then K is no dual atom of A (4.1). Hence there exists 
L G A with L 3s K, \±L+K. For the complement U of L in the algebra 0 there 
holds \±L'vK, because l = L'vJ«." -̂ > L = L A ( L ' V K ) = (LAL')V(LAK) 

= LAK = K, a contradiction. By supposition to the element L'vKe0 there 
exists JeA, /=£ 1 such that J^L'vK. The elements L or J generate different 
ultraantifilters y or - on A containing K, respectively, because l = L v ( L ' v i ? ) ^ 
LvJ. Therefore, y, ze VLK, yl= x or z^= x, which contradicts the supposition. Thus 
x is a principal antifilter on A. 
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4.4 Corollary. Let G+ {()} be «.n I-group. Then x c ll(/7 (G)) is an isolated point 
of the topological spice (11(77'), E) iff x is a principal ntifilfr on 77 (G) An 
analogical statement holds for ( l l ( r (G)) , Z) 

4 5 Theorem. Let G±{()} be an I group Then the following co iditioi s jre 
equhalent. 
1, Minimal prime subgroups of G are maximal polars of G 
2 Ultraantifilters on 77 (G) are principal antifiltcrs 
3 Am condition of Theorem 3 7 for (s)\ u )-NH r / , the TT-resulator. 

fo te The space (,Hn G) can be substituted by thw space (11(77 (G)) I), [13] 
I 1 7 

Proof ITie 77 regulaU T IS compkt ly regular ([13] II 1 S) We denote th 
77'-regulator by the symbol(;ttn,u ) to have the sdme notation as in 3.7 Here ) \ n is 

the familv of all minimal prime subgroups of G and i_ is the id ntical mapping of 
"Mn • Now ihe cond tion 3 7(c) is equivalent to the condition 4.5(1) because f( r an 
arbitrary minimal prime subgroup J ( an element of ^\n) there holds ZN ( J ) -
Z« (u , J ) - Z)n(W»nP) {J}, hence Z^n(J)r~0 (In the first case J denotes 
a subset of G, in the other cases J is an element of ))\n). By the same argument 
Z n(ux)J-fl holds for e\ery r e 11(77 (G)), since ux u{a eTl'(G). a' ex) is 
a minimal prime subgroup of G Therefore, the conditions 3 7(d) and 4.5(2) are 
equivalent. This completes the proof of the Theorem. 

4.6 Recall that an antifilter x o n a lattice A with the greatest element 1 is called 
prime if there holds- K, LeA K/\Lex -^ Kex or Lex (or equivalently: 
K e A ( = 1.2, ., n. n natural, AK ex => Kex for some (' 1,2, . n). 

It is well known that an ultraantifilter on a distributive lattice with the greatest 
element is a prime antifilter and that, conversely a prime antifilter on a Boolean 
algebra is an ultraantifiltei. 

4 7 Theorem. Lef G=£ {0} be an I group Then the following conditions are 
equivalent. 
1. G has only a finite number of polars. 
2 G has a base and only finitely many maximal polars. 
3. 77(G) = 77'(G) and minimal subgroups of G are (maximal) polars of G. 
4. There exist only finitely many minimal prime subgroups of G. 
5. There exist only finitely many ultraantifilters on TT(G). 
6. (11(77 ). Z) is a finite discrete space. 
7 OHu, G) is a finite discrete space. 
8 Sltn is a finite regulator of type a 
9. The regulator Wn is finite 

Proof. 2 o l follows from 1.10 and 1 4. 
2 A 1 = > 3 A 6 Take xe 11(77') and a'ex a' is the meet of a finite number of 
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maximal polars (by 1.10 and 1.4), hence x contains at least one of them (4.6), 
say b' (maximal polars are dual principal ones, 1.3). It follows that u ' c f c ' . 
Since an antifilter on 77' can contain at most one maximal polar, every 
ultraantifilter on TI'(G) is principal. By 4.5 minimal prime subgroups are 
maximal polars and by 4.4 the space (11(77'), 2") is discrete (hence 6). Since this 
space is finite, it is compact and by [13] I 1.9 77(G) = FT(G). 

3=>5. By [12] III 7.2 and 7.15 UJC = U{A eTT (G) : a'ex} is a maximal polar 
for every Jte 11(77'). By 1.3 ux is a dual principal polar and by [12] III 7.10 
u * e x, thus A: is a principal antifilter on IJ'(G). By 4.4 the space (11(77'), 2 ) is 
discrete. It is compact by [13] I 1.9, hence 11(77') is a finite set. 

5 =>4 follows from [12] 7.2 or [2] 3.4.15 (since m<3>(G) ={ux:xe U(77'(G))}). 
4=>2. Maximal polars are minimal prime subgroups ([12] III 7.15 or [5] 2.2), 
thus G contains only finitely many maximal polars. We shall show that every 
polar K4= G is contained in a maximal polar. Let L be a dual principal polar =£ 
containing K (such a polar exists since for 0+ceK' there holds G=t=c'^K) 
and let xe 11(77') be generated by L. For every ye 11(77'), y£x there exists 
ay € G* with flv e u x and ay e u y because ux and u y as different minimal 
prime subgroups are incomparable. The infimum b of these (finitely many) 
elements ay belongs to the meet of all uy (y£x) and does not belong to u * 
([12] III 6.3 or [5] 1.7). Therefore b' e x and thus b' c UJC ([12] HI 7.10 or [2] 
3.4.1). Since u i n n f u y : y4=x} = {0}, Kjxdb and hence vxcb'. Finally 
b' = Kjx and b' is the greatest element of x. b' is a dual atom of the lattice 
77'(G) by 4.1, thus a dual atom of T(G) (by 1.3) and b' r>L 3 K holds. Hence 
G has a base by 1.4. 

6ol follows from [13] I 1.7. 
7<*8 follows from 1.13. 
8=>9 is evident. 
9 =>4 is evident since ?f\n is the family of all minimal prime subgroups of G. 

4.8 Theorem. Let G^{0} be an l-group. Then the following conditions are 
equivalent. 

1. 9?(!T.r, G) = Wl(mr, G). 
2. 9?(1L(70, r) = .W(iL(r), -?')• 
3. Trivial open sets of the space (!T?r, G) form a finite partition on Wr-
4. $\r is a finite regulator of type a. 
5. Any of the conditions of Theorem 4.7. 
6. Any of the conditions of Theorem 4.5 together with the finiteness of the space 

(Mn,G). 

If one of the above conditions is true, then G has a base and a weak unit, the 
space (dir, G) is compact and both regulators 9. r and d\n are of type a and are 
equal. 
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Proof 1<»2 by [13] I 1.7. 
1 =>3. Condition 1 implies the condition (4b), Theorem 4.1 of [10], thus G has 

a weak unit. Hence U(r) = l l , ( r ) ([12] V 12 6). Consequently, the space 
(11,(r), 2") is compact since the space (U(r)» •<-*) ' s compact ([11] Theorem 3) and 
the topology 27' is weaker than 27 (see also [6] 3.3 or [10] 4.2). Then the space 
(;)ir, G) is compact, too ([13] I 1.7). By 2.10 trivial open sets form a partition on 
;){,. From the compactness it follows that this partition is finite. 

3=>5. (4.7(1)). The elements of the partition on trivial open sets of the space 
(i)ir, G) are atoms of the lattice 9K(i)ir, G) and every element of SL)((i)i,, G) is the 
union of finitely many atoms. Hence the lattice i!A\;)ir, G) as well as the isomorphic 
lattice r(G) of all polars is finite ([13] I 2.18). 

5=>1. If G has only finitely many polars (4.7(1)), then r(G) = TT(G). In fact, 
(or KeT, K'-vr{a": ae(K')*} = v r{a": a,e(K')\ i 1, 2, . . . , « } , and so 

K=f]a' - ( V c « ) en'(G). This means M, .){„, and so the space (;)ir, G) = 

())\n, G) is discrete by 4 7 and N(%, G) = l)f(;li,, G) by 4.5. 
5<=>6. Clearly, 4.7(7) —4.5(3)A(the finiteness of the space (;){„, G)) because 

4.5(3) = 3.7(e)-3.6(f). 
4=>1. By 1.13 the space (iri,, G) is finite and discrete, whence 1. 
1 =>4. By [10] 4.1 (4b=> la) there holds i>ir = i)in - Since 1 =>5, (.)ir, G) is a finite 

discrete space. Then by 1.13 we have 4. 
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РЕГУЛЯТОРЫ ТИПА а 

СТРУКТУРНО У П О Р Я Д О Ч Е Н Н Ы Х Г Р У П П 

Франтишек Шик 

Резюме 

В работе изучены /-фуппы с базой при помощи алгебраических и топологических методов. 
Алгебраическим исследованиям служит так называемый регулятор (Я., и), то есть множество 
?ЛФ0 и отображение ^ множества !Н в систему простых подфупп в О такое, что {их: хеЩ 
имеет нулевое пересечение. Топологические исследования сопровождаются с помощью то­
пологии, индуцированной на Я. (структурное пространство). (№, и) — регулятор типа а, если 
п{их: хе?И, хФу)Ф{0} для всех уеМ. Доказывается, что существует (с точностью до эк-
виваленции) только один регулятор типа а /-фуппы О, а именно множество 9" всех минимальных 
простых подфупп с отображением и =\&* (1.9). Существование регулятора типа а харак 
теризует /-фуппы с базой (1.10). Топологическая характеризация /-фупп, обладающих базой, 
дана в 3.5 и 2.4. Подобие стандартного регулятора (5Й, О) с регулятором типа а описано 
соотношением 9?(!Н, О) = 5ДО(!Н, С) (3.1) (здесь мы используем обозначения, введенные 
в 0.1-0.3; см. тоже [10], [13]). Свойство 5Й(Э., О) = ЩЯ), О) характеризовано несколькими 
эквивалентными условиями в 2.10 и 3.6. В теореме 3.7, в которой результаты теоремы 3.6 
специализируются на вполне регулярные регуляторы (М, и), это равенство характеризовано 
следующими условиями: 1. Множество всех минимальных простых подфупп /, обладающих 
свойством 2 ( / ) ^ 0 , равно множеству всех максимальных поляр в О; 2. Всякий ультраан-
тифильтр х на П'(С) с 2(их)Ф<д — главный; 3. Пространство (!й, С) локально связно. Если 
регулятор (.И, и) редуцирован, то предыдущее условие выражается: Пространство (!Н, и) 
дискретно. В абз.4 изучены условия, при которых Г-регулятор или /7'-регулятор будет рег­
улятором типа а и конечный типа а. Результаты находятся в теоремах 4.5, 4.7 и 4.8. 
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