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REGULATORS OF TYPE «
OF LATTICE ORDERED GROUPS

FRANTISEK SIK

The purpose of the present paper is to investigate the lattice ordered groups
(I-groups) having a base by using the algebraic and topological methods. (Note that
in[9, 10, 12], the /-groups havinga base are called /-groupsofkind @ ;see  Definition
1.2 and Lemma 1.4.) The algebraic examination is carried out by means of the
so-called regulators, i.e. the indexed systems of prime subgroups having the zero
meet and the topological examination by means of the topology induced on
a regulator (structure space). For terminology and notations, cf. [13] I and [10}.
A short review is also given in sec. O of the present paper. Other structure spaces
were dealt with by S. J. Bernau [1]. His spaces are defined on the systems of all
prime z-subgroups. Similar considerations will be included in another paper. Prime
subgroups need not be z-subgroups, while minimal prime subgroups do it. The
regulators of type a are formed by minimal prime subgroups and are equipped with
a topology inherited from the hull-kernel topology defined in [1].

In the present paper it is proved that there exists (up to equivalence) at most one
regulator of type a of an /-group, namely the set of all maximal polars (1.9). The"
existence of the regulator of type a characterizes the /-groups having a base (1.10).
A topological characterization to a regulator of be of type a is given in 1.13 (the
induced space is discrete). A topological characterization of /-groups having a base
is given in 3.5 (the set of all isolated points is dense in (R, G) provided that the
standard regulator (R, U)* is similar to a reduced one) and in 2.4 (the union of all
atoms of the lattice M(R, G) is a d:xnse subset of (R, G) assuming only the
standardness of (R, U)).

The similarity of a standard regulator (3, U) to a regulator of type a is described
by the relation N(NR, G) = MR, G) (3.1). The property N(R, G) = M(R, G) is
then characterized by a number of ecuivalent conditions in 2.10 and 3.6. In
Theorem 3.7, where the results of Theorem 3.6 are specified for a completely
regular regulator (R, u), this equality is described by conditions of various kinds.

* The symbol U has the same meaning as the symbol | in the preceeding papers [10), [13].
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An algebraic condition reads: The set of all minimal prime subgroups J with
Z(J)+9 is equal to the set of all maximal polars of G. A set condition: Every
ultraantifilter x on IT'(G) with Z(ux)# @ is principal. A topological condition:
The space (R, G) is locally connected. If the regulator (N, U) is reduced, the above
condition reads: The space (R, G) is discrete. In sec. 4 conditions are studied
under which the regulators R and M, are of type a or fimite and of type a. The
results are given in 4.5, 4.7 and 4.8.

0.1 A regulator (M, u) of an /-group G is a set N (#0@) and a mapping uU.
‘R — P(G), the family of all prime subgroups of G such that n{ux: x e R} — {0}.
(M, U) is called standard if ux# G for every xeN. reduced if x, yeR, x#+y >
ux||uy and completely regular if it has the following property: x e R, fe G, fe Ux
implies that there exists g € G such that f8g and g € ux (f6g means |f|A g|=0).
(M, V) is said to be finite if the set N is finite. Two special types of regulators (the
IT'-regulator and T'-regulator) are defined in 0.5.

Let (N, u,) be a regulator of an [-group G, (i =1, 2). The regulator (R-, U ) is
said to be similar (equivalent) to the regulator ((R,, u,) if there exists an
l-isomorphism a of G, onto G, and a surjection (a bijection) f: R- onto N such
that feu,fx = afeu x for every fe G, and every xeR: or equivalently
au, fx=uyx for every x e R,. (The mapping B 1s continuous, open and closed
(a homeomorphism) with respect to the induced topology defined 1n sec. (.2
below, [13] II 4.2))

An equivalence of (M, U ) and (X;, U-) with G,=G> (- G) and a=id. is
called an equality.

Let (M, U) be a regulator of G. Take x € R and define x={) e R: ux—uy},
M = {£: xe R} and ux=ux. Then U 1s a mapping of R into P(G) and (R, L) is
a regulator similar to (R, U), the so-called simplification of (R, U).

0.2 For fe G define Z(f)={xeM: feux}. If (N, U) s a standard regulator of
G, then (G# {0} and) the set §={Z(f): fe G} is a base of closed sets for
a topology on the set R ([13] I 1.2). This tepology (in the sense of Bourbaki) is
called the topology induced on R by the l-group G. The corresponding topological
space is denoted by (\R, G).

0.3 Let (M, L) be a regulator of an /-group G. We define

Y(A)={feG: feux foresery xe A} (B Aci),
Z(P)={xeMN: feux forevery feP} (@ P_G).

If A={x} or P={}} is a singleton, we write ¥(x) or Z(f) instead of ¥({x}) or
Z({f}), respectively. ¥ and Z are evide tly dual isotone mappings between the
sets exp N and exp G ordered by inclusion ¥(x) — ux and Z(f) coincides with the
notation 1n 0.2. We denote by (M, G) or IM(R, G) or C(:R, G) the system of all
closed or regular closed or clopen sets of (M, G), respectively.
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0.4 The Boolean algebra of all polars of G is denoted by I'(G). Being @# A c G,
we define A' = {g € G: gdf for every fe A}. Then the complement of a polar K in
ING)is K'. II'(G): ={f": fe G} or II(G): ={f": fe G} is the system of all dual
principal or principal polars of G, respectively. IT'(G) and I'T(G) are sublattices of
the lattice I'(G).

0.5 By an ultraantifilter on a v -semilattice A there is meant a maximal antifilter
on A and an antifilter is a dual notion to that of a filter. The family of all
ultraantifilters on A is denoted by lI(A). If A is a v-semilattice of subsets of G
(e.g. A=TI(G) or=IT(G) or=II(G)) and xell(A), we define ux=uU{KeA:
Kex}. An ultraantifilter x is called standard if ux+G. If G+ {0}, every
x e U(IT'(G)) is standard and every xell(A), where A=TI(G) or II(G), is
standard iff G has a weak unit. The set of all standard ultraantifilters on I'(G) is
denoted by UI1,(I'(G)). Assuming A =I'(G) or IT'(G) or II(G) and x € l1(A), then
uUx is a prime subgroup of G. (U,(I'), u) and (1(IT'), U) — briefly denoted by R
and R, respectively, are standard regulators of G, the latter is reduced and
completely regular. Ry or Ry is called the I'regulator or the IT-regulator of G,
respectively.

Put A=U.(I') or = a v-semilattice, respectively. Then the set

X'={Uf:feG} or X={UK:KeA},

where UK ={xel(A): Kex} (Ke A), is a base of open sets for a topology on
. (I'(G)) or U(A), respectively.

(L(I(G)), &) or (U(A), 2),

respectively, is the notation of the corresponding space.

1.

1.1 Definition. A regulator (R, L) of an /-group G is called a regulator of type a
(of type B) if n{uy: yeR, y#x}+{0} (={0}) for every xeR. If (R, L) is
a regulator of type a of G, then G# {0} and (R, L) is clearly reduced (and hence
standard). '

1.2 Definition. An /-group G is said to be an /-group of kind a (of kind B) if an
arhitrary polar of G different from G is contained in a maximal polar of G (if in G
no maximal polar exists). A representable /-group is of kind a iff G has an
irreducible representation (see the following Proposition 1.3 and [5] 3.11). In [9]
p.- 407, I called the corresponding realization a realization of type a.

By a maximal polar of G there is meant a dual atom of the lattice I'(G) of polars
of G. Dually, a minimal polar of G is defined.
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1.3 Lemma. The set of all dual atoms of I'(G) is equal 10 the set of all dual atoms
of IT (G).

Proof. = A dual atom of I'(G) (— a maximal polar of G) is a dual principal
polar because its disjoint complement, a minimal! polar of G, 1s a principal polar

>: If K is a dual atom of IT'(G), then K’ is a minimal polar of G. If not, there
exists a€ G such that a” K', {0}#a #K', hence ¢ K, G#a'#K, a con-
tradiction Consequently, K is a maximal polar of G ( a dual atom of I'(G))

1.4 Proposition. An ! group G+ {0} is of kind a iff G has a base.
Proof follows from [S] Theorem 3 4

1.5 Lemma. Let ("R, v) be a regulator of anl group G If there exists x € \R such
that M—n{ny: yeMN, y#x}# {0}, then ux— M' is a maximal polar of G

Proof. Denote J uvx. Suppose KeI(G), K#G and K M'. There holds
JnM—{0}, hence M’ _J. Thus we have K M’ J. If K¢J, then K’ J K,
whence K= G a contradiction. Consequently, K J M’ and M’ is a maximal
polar of G since clearly M'+ G

1.6 Corollary. Every regulator of an [-group of kind B is of type B.

1.7 Theorem. A standard regulator (R, u) of an | group G is of type a iff the
mapping U is injective and ux a (maximal) polar of G for every x € \R.

Proof. Every regulator (M, u) of type a 1s reduced, thus the mapping U 1s
injective. By 1.5, ux is a maximal polar of G for every xeM).

Conversely, let the condition of Theorem be fulfilled, xeR and M=n{uy:
yeMN, y#x}. By the definition of a prime subgroup (ux) M holds. Since
vuxnM = {0}, we have (Ux)’ M, hence (Ux)' — M. Consequently M+ {0} and
(*R. L) is of type a.

1.8 Note. An analogical assertion as in 1.6 for / groups of kind 8 1s not true, in
general, for /-groups having a base, namely there does not hold the following
statement :

(=) Every reduced regulator of an /-group having a base is of type a.

Indeed, the set of all minimal prime subgroups of an arbitrary / group G+ {0} is
a reduced regulator ([13] 11 1 5(1)). If G has a base and if there exists a mimmal
prime subgroup of G, which 1s not a maximal polar, then by !.7 this regulator is not
of type a A characterization of /-groups whose every minimal prime subgroup is
a (maximal) polar 1s given in 4 6.

1.9 Corollary. (1) Let an I-group G# {0} have a base Then the set of all
maximal polars of G together with the identical mapping is a ) egulator of type a of
G.

(2) If (R, V) is a regulator of tvpe a of anl group G, then { Ux: x e R} is the set
of all maximal polars of G.
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Proof. (1) By 3.4 [5] the intersection of the set !} of all prime subgroups that are
polars is zero. Each of these polars is maximal or equal to G, [12] II1 7.15. Hence
the set of all maximal polars of G together with the identical mapping is a standard
regulator of G. This regulator is of type a by 1.7.

(2) By 1.7 ux is a maximal polar of G for every x e R. G has a base. In fact, for
G+ Lel(G),L=Lvrn{ux: xeR} — n{Lvrux: xeR}. From the maximality
of the polar ux, Lv rux =G or L c ux. The set of x € R with the property L c ux
is clearly nonempty, hence G is of kind a and by 1.4 G has a base. Now if {ux:
x € R} is not the set of all maximal polars of G, then by (1), n{ux: xe M} # {0},
a contradiction.

1.10 Theorem. Let G be an [-group+ {0}. Then the following conditions are
equivalent.

(1) G has a base.

(2) Every polar is an intersection of maximal polars of G

(3) There exists a regulator of type a of G.

Proof. 1=>3. By 1.9(1).

3>>2.If (*H, V) is a regulator of type a, then ux (x € R) is a maximal polar of G
by 1.7. Since n{ux: xeM}={0} for an arbitrary Le I'(G) L=Lvrn{ux:
ve R} = n{Lvrux. xeNR}. From the maximality of the polar Ux it follows that
Lvrux=G or Lcux. Consequently, L =n{ux: xeR, Lcux}.

2=>1. From (2) it follows that G is of kind a, hence G has a base by 1.4.

1.11 Proposition. Let (R, u) be a standard regulator of G. Then the following
conditions are equivalent.

(a) (M, v) is similar to a regulator of type a.

(b) The simplification of the regulator (R, V) is of type a.

(c) ux is a (maximal) polar of G for every x e R.

Proof. Let (R, u) be the simplification of (R, U).

a=>b. If (R, U) is similar to a regulator (N,, U;) of type a and a, B the
corresponding mappings (see 0.1), then for every xeR {0} +an{u.By:
ByeMR, By+Bx} = n{uy. yeR, uy¥ux} — n{uy: yeR, y# x} because for
the reduced regulator (R, U,) there holds By —fr = uy=ux (x, yeR).

b=>>c. By 1.7 Ux is a maximal polar of G for every x € R. Hence U x is a maximal
polar of G for every x e i.

c=>a. If uxisa polar of G (x € R), then L x is a maximal polar ([5] 2.2 or [12] III
7.15). The simplification of (‘R, U) is a regulator of type a by 1.7 and (R, U) is
similar to it.

1.12 Note. By [12] I 4.16, every ! group G+ {0} has a regulator. Moreover, for
every regulator (R, u,) of G there exists a reduced, completely regular regulator
(R, U2) and a mapping @: R, onto R, such that U,x 2 L@p(x) (xeNR,). As @(x)
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(x eMNy), we define a minimal prime subgroup contained in v, ¥ and for U, the
identical mapping will be chosen. The regulator (M, U ) 1s evidently reduced and
by [13] II 1.4 completely regular.

1.13 Theorem. A standard regulator (R, U) of an [-group G is of type a iff the
topological space (R, G) is discrete.

Proof. If (M, L) is of type a and x €. then there exists 0# fe n{Uy: ye N,
y# x}, thus R # Z(f) 2 M\{x} and hence Z(f) —N\{r}. Thus {x} is an open set.

If (M, G) is a discrete space and x €N then {y: yeM, y# x} 1s a closed set,
hence there exists fe G such that xeZ(f) and yeZ(f) for y#x. Thus
0# fen{uy: ye R, y# x}.

1.14 Proposition. Let (R, U) be a standard regulator of an I-group G. Then G is
of kind B iff the lattice (M, G) has no atom.

Proof. The assertion follows from the fact that the existence of an atom of the
lattice (N, G) is equivalent to the existence of a dual atom of I'(G) ([13]12.18),
i.e. to the existence of a maximal polar of G.

1.15 Theorem. An ! group G+ {0} is of kind B iff there exists a reduced
regulator of type B of G.

(See [9] Satz 11).

Proof. Let G# {0} be of kind 8. There exists a reduced regulator of G and this
is of type B by 1.6.

Conversely, let (R, U) be a reduced regulator of type g of G and L a maximal
polar of G. The set of all x € R with Ux o L has at least two elements. Otherwise,
there holds n{uy: yeR} o L'+ {0} or for some xeM, n{uy: yeIt\{x}} =
L'+ {0}, a contradiction. Choose x, y € R, x# y with ux nuy o L. Since (R, L) is
reduced, there exist a, be G such that 0<a € ux\uy, 0<b € uy\ux and
anb=0. Since L is a prime subgroup ([12] IIT 7.15 or [5] 2.2) there holds a € L or
beL ([5] 2.3 or [2] 2.4.1), thus ae Uy or b e ux, a contradiction.

1.16 Corollary. A reduced regulator (R, U) of an I-group G is of type B iff the
lattice (N, G) has no atom.

Proof. By 1.15 the condition may be replaced by the following one : G is of kind
B. If this is the case, then by 1.6 (R, U) is of type 8. Conversely, if (% ) is
reduced and of type 8, G is of kind 8 by 1.15

p

2.0 By 1.9 the role of maximal polars in the regulators of type a i~ described. In
the following (sec. 3) we try to clarify the participation of maximal polars in
reduced regulators of /-groups having a base, in other words, to what extent the
reduced regulators of /-groups having a base ‘“‘approximate” the regulators of type
«a. Sec. 2 has an auxiliary character
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2.1 Definition. ([2] 2.3.1) Let J be a solid subgroup of an /-group G and G/J the
set of left cosets of G modulo J. Defining a + J= b + J = there exists fe G such
that a+f=b (a, be G) we obtain a binary relation =, which is a distributive
lattice ordering on G/J. If (R, L) is a regulator of G, xR and fe G, f(x) means
the coset of G/uUx containing f. f(0) will be denoted by ux, too.

2.2 Lemma. A regulator (R, ) of an I-group G+ {0} is reduced iff for x, y € R,
x#y there exists fe G such that f(x)>ux and f(y)<uy.

Proof. Let regulator (R, U) be reduced and x, y e, x# y. Then there exist
geux\uy and he uy\ux. Denote g, =|g|—|g|A|hl, hi=|h|—|g|A|h|. Thus
0<gieux\vy, O0<h euy\ux and g,6h:. The element f=—g,+ h, fulfils the
condition f(x) = f+ux = —gi + i +uUx = hi+uUx>uUx (g: and A, commute)
and f(y) = f+uy = —g1+hi+uy = —g1+uy<uy.

Conversely, let the condition hold. Pick x, y e, x# y. By supposition, there
exists fe G such that f(x)>ux and f(y)<uy. Then f (x)>ux and f(y)<uy
because f* = f=f. From the relation f*8f and f* & ux it follows that f~ € Ux and
similarly f* € uy. Finally, f e ux\uy and f* € Uy\ux, thus the regulator (R, L) is
reduced.

2.3 Proposition. a) A regulator of an l-group which is similar to a reduced
regulator is standard.

b) If a reduced regulator is similar to a reduced regulator, then the similarity is an
equivalence.

c) A regulator which is equivalent to a regulator of type a is itself of type a.

d) A reduced regulator which is similar to a regulator of type a is itself of type a.

Proof. Let (R, u;) be a regulator of an I-group G; (i=1, 2), let (R,, U,) be
similar to (R, U,), @ and B mappings from the definition of the similarity (0.1).

a) If (R,, u)) is reduced and U.x = G; for some xeR,, then UPx=a'U.x=
G, hence (R, U,) is not reduced, which is a contradiction.

b) f R, u) (i=1,2)is reduced and x, y eR,, x#y, then U.x# U,y, hence
uifr = a'uax # a'uy = U,By. Since U, is injective, we have Bx+ By, thus
the mapping B is a bijection.

c) Let (R,, u1) be of type a and let the similarity be an equivalence. Take x € R..
Then N{u2y: yeR,, y#x} = n{aufy: yeR, y¥x} = an{uiz: zeR,,
z# Bx} # {0}, hence (., U.) is of type a.

d) Let (R, u1) be of type a and (R;, U:) reduced. Since both regulators are
reduced, the similarity is an equivalence by b), and by c) (R,, U,) is of type a.

2.4 Theorem. An l-group G has a base iff for a standard regulator (R, U) the
union of a subset U of atoms of the lattice (R, G) is a dense subset of the space
&, G).
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Note. If the condition of Theorem is fulfilled, then % is the set of all atoms of the
lattice IM(R, G).

Proof. Let G have a base and let (R, U) be a regulator of type a of G (1.10).
Then {ux: xeM} is the set of all maximal polars (1.9(2)), n{ux: xeR}={0}
(1.10) and hence R=Z(n{ux: xeR}) = va{Z(ux): xeR}
= dm.o(u{Z(ux): xeR}) and Z(ux) is an atom of the lattice TR, G), [13]
12.18 and 2.19.

Let (R, U) be a standard regulator of G. Let A = { A,: ve N} be a set of atoms of
the lattice (M, G) and |J A, a dense subset of the space (R, G). Then

veN

clex. o) (U A.,) =M, whence \/ nA, =W, {0} =¥ ( \V/ mAv) = () WA, and every

veN veN veN veN
WA, is a maximal polar of G, and so the set R, = { WA,: v e N} together with the
identical mapping is a regulator of G because maximal polars are prime subgroups,
[12] III 7.15 or [5] 2.2. This regulator is of type a by 1.7. By 1.9(2), R, is the set of
all maximal polars of G, hence U is the set of all atoms of M(R, G).

2.5 Lemma. Let (R, U) be a standard regulator of an l-group G and let A <'R.
Then ye A<>n{ux: xe A} cuy, especially ye i<>uUxc uUy.

Proof. We have: Z(f) o A< {x: feux}oA<fen{ux: xreA}. Hence
ye A< ye Z(f) for every fe G such that Z(f)2 A< fe uy for every fe n{ux:
xeA}e>uyon{ux: xe A}.

2.6 Proposition. Let (R, U) be a standard regulator of an I-group G and x € ‘i.
The following conditions are equivalent.

1. ux is a polar of G.

2. ux is a maximal polar of G.

3. xeM(R, G).

4. x is an atom of the lattice M(R, G).

If the regulator ('R, U) is reduced, then the following condition is equivalent to
the preceding ones.

5. x is an isolated point of the space (R, G).

Proof. 1>3. If uxeI'(G), then x=ZW¥W(x)=Z(ux)eM(N, G) ([13] I 2.8
and 2.18).

3=>4.If A is an open subset of (R, G),## A < x and A+ &,thenxé A hence the
closed set ¥\ A contains the point x. Consequently ¥ ¢ ¥\ A, a contradiction.

4=>2. If x is an atom of IN(:R, G), then ¥(x) = WZW¥W(x) = W(x) = uxis
a maximal polar of G ([13] I 2.4 and 2.8).

2=>1 is evident.

If (R, U) is reduced, then by 2.5, x =% for every x e R, i.e. (R, G) is a T,-space
and we have there:

x e M(R, G)<>x is an isolated point of (R, G).
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2.7 Definition. The atoms of the lattice of closed sets of a topological space P will
be called trivial closed sets of P. Analogously for open or clopen sets.
Some simple lemmas concerning the preceding notions follow.

2.8 Lemma. a) If the trivial open sets of P form a partition on P (say S), then the
trivial closed sets of P form a partition on P (say R) and R — § holds.

b) If Tis a trivial closed set of P and Int T+ @, then T is a trivial open set of P.

Proof. a) The blocks T of § are closed sets. If some T is not trivial closed, there
exists a closed set V< T such that @# V# T. Then X=(P\V)nT is an open set,

XcT,8+X+Tand T is not trivial open.
b) If @+ A c T and A is open, then either TNA =9 or T\A is a proper closed

subset of T, hence T=A, i.e. T is a trivial open set.
2.9 Lemma. Let P be a topological space, A, Bc P and A= P\B. Then there
holds
Int B=B=Int A=A,

i.e. the complement of a regular closed set is a regular open set and conversely.

Proof. Suppose Int B=B. Then

A=P\B=>A=P\B> P\A=P\P\B=Int B> P\A=
=Int B=B=> A=P\B=P\P\A-Int A> A=Int A.
Suppose Int A =A. Then

P\B=A=Int A=P\P\A=>B=P\A=P\P\B—
=Int B> B=Int B

2.10 Proposition. Let P be a topological space. The following conditions are
equivalent.
1. a) P contains a base for closed sets formed by open sets.
b) P is a locally connected space.
Every base for closed sets of the space P is formed by open sets.
Trivial open sets form a partition on P.
Every closed set of P is open (= every open set of P is closed).
AcP, AopeninP=>Int A=A (ie open sets of P are regular open).
IM(P) =N(P) (i.e. closed sets of P are regular closed)
X is an open set of P for every xe P
x € D(P) for every x € P.
If P is a T\-space, then evidently the preceding conditions are equivalent to the
following one.
9. P is a discrete space.

AL

NS
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Proof. 1=>3. From [12] TV 9.2 it follows that 12 = every block T of the
partition on P, the blocks of which are maximal connected sets, is a trivial closed
set.

From 1b it follows that T is an open set ([7] I, Ex. Ua) and by 2.8(b), T is a trivial
open set.

3=4. By 2.8(a), every nonempty closed set is a union of blocks of the partition
which is formed by the trivial open sets, hence it is open.

4=>5. The closure A of every set A c P is open, hence Int A = A. If A is open,
then it is closed by supposition, hence A = A. Thus Int A = A for every open set A
of P.

5>6. BeR(P)=>P\B=A is open > Int A=A > BeDl(P) (2.9).

6=>8. xe P> xeN(P)=> i eW(P).

8=>7. Choose xe P. If Int x# X, then there exists y € x\Int x. Since the set
#\Int x is closed, there holds Int y c ¥ < ¥\Int ¥ and hence Int ynInt ¥ =@. From
the relation y = x we obtain Int y < Int x, whence Int y =@. But this contradicts the

relations @ # y =Int y=. Finally, Int £=, and £ is an open set.

7=2 is evident.

2=>1. 1a holds evidently. We prove 1b. Every closed set is open because the
system of all closed sets is a base for closed sets. By 2.8(b) every trivial closed set of
P is a trivial open set. By [12] IV 9.2 the partition R., every block of which is
a maximal connected set of P, is equal to the set of all trivial closed sets of P. Now it
follows immediately that the space P is locally connected. Indeed, the maximal
connected sets are trivial open and hence form a base for open sets, [7] I, Ex. Ub.

3.

3.1 Theorem. A standard regulator (R, U) of an I-group G is similar to
a regulator of type a iff R(M, G)=T(R, G). If the condition is fulfilled, then
G has a base.

Proof. Let a regulator (R, u) of G be similar to a regulator of type a. By 1.9(2)
and 0.1 ux is a maximal polar of G for every xeR; by 2.6 x e II(R, G) and by
2.10 MR, G)=NA, G).

Conversely, suppose (R, G)=N(NR, G). This equality implies I'(G)=
Q(N, G),[13]12.12 and 2.18,and so ['(G)=Q2(R, G) o {¥(x): xeR} = {ux:
x € f}. Hence ux is a polar for every x € R. By 1.11 (R, U) is similar to a regulator
of type a. By the same theorem the simplification of (i, U) is of type a and by
1.10 G has a base.

3.2 Proposition. Let a regulator (N, v) of G+ {0} be similar to a reduced
regulator, a and B the corresponding mappings (see 0.1) and R the partition
induced by 8 on R. Then the blocks of R are trivial closed sets of the space (R, G).
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Conversely, if trivial closed sets of (R, G) form a partition on R, then (R, V) is
similar to a reduced regulator and the simplification of (R, L) is a reduced
regulator.

Proof. Let a regulator (R, U) of G# {0} be similar to a reduced regulator
(M1, u1) and T=PB""'y for some yeR,. If T is not trivial closed, there exist x,,
x2€ T and fe G such that x,e Z(f) and x;& Z(f). Thus fe ux;\ux; and hence
a”'fe uiBx\uBx,. This set is empty because Bx,=Bx.=y, a contradiction.

Conversely, let trivial closed sets of (R, G) form a partition on i, say R. Let U,
be a mapping of R into (G) such that U, = Ux; for every X € R and for a fixed
xg € . Then (R, u,) is a regulator of G. Indeed, choose fe G and xe€ R with
feux and pick y € . Then f e Uxg, i.e. xc € Zx(f), whence y € Zx(f) because x is
trivial closed. We have got uxgc cuy. Consequently n{u,X: e R} < n{ux:
xe€R}={0}. (R, vy) is reduced. In fact, suppose %, y€ R and U X 2uU,y. Then
uxgc2VUys and by 2.5 xgeclma{ys}=y. Hence x=clm cxc=y. Finally,
(R, u)) is clearly the simplification of (R, U).

3.3 Corollary. Let (R, U) be a standard regulator of G. Then the following
conditions are equivalent.
1. (R, V) is similar to a reduced regulator.
2. The simplification of (R, V) is a reduced regulator.
3. The blocks of the equivalence relation R on R, defined by the rule xRy=ux=
vy, are trivial closed sets of (i, ).
Proof. 152 by 3.2.
2=>3. (R, V) is similar to its simplification, thus we have 3 by 3.2.
3=>1 by 3.2.

3.4 Lemma. Let (R, U) be a regulator of G+ {0} similar to a reduced regulator,
a and B the corresponding mappings and R the partition induced by B on R.
a) If B is an open set of (R, G), then B contains every trivial closed set which it

meets.
b) If A is an atom of the lattice (R, G), then A is a trivial clopen set of (R, G)
and if TeR and TnA+@, then T=A.

Proof. By 3.2 trivial closed sets of (R, G) are blocks of the partition R.

a)TeR,0+TnB3T=>08+T\Bc T, T\Bclosed > T\B=T > TnB=§,a
contradiction.

b) Choose T, Ve R, T+ V. By 2.2 and 3.3 for arbitrary xe T and y € V there
exists f € G such that f(x)>ux and f(y)<uy. Then f'(x)>ux, f(y)<uy and
so xe M\Z(f") and y e R\Z(f"). Since f*6f ", we have (R\Z(f*)) n (R\Z(f)) =
@, [13] I 2.15. We have proved the existence of disjoint open neighbourhoods C
and D of the points x and y, respectively, C=R\Z(f") and D=R\Z(f"). Let A
be an atom of the lattice (N, G) such that x, yeInt A (= B). The set A\C is
closed and @+ DnNB < A\C holds. Then @+#cln 6 (DNB) c A\C:iA, a
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contradiction. It follows that B meets only one block of the partition R, say T.
Thus To> B and by a) T=B. Thus T=cl.6,T = cln.c;B=A and A is a trivial
clopen set of (R, G).

3.5 Theorem. Let (R, ) be a regulator of an I-group G# {0} similar to
a reduced regulator. Then the following conditions are equivalent.

1. G has a base.
2. The union S of all atoms of the lattice M(N, G) is a dense subset of (R, G).
3. There exists a dense (open) subspace & of the space (R, G) such that
N(S) =DUS).
If (M, U) is reduced, the following condition is equivalent to the preceding ones.
4. The set of all isolated points of the space (R, G) is a dense subset of (R, G).

Note. If condition 2 is true, then the set & from 2 has the property of the set S

from condition 3.
Proof. Let {A,} be the system of all atoms of the lattice IR(R, G). By [13]

I2.18 {¥(A.)} is the system of all maximal polars of G.
1=>2. By 1.9 or [5] Theorem 3.4, (] W(A.) = {0}. It follows that R = \/nA, =

clorx 6)lJ Aq, [13] 12 19. Hence the union & of all atoms of the lattice DR, G) is

a dense subset of (R, G).
2=>3. The union & of all atoms of the lattice D(R, G) is open by 3.4(b) and by

the supposition a dense subset of (R, G). Let R be the partition induced by the
mapping 8 defining the similarity of (R, u). By 3.4(b) every T € R which meets S
is a trivial clopen set of (R, G). Hence if A € N(NR, G) meets S, then ANS is an
open subset of (R, G) and a closed subset of the subspace &. It follows that AnS
= BNeclm.e(ANG) = cle(ANS)e M(S), hence N(S) =DUE).

3=>1. Let & be a dense subspace of (R, G) such that N(S)=DY(E). Then
(S, u1), where U, = Uz is a standard regulator of G, [13] II 4.9.

It is evident that ©nZw.o\(f) = Ziz,u.)(f), hence the identical mapping of & is
a homeomorphism of the space (<, G) onto the subspace S of (R, G). Conse-
quently, R(S)=N(S, G) and JYS)=DY(S, G). By 3.1 G has a base.

1>>4. As in 122, R =clx o)l J Aa, where A, are atoms of the lattice (R, G).
By 3.4(b) every A, is a trivial clopen set and is equal to a block of the partition R
induced on R by the mapping B defining the similarity of (R, u). Since (R, L) is
reduced, the similarity is an equivalence (2.3(b)) and hence g is one-to-one.
Therefore, every A, is an isolated point of (R, G).

42 is evident.
In the following Theorem, the results of Theorem 2.6, 2.10 and 3.1 will be-

summarized.
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3.6 Theorem. Let (R, U) be a standard regulator of an l-group G. The following
conditions are equivalent.
a) The l-group G has a base, the regulator (R, L) is completely regular and the
union of all atoms of the lattice T(R, G) is a closed set of (N, G).
b) Any condition of Theorem 2.6 fulfilled for every x e R.
¢) Any condition of Theorem 2.10 for P= (R, G).
d) Any condition of Theorem 3.1.
Moreover, if (h, v) is reduced, then the following conditions are equivalent to
the preceding ones.
¢) The regulator (R, V) 1s of type a.
f) The space (R, G) is discrete.
Proof. b=c because 2.6(3)=2.10(8).
c=d because both Theorems have the condition IM(H, G)=N(N, G) in
common,
cad > a. From c¢) (2 10(2)) it follows that (R, u) is completely regular ([13] II
1.5). The remaining two conditions follow from d) (G has a base) and c) (2.10(4)).
a > ¢ (2.10(1)). We shall prove that every point x € (R has a fundamental system
of connected neighbourhoods ([4] I § 11,6, Df. 4). Thus it will be shown that the
space (M, G) is locally connected which is the condition 1(b) of 2.10. If B is
a neighbourhood of the point x, then there exists f € G such that xe ’\Z(f) _ B.
Since G has a base, the meet of all maximal polars g; (a € A) is equal to zero,
M g.={0} (1.9). It follows that R = Z(0) = V wZ(gs) = clawo U Z(g% ([13]
acA acA

acA
12.18 and 2.19). Since Z(g.) is a clopen set ([13] II 1.4), the set Z(g.) =M\Z(g.)
is clopen as well. Since {Z(g.): ae A} is the family of all atoms of the lattice
MM, G) ([13]12.18) and |J Z(g.) is closed by supposition, then R = | ) Z(g2).
acA

aeA

Thus there exists ao € A such that x € Z(g4). Z(ga) is a connected neighbourhood
of the point x because it is clopen and an atom of I(M, G). Now Z(f’),
Z(g) e M(NR, G), the set Z(g’) is an atom of the lattice (R, G) and intersects
Z(f") (in x, since xeM\Z(f) = Z(f')), hence Z(f')>Z(gs). Consequently
B oR\Z(f) = Z(f') 2 Z(g.). We have proved that an arbitrary neighbourhood of
the point x contains a connected neighboruhood of x Thus the space (R, G) is
locally connected. Finally, 2.10(1a) follows from the complete regularity of (R, U)
((13] IT 1.4).

e >d is evident.

d=>e by 2.3(d).

e« f by 1.13.

3.7 Theorem. Let (R, u,) be acompletely regular regulatorofanl-group G. The
following conditions are equivalent.
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a) The connected compone 1ts of the space (M, G) are open.

b) The space (W, G) 1s locally connected.

¢) If J is a minimal prime subgroup of G and Z(J)+ @, then J 1s a (maximal) polar
of G.

d) If xel(IT'(G)) and Z(ux)# 0, then x is a principal antifilter on IT (G).

e) Any condition of Theorem 3.6.

Note. In a topological space the conditions a) and b) are not equivalent in
general. There holds b=>a, see [4] I § 11, 6, Prop. 11).

Proof.a=e(2.10(7)). By {4] 1 § 11, Ex. 12 the condition a) is equivalent to the
following one - For an arbitrary x € 'R the meet ¢ of all clopen sets containing r is an
open set By the definition of the closure x of {x} there holds ¥ > x. By supposition
the basic sets Z(f) (f € G) containing x are clopen ([13] II 1.4), hence their meet
(equal to x) contains X. Thus we have x 1 and so x is an open set.

e =>b is evident.

b=>a by [4] 1§ 11,6 Prop. 11.

d > c. Choose Je mP(G) with Z(J)#@. There holds J—ux for some
x € I(IT (G)) (remember that ux=u{a : a €x}), see [2] 3.4.15 Since x is
a principal antifilter, 1t is generated by a maximal element of the lattice IT (G) say
a', hence by a maximal polar of G (1 3). Thus ux = J is a maximal polar of G.

c>e. u,x is a mimmal prime subgroup for every x e R ([13] IT 1.4). Since the
set Z(u x) contains x, it is nonempty, and so by ¢) U, x is a polar of G. By 1 11
(M. uy) is similar to a regulator of type a (which is one of the conditions of 3.1).

e > d. Choose xell(IT'(G)) with Z(ux)#0. Then Ux is a minimal prime
subgroup of G and since Z(ux)+#@, there holds Ux =u y for some ye M ([13] II
1 4). By supposition U y 1s a maximal polar of G (2.6(2)) Consequently,u,y=a
for some a € G, thus x is a principal antifilter on IT'(G) generated by the dual
principal polar a’.

3.8 Theorem. Let (‘R , u,) be a regulator of type a of anl-group G and (N2, U )
a regulator of G similar to a reduced regulator. Let S be the union of all atoms of
the lattice D{(N,, G). Then there exists a continuous, open and closed mapping o
of the subspace < of the space (‘R,, G) onto the space (R,, G). If the regulator
(R ) is reduced, o is a homeomorphism.

Proof. The regulator (:R,, u,) (i=1, 2) is standard. Define a binary relation o
between the sets S and R, as follows: o '(x) = Zx,(U.x) for every x € !R,. We shall
show that o is a mapping of & onto ;. Since U, x is a maximal polar of G (1.9(2)).
Zn,(L1x) is an atom of the lattice T(R>, G) ([13] 12.18). Hence it 1s a subset of S.
Yor different elements x, y € R, the sets o '(x) and o '(y) are different because
the mapping Zx,: I'(G) — P(R,, G) is one-to-one. Hence ¢ 1s a mapping of
a subset of & onto R,. Pick an arbitrary atom A of the lattice I(N;, G). Then
Wu.(A) is a maximal polar of G and Zu, W« (A) is an atom of the lattice
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DM(R,, G). Since the space (R, G) 1s discrete by 1.13, this is a singleton, say {x}.
Hence

0 '(x)=Zw,(Uix) = Z3, P, Zn, ¥n (A)=Zn. Pr.(A) = A,

[13] I 2.4. Thus it is proved that o is a mapping of the set & onto {R,. Since the
space (R, G) is discrete, o is an open and closed mapping of the subspace & of the
space ({2, G) onto the space (R,, G)- o is continuous. In fact, as we know, the set
0 '(x)=Zx,(U.x) is an atom of the lattice VYR, G), consequently by 3.4(b) it is
a trivial clopen set of the space (R:, G).

If the regulator (R, u.) is reduced, then atoms of the lattice IN(R2, G) are
singletons, hence the mapping ¢ is one-to one. In this case, & is the set of all
isolated points of (R, G), hence ¢ is a homeomorphism.

4.

4.1 Lemma. Let A be a v-semilattice with the greatest element 1. An
ultraantifilter on A is a principal antifilter iff it is generated by a dual atom of A.
The proof is straightforward.

4.2 Lemma. Let A be a v-semilattice with the greatest element 1. If an
ultraantifilter x on A is a principal antifilter, then x is an isolated point of the
topological space (11(A), X).

Proof. If an ultraantifilter x on A 1s a principal antifilter and L its generator,
then L is a dual atom of A (4.1), thus UL = {x} and hence x is an isolated point of
aga), 2).

The converse assertion is true only if a supplementary condition is fulfilled.

4.3 Lemma. Let A be a sublattice of a Boolean algebra © with the following
properties:
a) The greatest element 1 of @ belongs to A.
b) To an arbitrary element 1€ ©, I+ 1, there exists Je A, J¥1 with J= 1.

If an ultraantifilter x on A is an isolated point of the topologlcal space (11(A), X),
then x is a principal antifilter on A.

Proof. If x is an isolated point of the space (1I(A), X), then 11K = {x} for some
K e x. If x is not principal, then K is no dual atom of A (4.1). Hence there exists
Le A with L=K, 1# L# K. For the complement L’ of L in the algebra @ there
holds 1#L'vK, because 1=L'vK = L=LA(L'VK) = (LAL')v(LAK)
= LAK=K, a contradiction. By supposition to the element L'vKe @ there
exists Je A, J#1 such that J=L'v K. The elements L or J generate different
ultraantifilters y or z on A containing K, respectively, because 1=Lv(L'vK) <
L v J. Therefore, y, ze UK, y# x or z# x, which contradicts the supposition. Thus
x is a principal antifilter on A.
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4.4 Corollary. Let G# {0} be ani-group. Then x e W(IT (G)) is an isolated point
of the topologrcal space (11(IT'), X) iff x 1s a principal  ntfdter on IT (G) An
analogical statement holds for (1(I'(G)), X)

4 5 Theorem. Let G+ {0} be an | group Then the following coditiors are
equivalent.

1. Minimal prime subgroups of G are maximal polars of G
2 Ultraantifilters on IT (G) are principal antifiltcrs
3 Am condition of Theorem 3 7 for (V. L ) =Wy, the IT’-regulator.
P ote The space (g G) can be substitated by the space (1I(IT (G)) X)), [13]
117

Proof The IT regmater s complet ly regular ([13] 11 1 5) We denote th
IT -repulator by thesymbol (MR ,U )tohavethesame notationasin 3.7 Here iy 1s
the familv of all mimmal prime subgroups of G and C is the id ntical mapping of
Ry . Now the cond tion 3 7(¢) 1s equivalent to the condition 4.5(1) because fc r an
arbitrary minimal prime subgroup J ( an element of ‘H;;) there holds Z, (J) -
Zy (i) = Z, (W, J) {J}, hence Zy,(J)~0 (In the first case J denotes
a subset of G, in the other cases J 1s an element of My, ). By the same argument
Z ,(ux)# @ holds for every xell(71 (G)), since ux  w{a eIT'(G). a’€xr} 1s
a minimal pnime subgroup of G Therefore. the conditions 3 7(d) and 4.5(2) are
equivalent. This completes the proof of the Theorem.

4.6 Recall that an antifilter x on a lattice A with the greatest element 1 is called
prime if there holds- K, Le A KaLex 5 Kex or Lex (or equivalently:
KeA i=1.2, ..n.nnatural, AKex > Kexforsomei 1,2, . n).

It 1s well known that an ultraantifilter on a distributive lattice with the greatest

element is a prime antifilter and that, conversely a prime antifilter on a Boolean
algebra is an ultraantifilter.

47 Theorem. Let G+ {0} be an | group Then the following conditions dre
equivalent.

1. G has only a finite number of polars.
2 G has a base and only fimtely many maximal polars.
3. II(G)=1IT'(G) and minimal subgroups of G are (maximal) polars of G.
4. There exist only finitely many minimal prime subgroups of G.
S. There exist only finitely many ultraantifilters on IT' (G).
6. (\1(IT). X) is a finite discrete space.
7 (M, G) 1s a finite discrete space.
8 Mnp is a finite regulator of type a
9. The regulator Rn 1s finite
Proof. 2«1 follows from 1.10 and 1 4.
2A1=>3A6 Take xell(JT') and a’e€x a’ is the meet of a finite number of
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maximal polars (by 1.10 and 1.4), hence x contains at least one of them (4.6),
say b’ (maximal polars are dual principal ones, 1.3). It follows that a’cb'.
Since an antifilter on IT' can contain at most one maximal polar, every
ultraantifilter on IT'(G) is principal. By 4.5 minimal prime subgroups are
maximal polars and by 4.4 the space (11(IT"), X) is discrete (hence 6). Since this
space is finite, it is compact and by [13] I 1.9 II(G) = IT' (G).
3=>5.By[12]III 7.2 and 7.15 ux=u{a € IT'(G): a’ € x} is a maximal polar
for every xe I(JT'). By 1.3 ux is a dual principal polar and by [12] III 7.10
Ux € x, thus x is a principal antifilter on IT'(G). By 4.4 the space (I(IT’), X) is
discrete. It is compact by [13] I 1.9, hence UI(IT') is a finite set.

5=>4 follows from [12] 7.2 or [2] 3.4.15 (since mP(G)={ux: xe U(IT'(G))}).
4=>2. Maximal polars are minimal prime subgroups ([12] III 7.15 or [5] 2.2),
thus G contains only finitely many maximal polars. We shall show that every
polar K# G is contained in 2 maximal polar. Let L be a dual principal polar #
containing K (such a polar exists since for 0 # ce K' there holds G# ¢' 2 K)
and let x € lI(JT') be generated by L. For every y e U(IT'), y+ x there exists
a,€ G with q, € ux and ag,e Uy because Ux and Uy as different minimal
prime subgroups are incomparable. The infimum b of these (finitely many)
elements a, belongs to the meet of all Uy (y# x) and does not belong to Ux
([12] 111 6.3 or [5] 1.7). Therefore b’ € x and thus b’ c ux ([12] III 7.10 or [2]
3.4.1). Since uxnn{uy: y#x}={0}, uxdb and hence uxcb’'. Finally
b’'=ux and b’ is the greatest element of x. b’ is a dual atom of the lattice
IT'(G) by 4.1, thus a dual atom of I'(G) (by 1.3) and b’ o L o K holds. Hence
G has a base by 1.4.

6<7 follows from [13] I 1.7.
7 <8 follows from 1.13.

8=>9 is evident.
94 is evident since Ry is the family of all minimal prime subgroups of G.

4.8 Theorem. Let G+ {0} be an [-group. Then the following conditions are

equivalent.

m(mr, G)=ﬂn(mr, G)

NAL(D), £')=MU(D), Z).

Trivial open sets of the space (Rr, G) form a finite partition on Rr.

Nr is a finite regulator of type a.

Any of the conditions of Theorem 4.7.

Any of the conditions of Theorem 4.5 together with the finiteness of the space
(Mn, G).

If one of the above conditions is true, then G has a base and a weak unit, the

space (Rr, G) is compact and both regulators Rr and R are of type a and are
equal.
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Proof 1«2 by [13]11.7.

1=>3. Condition 1 implies the condition (4b), Theorem 4.1 of [10], thus G has
a weak unit. Hence U(N)=11.(I") ([12] V 126). Consequently, the space
(11.(IN), Z") is compact since the space (1I(I), X) is compact ([11] Theorem 3) and
the topology X' is weaker than X (see also [6] 3.3 or [10] 4.2). Then the space
(Mr, G) 1s compact, too ([13] I 1.7). By 2.10 trivial open sets form a partition on
‘R;. From the compactness it follows that this partition is finite.

3=5. (4.7(1)). The elements of the partition on trivial open sets of the space
(Mr, G) are atoms of the lattice M(N, G) and every element of M(NR,, G) is the
union of finitely many atoms. Hence the lattice Wi{(Mr, G) as well as the isomorphic
lattice I'(G) of all polars is finite ([13] I 2.18).

5= 1. If G has only finitely many polars (4.7(1)), then I'(G) = IT'(G). In fact,
for Kel', K'—vr{a": ae(K')'} = v{a": ae(K")',i 1,2,...,n}, and so

K=ﬁa’ - (\"/Ga) € IT'(G). This means W, My, and so the space (M, G)=
[ [

(Mn, G) is discrete by 4 7 and N(R,, GYy=WM(N,, G) by 4.5.

S5<6. Clearly, 4.7(7)—4.5(3) A(the finiteness of the space (Nn, G)) because
4.5(3)=3.7(e)— 3.6(f).

4=>1. By 1.13 the space (‘H,, G) is finite and discrete, whence 1.

1=>4.By[10] 4.1 (4b=>>1a) there holds R =M. Since 1 5, (N, G)is a finite
discrete space. Then by 1.13 we have 4.
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PETYJIATOPBI TUIMNA «
CTPYKTYPHO YTIOPAOOYEHHLIX T'PYIIN

®panTnek LHlnk
Pe3ome

B pa6ore u3yyeHb! /-rpynnbl ¢ 6230 NpH NOMOLLM anre6panyeckux W TOMONOTHYECKUX METONOB.
Anre6pandecKUM HCCIIEAOBAaHHAM CIYXXHT TaK HasbiBaeMblid peryastop (R, U)., To ecTb MHOXeCTBO
R #0 u orobpaxenne U mHoxectBa R B cuctemy npoctsix noarpynn B G Takoe, uto {ux: xeR}
MMeeT HyneBoe nepeceyeHHe. TOMONOTHYECKHE MCCIEMOBAHHS COMPOBOXAAIOTCH C MOMOLLLIO TO-
NONOTHH, MHIYUHPOBaHHOH Ha R (cTpykTypHOe mpoctpancTso). (R, U) — peryasTop Tuna a, ecan
Nn{ux: xeR, x#y}# {0} nna scex yeN. [lokasbiBaeTcs, YTO CylecTByeT (C TOYHOCTHIO 10 3K-
BHBaNEHLUMH) TONLKO OIMH PerynsTop THna a [-rpynnsl G, a MMEHHO MHOXECTBO P BCEX MHHMMAIbHBIX
npocTbIx noAarpynn c otobpaxenveM U =ids (1.9). CywecTBoBaHHe peryisropa TMna a Xapak
TepuayeT [-rpynnsi ¢ 6a3oit (1.10). Tononoruyeckas xapaktepu3sauus /-rpynn, o6najaioowmx 6a3of,
naHa 8 3.5 u 2.4. IMogoGue crangapTHoro peryastopa (R, G) ¢ perynstopoM THNa @ OMHCAHO
cootHowenvem N(M, G) = YR, G) (3.1) (3necs MBI HcnonblyeM 06GO3HAauEHHS, BBEEHHbIE
B 0.1-0.3; cM. Toxe [10], [13]). CroiictBo N(M, G) = M(R, G) xapaKTepHU30BAHO HECKONLKHMH
9KBMBANEHTHbIMH ycnoBuaMH B 2.10 u 3.6. B Teopeme 3.7, B KoTopoil pesyabTaThl TeopeMbi 3.6
CMEHANH3NPYIOTCA HA BIO/HE peryasphble peryastopbl (R, U), 3TO PaBEHCTBO XapaKTepH3OBaHO
cneayolyMK yenoBusiMu: 1. MHOXECTBO BCEX MMHMMAaNBLHBIX MPOCTLIX noarpynn J, ofnaparoiumx
cBoiictBOM Z(J)# @, paBHO MHOXeCTBY BCEX MaKCHMManbHbIX monsp B G; 2. Beskuil ynbTpaan-
TupunsTp x Ha IT'(G) ¢ Z(ux)# 0 — raasubnit; 3. INpoctpauctso (R, G) nokansHo cessvo. Ecnn
peryasrop (R, U) penyunpoBaH, To npepbiiyluee ycnoBHe Bolpaxaetcsi: [lpoctpanctso (R, U)
AHcKpeTHO. B a63.4 u3ydyeHs! ycnosus, npu Kotopbix I'-perynsrop unu IT'-perynsrop Gyaet per-
YNSTOPOM THMA @ W KOHeYHbIH THNA a. PesynsTaThl Haxopsitcs B Teopemax 4.5, 4.7 u 4.8.
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