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(Communicated by Miloslav Duchoň) 

ABSTRACT. We prove that a midconvex multifunction with non-empty closed 
and bounded values is locally Lipschitzean provided that it is weakly bounded 
on a ball. Similar result has been obtained by B. Pshenichnyi in 1974 for convex 
multifunctions with closed graph when the space of values is of a finite dimension. 

Let X and Y be real normed vector spaces and let F: X -» 2Y be a multi­
function. The domain of F is defined as 

d o m F = {xeX: F(x) ^ 0} 

and its graph by 

GiF={(x,y)eX xY: y e F(x)} . 

A multifunction F is said to be midconvex (convex) if 

I [F(x) + F(y)] C F(2±£) (XF(x) + (1 - X)F(y) C F(Xx + (1 - X)y)) 

for every x, y e X (and A G [0,1]). 
A multifunction F is said to be closed if its graph is closed in X x Y. 

P s h e n i c h n y i [2] showed that a convex closed multifunction is locally Lip­
schitzean on the interior of its domain provided that a set F(x) is bounded for 
some x e dom F and dim Y < oo. 

Let D be a non-empty open and convex subset of X. Throughout this note 
we shall assume that domF = D. We say that a multifunction F is weakly 
upper bounded on a set U C D if there exists a bounded set A C Y such 
that U C F~(A), i.e., F(x) n A ^ 0 for all x e U. N i k o d e m [1; p. 35, 
Corollary 3.3] proved that a midconvex and weakly upper bounded on a non­
empty open subset of D multifunction with bounded values is continuous. The 
main goal of this note is to prove that such multifunctions actually are locally 
Lipschitzean. 

We shall need the following lemma. 
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LEMMA 1. ([1; pp. 29-30, Lemma 3.1, Remark 3.1]) Let X be a real vector 
space, D C X be convex and Y be a topological vector space. If a multifunction 
F: D —> 2Y \ {0} (with closed bounded values) is midconvex, then 

\F(x) + (1 - \)F(y) C F(\x + (l- \)y) 

for all x,y G D and all diadic (rational) numbers X G [0,1]. 

It is easy to see that if x G Int(domF) and F(x) is bounded, then all values 
of the convex multifunction F are also bounded. A slightly stronger result may 
also be obtained for midconvex multifunctions. 

Let D be a subset of a real vector space X. We say that x0 G D belongs 
to the algebraic relative interior of D if for every x G D there exists an e > 0 
such that 

tx + (1 - t)x0 G D for every \t\ < £. 

LEMMA 2. Let X be a real vector space, D C X be convex and Y be a 
topological vector space. If a multifunction F\ D -> 2Y \ {0} is midconvex and 
F(x) is bounded for some x belonging to the algebraic relative interior of D, 
then all values of F are also bounded. 

P r o o f . Let us fix an x belonging to D. Since x is an algebraic relative 
interior point od D, the point - ^ T Z T ^ + (l + 5 ^ 1 ) * ~ : V b e l ° n g s t o D for 

large enough n. For A = l / 2 n we obtain 

x = Xx + (1 - X)y, 

and 
XF(x) + (1 - X)F(y) C F(x). 

Let us choose any point z G F(y). We have 

XF(x) C F(x) + (X - l)z 

and 

F(x)c\F(x) + (l-l)z. 

So the set F(x) is bounded. • 

In the sequel B(x0:r) denotes an open ball in X centered at x0 and with 
the radius r > 0. S stands for the closed unit ball in Y, i.e., 

S={yeY: \\y\\<l}. 

For a bounded subset A of F , ||A|| denotes the supremum of the set {\\y\\ : 
ye A}. 

In what follows we shall assume that all values of F are bounded although 
it is enough to assume that F(x) is bounded for some x G D. 
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THEOREM 1. Let X and Y be real linear normed spaces and let D be a non­
empty open convex subset of X. Assume that F: D -» 2Y \ {0} with closed and 
bounded values is a midconvex multifunction. If F is weakly upper bounded on 
a ball in D, then there exists a positive number c such that 

| | F ( z ) | | < c ( l +1|*| |) (1) 

for every x G D. 

P r o o f . By the hypothesis we can find a ball B(x0, r) contained in D and 
a bounded set A C Y such that F(y) 0 A ^ 0 for all y G B(x0, r). We observe 
that there is a bounded set C C Y such that F(x) C C for x G B(x0,r). In 
fact, let us fix an x G B(x0> r). Of course, 0 G F(x) — A. We have x0 — ^—^ for 
some y G B(x0,r). Since F is midconvex, 

F(x) + F(y) C 2F(x0), 

whence 
F(x) C F(x) + F(y) -Ac 2F(x0) - A. 

Setting C := 2F(x0) — A we obtain the observation, i.e., 

F(x) C C for all x G B(xQ, r). (2) 

Now let y be an arbitrary point from B(x0,r). Suppose that y / x0. Take a 
rational number A G (0,1) such that 

11?/ — #nll x \\V — %n\ 
lif on. < A < 2— Q± 

r r 
Write 

(3) 

z = xo~ j(У-xo) 

We see that z G B(x0,r) and 

z+т^У-l + Л 1 + Л 

By Lemma 1 

whence 

jlFW^FWcřW, 

F(y)c(l + \)F(x0)-XF(z), 

Putting M := \\C\\ we obtain by (2) 

| | F ( y ) | | < ( l + 2A)M. 
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Denoting by c0 the expression Mmax < ~, 1 + 4 ^ 0 ' ' , 1 } ,, > we get by (3) 

| | F ( y ) | | < c 0 ( l + | |y | |). (4) 

Now let y G D \ B(x0, r). We can find a rational number A from the interval 
(0,1) such that 

z := Xx0 + (1 - X)y G B(x0,r) and z ^ B\x0, - 0 . 

So we have 
J < ||Ax0 + (1 - A)y - x0 | | < r . 

Consequently 

^ S l t o - ^ I K i f j . (5) 

By the midconvexity of F and by (2) we obtain 

XF(x0) + (1 - X)F(y) C F(z) C C. 

Hence we have 

Thus by (5) 

F(У) C ^—^(C - XF(x0)) . 

\\F(y)\\<^<^-\\y-x0\\<^(\\y\\ + \\x0\\). 

Define c by max | c 0 , *M, iMMsl J . T h e n w e have 

IIE(y)ll<c(l + | |y | |). 

This inequality and (4) completes the proof. • 

Let K be a convex cone in X, i.e., x + y G if and Xx € K for every 
x,y e K and A > 0. Consider a multifunction F: K -> 2 y . We say that F 
is superadditive if F(x) + -F(y) C F(x + y). Also we say that F is positively 
homogeneous if F(Xx) = AF(x) for A > 0 and x G if. If F is both positively 
homogeneous and superadditive, then F is said to be superlinear. 

As a consequence of Theorem 1 we can obtain the following corollary. 

COROLLARY 1. Let X and Y be real normed spaces and let K be a non­
empty open convex cone in X. Assume that F: K -> 2 y \ {0} is a superlinear 
multifunction with bounded closed values in Y. If F is weakly upper bounded on 
an open non-empty subset of K. then there exists c > 0 such that 

\\F(x)\\ < c\\x\\ for x€K. (6) 
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P r o o f . From Theorem 1 we have 

| | F ( * ) | | < c ( l + | | * | | ) 

for every x G K and some c > 0. The homogeneity of F yields 

||AF(x)|| < c(l + A||x||) for all A > 0 , 

whence 
| | F ( . T ) | | < | + C||X||. 

Letting A —> oo we obtain (6). D 

It is known that a midconvex and a bounded above at a neighbourhood of 
a point of D single-valued function defined on an open convex set D C Y is 
locally Lipschitz on D (see e.g. [3]). An analogous result is valid for midconvex 
weakly upper bounded multifunctions. 

THEOREM 2. If X,Y,D,F are as in Theorem 1, then F is locally Lipschitz 
on D. Moreover, if K C D is a non-empty bounded set such that 

\J{B(x,r): xeK} CD (7) 

for some r > 0, then F is Lipschitz on K. 

P r o o f . Take an arbitrary x G D. There exists a positive number r such 
that the ball B(x, 2r) is contained in D. Choose H. z G B(x, r) such that y ^ z. 
We can find a positive rational number A for which 

\\y-z\\ A 2||y-d| 
M !i < A < -1. 8 

r r 

Further put 

Vi = y + j{v-z). (9) 
Hence, in view of (8), H1 G B(x,2r) and 

y = TTxz + TTxyi-
Since F is midconvex, we get by Lemma 1 

1 „. . A 

1 + A v ' 1 + A 

Let u G F(z) and v G F(yx). We have 

F ( г ) + 7^-TFW c F(2l)-

и l щ ( » - и ) e F ( j ) : 
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whence 

u € F{y) + T T A ( I H I + M)s c F{y) + A ( I H I + , H I ) 5 • (10) 

In virtue of Theorem 1 we infer 

IHI<||F(z)||<c(i + |Mi) 
< c(l + \\z - x|| + ||x||) < c(l + r + ||x||) 

and 

wv\\<wnvx)\\<c{\ + wv^ 

< c(l + \\Vl - x|| + ||x||) < c(l + 2r + ||x||) . 

Consequently, by (10) and (8), 

u G F d , ) + -^ (2 + 3r + 2 | |x | | ) | |y-z | |5 , 

whence 
F(z) C F(y) + f (2 + 3r + 2||x||) ||y - z\\S 

since u was chosen arbitrarily in F(z). By reversing the roles of y and z in the 
above argument we obtain the inclusion 

F(y)cF(z) + ^(2 + 3r + 2\\x\\)\\y-z\\S. 

The two last relations imply that 

h(F(z),F(y))<^(2 + Zr + 2\\x\\)\\y-z\\, (11) 

where h denotes the Hausdorff metric derived from the norm in Y. This means 
that F fulfils in B(x,r) the Lipschitz condition with the constant ^r(2 + 3r 
+ 2|N|). 

Now, let K C D be a bounded set and let (7) hold for some r > 0. Take 
y,z G K such that y ^ z. We can find a constant d such that ||x|| < d for 
all x e K. Choose also a positive rational number A such that inequality (8) is 
fulfilled. Further define yx by (9). Making use of (8) we get 

\\y1-y\\=]^<r, 

which means that y1 6 B(y,r). Moreover, relation (10) holds true for arbitrary 
u G F(z) and v G F(yx). By Theorem 1 

INI <c(l + 11*11) <c(l + d) 
and 
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Il«ll < c(l + | | y iH) < c(l + r + d). 

Hence, by (8) and (10), 

F(z)cF(y) + 2£(2 + r + 2d)\\y-z\\S. 

Since the roles y and z are symmetric, we may interchange them in the above 
relation, whence the inclusion 

F(y) cF(z) + ^(2 + 2d + r)\\y - z\\S 

results. Thus we have 

h(F(z),F(y)) <^-(2 + 2d + r)\\y - z\\. 

The last inequality, valid for arbitrary y,z G K, says that F is Lipschitz on K. 
D 

COROLLARY 2. Let X,Y,D be as in Theorem 1 and let F: X -> 2 y \ {0} 
be a midconvex multifunction with bounded closed values. If F is weakly upper 
bounded on an open non-empty subset of X. then F fulfils on X the Lipschitz 
condition. 

P r o o f . Take arbitrary y,z G X. We can find r 0 > 0 such that y,z G 
5(0, r) for all r > r0. From the proof of Theorem 2 (see relation (11)) we have 

h{F(y),F(z))<^(2 + 3r)\\y-z\\. 

Letting r -> oo, we get 

h(F(y),F(z))<6c\\y-z\\, 

i.e., / fulfils on X the Lipschitz condition with the constant 6c. D 
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