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SOME SUFFICIENT CONDITIONS FOR FINDING
A SECOND SOLUTION OF THE QUADRATIC
EQUATION IN A BANACH SPACE

IOANNIS K. ARGYROS

Introduction. Consider the quadratic equation
x =y + B(x,x) (1

in a Banach space X, where B is a bounded symmetric bilinear operator on X
and ye X is fixed. If Xe X is a solution of (1), then any other solution is given
by

X=X+ h,

where 4 is a nonzero solution of the equation

(I = 2B(x))(h) = B(h, h). (2)
If the linear operator I/ — 2B(X) is invertible, then equation (2) is equivalent to
h = B(h,h),
where
B=(—-2B(x)"'B. 3)
Here we introduce the iteration
hy o= (B(h,)~"(h,) 4)

for some h,e X to find nonzero solutions of (3). Iteration (4) has the property

B

n=0,1,2,..., therefore if iteration (4) converges to some he X, then 4 # 0 and
X = X + h is another solution of (1).

Sufficient conditions for a solution x of (1) can be found in [2], [6], [7], [9]. The
results in this paper can obviously be extended to include multilinear equations

that if ||, || > d for some dsuch that 0 < d < Tl_—with | B| # 0, then ||h,| > d,

of the form

x=y+ M(x,x,...,Xx)
-k times-
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where M, is a k-linear operator on X, k = 2,3, ....
Proposition 1. Assume that iteration (4) is well defined for alln = 0, 1,2, ... for

some hye X such that ||hy|| > d and for some d such that 0 < d < A with
|B| # 0, then |h,| >d,n=0,1,2,....
Proof. We proceed by induction. We assume that |/i| >d,

k=0,1,2,...,n, then by iteration (4)

B(h,,h, ) = h,
and
I BN Al Wy sy | = N1 B(hys by D) = [l A,
or
1

|Ihn+l|| Z'T
1B

To complete the induction it suffices to show that
>d,
which is true by hypothesis.

We now state the following lemma. The proof can be found in [10].
Lemma 1. Let L, and L, be bounded linear operators in a Banach space X,

where L, is invertible, and |L7"| | L,|| < 1. Then (L, + L,)"" exists, and
_ L'
WL+ Ly s — B
1 —[Ly |- 1Lyl

Lemma 2. Let z # 0 be fixed in X. Assume that the linear operator B(z) is
invertible, then B(x) is also invertible for all xe U(z,r) = {xe X||x — z| < r},
where re(0,r,) and ry = [| B - | B(z)~"|]".
Proof. We have
I1B(x —2)|-1B@ "Il < |Bll-llx —zI-1B)""|
<|Bl-IB@)"|-r
<1
for re(0,r,). The result now follows from Lemmal for L, = B(z), L, =
= B(x — z) and xe U(z,r).

Definition 1. Let z # 0 be fixed in X. Assume that the linear operator B(z) is
invertible.

Define the operators P, T on U(z,r) by
P(x) = B(x,x) — x, T(x)=(B(x))"'(x)
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and the real polynomials f(r), g(r) on R by
f=ar*+br+c, gr)=ar’+br+c,
a’ =(Bl- 1B,
b’ = =2||B|-IB)"ll,
¢ =1— B = IBlI-1BE@"I*zI,
a=|B|l|B"l,
b=|B(z)"'U-B@)| -1, and
c= B "P@)I.
Theorem 1. Let ze X be such that B(z) is invertible and that the following are
true:
a) ¢’ >0;
b) b <0, b> — 4ac > 0; and
C) there exists r > 0 such that f(r) > 0 and g(r) < 0. Then the iteration
hn+l=B(hn)_l(hn)9 n=0,1,2,---
is well defined and it converges to a unique solution h of (3) for any hye U(z,r).

Moreover, if |hy|| > d for some d such that 0 < d < —1-, then |h| > d.

Proof. T is well defined by Lemma 2.
claim 1. T maps U(z,r) into U(z,r).
If xe U(z,r), then

T(x) —z=Bx)"'(x)— z
= B(x)™'[( — B(2))(x — z) — P(2)),
SO
ITG) =zl <r

1
1— | Bl-IB@ I
(using Lemma 1 for L, = B(z) and L, = B(x — z)) or g(r) < 0, which is true by
hypothesis.

claim 2. T is a contraction operator on U(z,r).
If w,ve U(z,r) then

1B~ = B@)r + |B@) " P@II < r

1 T(w) — T
= [1Bw)~™'(w) — B(w)~' )
= 1BwW)™'l/ — B(B(0)~'@)I(w — v)|
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= [|BOw)™'[/ = B(B(v)"'(v — 2)) + B(B(v)"'(2)](w — )l
< 1 IBII-IB(z)~"1>r + | BI- 1 BG) "= ]
L= BI-IB@E) L= Bl IBE@) "

Aw —vll = q-llw—v|.

Dm@)W+

So T is a contraction on U(z,r) if 0 < g < |, where
4= 1 IB]-1B@)""II°’r + IIEII-IIB_(Z)‘IHZIIH}
L= Bl-IB@)"|-r L—|B[-iB@)"]-r

Dmurm+

which is true since f(r) > 0.
Iteration (4) can be written as

h,,,=h,— B(h,) "(P(h)), n=0,1,2,.... (5)

The corresponding Newton-Kantorovich method can be written as
Zyo1=2,—2B(z,)—1""'P(z,), n=0,1,2,.... (6)
Iteration (6) is faster and easier to use most of the time, but if we choose an

hy such that | 4| > d, then (6) does not guarantee that the limit w = lim z, is

such that w # 0. This is exactly the advantage of iteration (5) when compared
with (6).

The basic defect of (5) is that each step involves the solution of an equation
with a different invertible operator B(h,). For this reason we can study the
following modified method

h,.,=h,— B(z)"'P(h,), n=0,1,2, ... (7)

Iteration (7), however, does not necessarily satisfy the conclusion of Proposi-
tion |.

The proof of the following theorem is omitted as similar to that of Theorem 1.

Theorem 2. Let z€ X, assume that the operator B(z) is invertible and that the
following are true:

@) I1B()~'(I - B@)| < 1,

(b) D=(IB() (/= B@)| = 1) =4[ B)""| | B |B(z) 'P(z)| >0,

then the iteration (7) is well defined and it converges to a unique solution x of (1)
for any x,e U(z,r), where r is such that

<r<o
with

¢ = 1= 1BE) U= BE)| =D
2081 1BG)
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(1= 1BO)"U~ B
21B1-18()7"]
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HEKOTOPBIE JOCTATOYHBIE YCJIIOBUA OJIA HAXOXIAEHHUA BTOPOI'O
PEHIEHNA KBAIPATHOI'O YPABHEHUS B BAHAXOBOM IMTPOCTPAHCTBE

Ioannis K. Argyros

Pe3romMme
PaccmaTpuBaeTcs kBaApaTHOE ypaBHEHHE
x=y+ B(x,x) )

B 6aHaXOBOM NpPOCTpPaHCTBE X, rle B — orpaHHYeHHbI CHMETPUYECKUI OUITHHEHHBII onepaTop Ha
X, a ye X ¢uxcupoBannoe. Ecnu X¥e X — petuenne (1) u nuHeiHblit onepatop / — 2B(X) obpaTu-
MBIii, TO BBEEM HTEPALHIO -

hy oy = (B(h,) ™' (hy),
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rae
B=(-2B(x)"'B

LIS HEKOTOPOTo Ay € X. B paGoTe HellieHbI AOCTATOUHbIE YCJIOBHS CXOAMMOCTH BbILLENPUBEPEHHOM
UTepauuH K HeHyneBoMy he X. Ecnu Takoe he X MoxeT ObITh HaiiIeHO, TO

x=X+h

SIBJISIETCS BTOPBIM pellieHHeM Yy paBHeHus (1).
VYcnoBUs CyLIECTBOBaHUA pelleHHs (Mayioro) X ypaBHeHus (1) yxe u3BeCTHbI M3 paboTr
JI. B. Panna u €BO y4eHMKOB.
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