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LOCALLY DISCONNECTED GRAPHS 
WITH LARGE NUMBERS OF EDGES 

ZDENEK RYJACEK, BOHDAN ZELINKA 

Let G be a finite undirected graph, let v be its vertex. By the symbol NG(v) we 
denote the subgraph of G induced by the set of vertices which are adjacent to 
v; the graph NG(v) is called the neighbourhood graph of v in G. 

If NG(v) is disconnected for each vertex v of G, the graph G is called locally 
disconnected [1]. 

At the Czechoslovak Conference on Graph Theory in Luhacovice in 1985 the 
second author has proposed the problem of finding the maximum number of 
edges of a locally disconnected graph with n vertices. In [1] it was shown that this 
number cannot be expressed as a linear function of n. Probably it could be 
expressed as a quadratic function of n, because so can the number of edges of 
a complete graph with n vertices. 

In this paper we shall not find this maximum number, we shall only show that 
its asymptotical behaviour is the same as that of the number of edges of a 
complete graph with n vertices. 

Theorem 1. Let n be a square of an integer, n = A. Then there exists a locally 
i n 

disconnected graph with n vertices and -n2 n yjn + 3n — 2 ^Jn edges. 
2 2 

Proof. For n = 4 such a graph is a circuit of the length 4. Now let n = 9. 
The vertex set of the required graph G consists of the vertices u(/,j), where 
1 ^ / ^ yjn, \ ^j = yjn. Two vertices u(ix,j\), u(i2J2) are adjacent if and only if 
some of the following conditions is fulfilled: 

(0 'i *hJ\ =Ji\ 
(») i\ = hJ\ *j2, min {/„j2} = 1; 

(iii) /, ?- i2Jx ^\J2^\,jx #y2. 

Evidently the number of pairs of vertices fulfilling (i) is y/nly ), the number of 

pairs of vertices fulfilling (ii) is \Jn(yfn — 1) and the number of pairs fulfilling (iii) 

is ( 2 ) vw(v'1 ~ - ) • % adding these three expressions we obtain 

-n2 nyfn + 3n — 2yjn. 
2 2 
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Now we shall investigate the graphs NG(u(i0J0)), where 1 _: /0 _: /̂rz, 
1 ^ jo = V^- P*st s u PP o s e jo = -• Then the vertex set of NG(u(i0J0)) is the union 
of disjoint sets M, = {u(ij)\i ^ i0 j = 1} and M2 = {«(i,j)|i = io' Jr # -}• No 
vertex of M, is adjacent to a vertex of A/2 and both M,, M2 are non-empty, 
therefore NG(u(i0J0)) is disconnected. Now suppose j0 7-= 1. Then the vertex set 
of NG(u(i0J0)) is the union of disjoint sets M3 = {u(ij)\i # /0 , j =J0}, M4 = 
= {u(ij)\i # i0 j # 1} and M5 = {u(/0, 1)}. The unique vertex u(/0, 1) of M5 is 
adjacent to no vertex of M3uM4, therefore NG(u(i0J0)) is again disconnected. 
The graph G is locally disconnected. 

Note that 

^ ( 2 ^ ~ ^ ^ + 3W " 2 V ^ ) / ( 2 ^ 
- « ] = 1. 

The numerator of this fraction is the number from Theorem 1 and the denomi­
nator is the number of edges of a complete graph with n vertices. We see that 
a locally disconnected graph can have a number of edges which can be expressed 
by a function of n which behaves asymptotically the same as the number of edges 
of a complete graph with n vertices, i. e. the maximum number of edges of a 
graph with n \ertices and without loops and multiple edges. We shall extend this 
result to the case when n is an arbitrary integer. 

Theorem 2. There exists a function t(n) defined on the set of all positive integers 
with the following properties'. 

(a) lim /(«)/( 'n2 - l-n) = 1; 

(b) for each integer n = 4 there exists a locally disconnected graph G with n 
vertices and t(n) edges. 

Proof . Lei n be an integer, n ^ 36. By p we denote the upper integral 
part of yjn, i *\ the least integer which is greater than or equal to yjn. We 
construct a graph G. The vertex set Vof G will be the union of pairwise disjoint 
sets Vl9 ..., l'r As n = 36 and obviously p = yJn+\, the inequalities 

-p(p + 3) ^ -(Jn + 1) (yjn + 4) = n hold, which (together with n = p2) implies 
2 2 
the existence of the integers r,, ..., rp satisfying the conditions r, = r2 = r3 = p, 
1 p 

~P ^ rj = P forj = 4, . . . , /?, ]T r} = n.\x\G there is |Vy| = r, forf = 1, . . . , /? . The 
2 j=\ 

vertices of each Vy are denoted by u(ij) for / = 1, ..., r7. Two vertices u(ixJx), 
u(hJi) are adjacent if and only if some of the conditions (i), (ii), (iii) from the 
proof of Theorem 1 is fulfilled. Analogously to the proof of Theorem 1 we can 
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prove that G is locally disconnected. We shall compute the number of edges 
of G. We start with the number of edges of the subgraph G0 of G induced by the 
set V — V,. We may consider G0 as the graph obtained from a complete graph 
on n — p vertices by deleting edges of p pairwise disjoint complete graphs, each 

of which has at most p—\ vertices. Hence G0 has at least -(n—p) 
2 

(n — p — 1) p(p — 1) (p — 2) edges. As \fn _̂  p < \fn + 1, this number is 
2 

greater than or equal to -(n — \fn — 1) (n — \fn — 2) Jn(\fn + 1) 
2 2 

1 3 
(\fn — 1) = -n2 n\fn — n + 2 \Jn + 1. Further the subgraph of G induced 

2 2 
by V] is complete, therefore it has -p(p — 1) edges; this number is greater than 

2 
or equal to -\fn(\fn — 1). The number of edges joining the vertices of Vx with 

2 

vertices of G0 is at least 2p + -p(p — 3) ^ -n + -\fn. The whole graph G has at 
2 2 2 

least -n2 n\fn + 2 \fn + 1 edges. By t(n) for n ^ 36 we denote the maximum 
2 2 

number of edges of a graph G thus described; for n such that 4 ^ « ^ 35 we may 
put t(ri) = 77, because every circuit of the length at least 4 is a locally disconnected 

1 3 
graph. Thus for n = 36 we have t(ri) ^-n2 n\fn + 2\fn + 1 and obviously 

2 2 
t(n) ^ rz, which is the number of edges of a complete graph with n vertices. 

2 2 
As 

lim í - " 2 - - " V « + 2 4 / « + 1) l-n2--n 
«-* \2 2 ^ v /7V2 2 . 

we have also 

l i m / ( n ) / ( i « 2 - ^ ) = l . 
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R E F E R E N C E 
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Л О К А Л Ь Н О НЕСВЯЗНЫЕ ГРАФЫ С Б О Л Ь Ш И М И Ч И С Л А М И РЕБЕР 

7с1епёк К ^ а с е к — ВоЬёап 2 е Н п к а 

Р е з ю м е 

Символом N0(1;) обозначается подграф графа С7, порожденный множеством вершин, 

смежных с V. Если N^1) несвязен для всех вершин V, граф С называется локально несвязным. 

Доказано, что максимальное число ребер локально несвязного графа с п вершинами имеет 

то же асимптотическое поведение, как и число ребер полного графа с п вершинами. 
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