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LOCALLY DISCONNECTED GRAPHS
WITH LARGE NUMBERS OF EDGES

ZDENEK RYJACEK, BOHDAN ZELINKA

Let G be a finite undirected graph, let v be its vertex. By the symbol N(v) we
denote the subgraph of G induced by the set of vertices which are adjacent to
v; the graph Ng(v) is called the neighbourhood graph of v in G.

If N4(v) is disconnected for each vertex v of G, the graph G is called locally
disconnected [1]. )

At the Czechoslovak Conference on Graph Theory in Luhacovice in 1985 the
second author has proposed the problem of finding the maximum number of
edges of a locally disconnected graph with » vertices. In [1] it was shown that this
number cannot be expressed as a linear function of n. Probably it could be
expressed as a quadratic function of n, because so can the number of edges of
a complete graph with » vertices.

In this paper we shall not find this maximum number, we shall only show that
its asymptotical behaviour is the same as that of the number of edges of a
complete graph with » vertices.

Theorem 1. Let n be a square of an integer, n = 4. Then there exists a locally

disconnected graph with n vertices and -;-nz - %n\/ﬁ + 3n — 2\/; edges.

Proof. For n =4 such a graph is a circuit of the length 4. Now let n = 9.
The vertex set of the required graph G consists of the vertices u(i, j), where
15i \/71, 1</ \/r; Two vertices u(i,, j,), u(i,, j,) are adjacent if and only if
some of the following conditions is fulfilled:

O i *igi=is
(“) iy = Iy, ) # jp, min {jy, jo} = 1;
(i) 4 # b, i # 1, p # 1, ji # Jh.
Evidently the number of pairs of vertices fulfilling (i) is \/;l <‘é’—l>, the number of
pairs of vertices fulfilling (ii) is \/1—1(\/;1 — 1) and the number of pairs fulfilling (iii)

is (‘/’;2—1 Jn(y/n—1). By adding these three expressions we obtain

%nz —%n\/r;+ 3n —2./n.
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Now we shall investigate the graphs N, (u(iy,jp)), where 1< i <
1 < j, £ «/n. Fist suppose j, = 1. Then the vertex set of Ng(u(i. jy)) is the union
of disjoint sets M, = {u(i, )li # i, Jj= 1} and M, = {u(i, )li =iy> j#1}. No
vertex of A, is adjacent to a vertex of M, and both M,, M, are non-empty,
therefore Ng(u(iy, j,)) is disconnected. Now suppose j, # 1. Then the vertex set
of Ng(u(iy, jo)) is the union of disjoint sets M, = {u(i, )i # iy, j=j}, My=

= {u(i, Pli #1i, Jj# 1} and M= {u(i,, 1)}. The unique vertex u(i,, 1) of M is
adjacent to no vertex of M, u M,, therefore N (u(iy, jy)) is again disconnected.
The graph G is locally disconnected.

Note that

,an: (;n ——nf+3;1—2\/n>//<1n —%n>= 1.

The numeratcer of this fraction is the number from Theorem 1 and the denomi-
nator is the number of edges of a complete graph with n vertices. We see that
a locally disconnected graph can have a number of edges which can be expressed
by a function of n which behaves asymptotically the same as the number of edges
of a complete graph with n vertices, i.¢. the maximum number of edges of a
graph with # vertices and without loops and multiple edges. We shall extend this
result to the case when #» is an arbitrary integer.

Theorem 2. There exists a function t(n) defined on the set of all positive integers
with the following properties:

(a) 11m t(n)/( n’ — %n) =1;

(b) for each ivteger n = 4 there exists a locally disconnected graph G with n
vertices and (1) edges.

Proof. Let n be an integer, n = 36. By p we denote the upper integral
part of \/r_z, i 2. the least integer which is greater than or equal to \/Z We
construct a gruph G. The vertex set V' of G will be the union of pairwise disjoint

sets V,,...,1,. As n=36 and obviously p <./n+ 1, the inequalities

19 =+- It

%p(p +3)< %( n+ 1)(/n + 4) < n hold, which (together with n < p?) implies

the existence of the integers rl, ..., I, satisfying the conditions r; = r, = ry = p,

1
Epgrjgpforj=4. s Py Zr =n.In G thereis |V| =r,forj =1, ..., p. The

Ji=1
vertices of each V; are denoted by u(i, j) for i = 1, ..., r,. Two vertices u(iy, j,),
u(i,, j,) are adjacent if and only if some of the condmons (i), (i), (iii) from the
proof of Theorem 1 is fulfilled. Analogously to the proof of Theorem 1 we can
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prove that G is locally disconnected. We shall compute the number of edges
of G. We start with the number of edges of the subgraph G, of G induced by the
set V' — V,. We may consider G, as the graph obtained from a complete graph
on n — p vertices by deleting edges of p pairwise disjoint complete graphs, each

of which has at most p— 1 vertices. Hence G, has at least %(n —p)
1 . .
m—p-—1) —Ep(p — D (p — 2) edges. As \/r; sp< \/ﬁ+ 1, this number is
greater than or equal to %(n — \/Z —1(n— \/;_1 —-2)— %\/;(\/f; +1)
Wn—=1)= %nz — %n\/; —n+ 2\/; + 1. Further the subgraph of G induced
by V, is complete, therefore it has % p(p — 1) edges; this number is greater than
1 L . .
or equal to 5\/;(\/; — 1). The number of edges joining the vertices of ¥/, with
vertices of G, is at least 2p + %p(p —-3)= %n + %\/ﬁ The whole graph G has at

least %nz - %n\/; + 2\/; + 1 edges. By #(n) for n = 36 we denote the maximum

number of edges of a graph G thus described; for n such that 4 < n < 35 we may
put #(n) = n, because every circuit of the length at least 4 is a locally disconnected

graph. Thus for n = 36 we have 1(n) = %nz — %n\/ﬁ + 2\/; + 1 and obviously

t(n) £ % - %n, which is the number of edges of a complete graph with » vertices.

As

n-a \2

. 1 3

lim (—n2 - —n\/;'z+ 2\/;+ 1>/(ln2 — ln> =1,
2 2 2

we have also

1 1
lim ¢ (—n2 — —n) =1.
Jim (n)/ 5 5
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- JJOKAJIbHO HECBA3HBIE I'PA®BI C BOJBIIMMHU UUCIIAMU PEBEP
Zdenék Ryjacek — Bohdan Zelinka

Pe3rome

CumsosioM Ng(v) obo3Havaetcs nmoarpad rpada G, NOPOXKIEHHBIH MHOXECTBOM BEPILUH,
cMexHBIX ¢ v. Ecin Ng(v) HecBsizeH 1st BCex BEPIUMH v, Tpad G Ha3bIBAETCA JIOKATIbHO HECBA3HBIM.
Jloka3aHo, YTO MaKCHMaJIbHOE YHC/I0 pebep JOKaIbHO HeCBA3HOro rpada ¢ » BepLUIMHAMU UMeeT
TO € aCUMIITOTHYECKOE TMOBEAEHHE, KAK U YHCI0 pedep nosHoro rpada ¢ n BepLUMHAMHU.
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