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REGULAR SYNTHESIS FOR THE LINEAR-CONVEX
OPTIMAL CONTROL PROBLEM WITH
CONVEX CONTROL CONSTRAINTS

MARGARETA HALICKA

1. Introduction

Sufficient conditions for the existence of a regular optimal control synthesis
for an abstract optimal control problem have been given in [2]. It has been
proved in [3] that these conditions are satisfied for the linear-quadratic optimal
control problem with linear control constraints. This paper constitutes an
extension towards linear-convex optimal control problems with convex control
constraints. This extension includes the linear-quadratic optimal control pro-
blem [3] as well.

In the course of the work on this paper it turned out that the theory of [2]
cannot be directly applied to the linear-quadratic problem as claimed in [3]. The
reason is that extremal trajectories from the interior of the reachable set may
enter the boundary of the latter. In order to straighten out this gap we present
a modification of the concept of regular synthesis to a set which need not be
open. It is proved that the modified definition of a regular synthesis remains the
sufficient condition of optimality. Finally, it is proved that the linear-convex
problem admits a regular synthesis in the modified sense.

2. The linear-convex optimal control problem with convex control contraints
We consider the optimal control problem given by the linear system

n % = Ax + Bu

where 4, Bare n x nand n x m matrices, respectively, and the n x (nm) matrix
(B, AB, A*B, ..., A" 'B) has rank n. The cost functional of the problem is
prescribed by

2) J@=ffmmm
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Here f°(x, u) is a given real convex analytic function on R" x R™ such that
oo (x, u) .
——= >0 for all (x, u)eR" x U.

ou?

The control domain U is assumed to be of the form

U={ueR"/gu)<0,ieP} P={1, ..., p},

where
a) g:R" - R, ie P, are analytic functions,
by T2

ou?

> 0 for all ue R™, i€ P,

¢) among the inequalities defining U there are no redundant ones, i.e., for every
i€ P there exists a u€ R™ such that g'(v) > 0 and g/(u) <0 for je P — {i},
d) U is bounded and U contains the origin in its interior,

e) if for ue U one has g'(u) = 0 for ie P, < P, then the vectors aga(u) ,ie P, are
u
linearly independent.

By an admissible control we understand any measurable function
u:[0, 7] - U.

Given a point (y, T)e R"* ' and a controlu on [0, T] by x(¢; T, y, u) we denote
the solution of (1) with u = u(¢) such that x(0; 7, y, u) = y. We say that the
control u steers the system (1) from y to 0 on [0, T} if x(T; T, y, u) = 0. The
control u on [0, T) is called optimal (for given (y, T)e R"*") if it minimizes J
among all controls steering the system (1) from y to 0 on [0, T].

The optimal control problem just formulated for given (y, T)e R"*' we will
denote LK (y, T).

Let us denote that for our purpose it is sufficient if the assumptions a), b) are
valid on some neighbourhood of U.

Adding the equation

) =

to (1) we reformulate the fixed time problem LK(y, T) as a free time problem
which we denote by LK’(y, T'). Here the admissible controls are defined on the
intervals of type [0, T'], T > 0, and the responses %(¢) = (x(¢), x" * '(¢)) satisfy the
conditions (x(0), x"*'(0)) = (y, —T) and (x(T), x"*'(T)) = (0, 0)e R"* .

Let G be an open subset of R"*'. We will say that the system of problems
LK(y, T),(y, — T)e G admits a regular synthesis in G if the system of problems
LK’(y, T), (y, —T)eG admits a regular synthesis in the sense of [2].
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Let K(T') be a set of all points y in R” from which the system (1) can be steered
to the origin by admissible controls u(¢) on [0, T'], T > 0. Let us denote

K, = TL>)0(K(T) x{=T}).

Our goal is to prove that the system of problems LK(y, T'), (y, —T)e€int K|
admits a regular synthesis in int K.

3. Some basic properties of LK problems

We recall some properties of the LK problems which will be used later. The
properties LK1—LKS5 are simple corollaries of some general properties of
optimal control problems for which [5] is a good reference. The property LK6
uses more a special form of the given LK problem.

LK1. For every (y, — T)€ K, there exists an optimal control for the LK(y, T)
problem.

LK2. Let u(t) be an optimal control with response x(t) for the LK(y, T)
problem. Then there exists a non-zero solution y(t) = (y°, 1n(2)), v° <0, of the
adjoint system

=0

A3) 'ﬁ _ <6f °éz ﬁ))* Vo — A*n

such that u(t), x(t) are extremal (with respect to y(t)), i.e.,

“ M(x(t), w(t), d(t)) = m%x M((x(2), w(t), u) a.e. on [0, T].
Here
&) M(x, y, u) = y°f°(x, u) + n*Bu

(asterisk standing for transpose).

A (u(), x(t), w(?)) is called an extremal triple for the LK(y, T) pro-
blem provided it satisfies (3), (4) and w(¢) £ 0, y° < 0.

Let LK (y, T) be the optimal control problem given by the linear process

(6) X = —Ax — Bu

where A, B, the performance index, the control domain and the admissible
controls are such as in LK (y, T'). The initial state is prescribed by x(0) = 0 and
the target state by x(T') = y. Let K(T') denote the set of all points of R” to which
the system (6) can be steered from 0 by admissible controls on [0, T].
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LK3. a) K(T) = K(T). b) A (u(t), x(t), w(t)) is an extremal triple for the
LK(y, T) problem if and only if (i(t), X(¢), ¥(t)), where ii(t) = u(T — t),
X(0) = x(T — 1), ¥(t)=@° @) =W’ —n(T—1t))=w(), is an extremal
triple for the LK(y, T) problem.

LK4. The set K(T) is compact, convex and varies continuously with T, on
T>0.

LKS. Int K, is a non-empty connected set, 0e K, .

Remark. Due to LK5 it makes sense to consider the existence of regular
synthesis for the LK problem on int X .

LK6. a) Let (y, —T)eint K, let (i(¢), X(2)), (¥°, 7(t)) be an extremal triple
for the LK(y, T) problem. Then, y° # 0.

b) Let (i(t), X(1), (¥°, 11(¢)) and (ii(t), X(1), (¥°, 11(2))) be extremal triples for
the LK(y, T) problem such that y° # 0, y° # 0. Then u(t) = i(t) almost every-
where on [0, T1].

Proof. According to LK3 it is sufficient to show that LK6 is valid for the
LK (y, T) problem. Also we assume that i(¢), ii(¢) are extremal controls for the
LK (y, T) problem. We extend the system (6) to the system

X = —Ax — Bu.

Let u(t), te[0, T], be an admissible control. Consider the solution
z(t) = (x°(t), x(t)) of the system (7) satisfying the condition z(0) = 0. Then
x°(T) = J(u, T). Let us denote K(7T) the set of all endpoints (x°, x) = (x°(T),
x(T)) of the solution z(¢) of (7) satisfying the initial condition z(0) = 0 for all
admissible controls on [0, 7). Note that the natural projection of the set
R(T) < RxR" on the x- space is the set K(T).

Let (i(2), x(¢), w(1)), y° # 0, be an extremal triple for the LK problem. Then
Z(t) = (x°(¢), x(t)) is a solution of (7) satisfying z(0) =0, Z(T) = (x°(T),
#(T)) = (J@@, T), y). We can prove that (T) is a boundary point of K(T') and
(9°, 7(T)) is an exterior normal to K(T') at Z(T), i.e., for an arbitrary admissible
control u(¢) such that the corresponding solution of (7) z(¢) satisfying z(0) = 0
there holds

®) w(I)*A(T) — y(T)*=(T) = 0.

First we derive two expressions which will be needed for the proof of (8).

Since (X(t), #(t), y(t)) is an extremal triple for L~K(y, T), it satisfies
® —¥°f°(X, @) + 77* Bii = min [— §°f°(X, u) + 7* Bu.
uelU
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Formula (9) defines a problem of convex programming and, therefore, it can
be written

(10) (—*V_f"w+ ﬁ*B)(u—ﬁ)>0

u

for all ue U almost everywhere on [0, T'].
Since the function f°(x, u) is assumed to be convex and since y° < 0 there
holds

@),
o (u—a)

(D) Vo, @) — vfox, w) > — wﬂgﬂ(x_ ) —

for all x, xeR", u, ue U.
Using the condition Z(0) = z(0) = 0 and conditions (7), (10), (11) we obtain

(11) 7 o ‘
w(T)*z2(T) — y(T)*z(T) = j <i (w()*2(2)) dz — i('!7(!)"‘2(’))> dr =
o \dt dr

=J;) '/-,ofo(x-aa)—'/-/Ofo(x,u)-f—l/-)OW(x_x')*_ ﬁ*B(u—'ﬁ))dtZ
zf <— Vw(u—ﬁ)+ﬁ*3(u—ﬁ)>dt>0,
0 Ou

Thus, the inequality (8) is proved. From this inequality it follows that
#(T) = (x°, X(T)) lies on the boundary of K(T) and that (y°, (T)) is an
exterior normal to K(7'). If y° = 0, then 7j(T) would be an exterior normal to
K(T) at x(T') and thus x(T) = y would be a boundary point of K(T). It is a
contradiction to our assumption. Therefore ° # 0 and the statement a) of LK6
is proved.

Now let (i1(2), X(t), w(1)), w° # 0 and (@(r), x(t), (1)), ¥° # 0 be extremal
triples of the LK(y, T) problem. Let there exist a non-trivial interval 7 < [0, T']
such that #(¢) # () almost everywhere on /. Using the calculations (11)’ for
x(¢), X(t), w(t) and for %(¢), x(¢), ¥(t) and taking into account the strict
convexity of f°(x, u) in u for fixed x we obtain x°(7T) < X°(T) as well as
X°(T) < x°(T) and therefore #(t) = #(t) almost everywhere on [0, T'].

4. The existence domain of a regular synthesis

The concept of a regular synthesis in the sense of [2] and the corresponding
existence theorem are formulated for an open set G = R". In our case, because
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of fixed time, it would be necessary to choose in same way a suitable subset of
R"*!'. As in the linear-quadratic problem from [3] it would be natural to take as
this set G the open set int K. This choice would also have the advantage that
according to LK6 one would take y° = —1 and conclude easily the unicity
property required in assumptions of the existence theorem.

To take int K, for G one would have to prove that the extremal responses
steering the points from int K, to 0 are staying in int K|, i.e., if (y, — T) €int K
and x(¢) is the corresponding extremal response of the LK(y, T') problem, then
(x(t), —t)eint K, on [0, T).

We demonstrate by a simple example that this property fails to be valid in
general. The example satisfies the assumptions of the linear-quadratic problem
from [3] as well and hence shows that in [3] the above claim was erroneous.

Example. Consider the optimal control problem given by a system

(12)

a control domain U = [—1, 1] and a performance index

T
(13) J(u) = J W’ dt.
0
The corresponding adjoint system is
y:/] = =
Vo= —¥

and y,(t) = a, y,(t) = —at + b, a, beR, is its solution.

If u(¢) has to be an extremal solution of our problem, it must maximize the
function w,u + wu’. Since we consider responses steering the points from int X,
to 0 only, according to LK6 we can take y° = —1 and then the maximum
condition is given by

(14) uy, — ut = max (uy, — u?).

Solving the condition (14) we obtain that (u(#), x(t), y(t)) is an extremal triple
if and only if u(¢) has the following values only:

1 ify,>22
= w2 if —2<y,<2
—1 if y, < -2
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Now let us consider the time optimal control problem given by (12). Then
according to [5] the control u(¢) and response x(¢), t€[0, T'] are time optimal if
and only if x(0) e 0K(T') and according to [1] a time extremal control has only
values 1 and —1.

Evidently, if u(t) is extremal for the primary linear-quadratic problem given
by (12), (13), x(2) is its response on u(¢) and u(f) =1 on [¢,, T}, ¢, > 0, then
(x(#), —t)edK, on [t,, T]. We shall demonstrate that such a control can be
constructed for x(0)eint KX .

Let vy, <0, y,(0)e(—2, 2). Then wy,t) = —y; + ¥,(0) is increasing and
wi(#,) =2 if and only if £, = (y,(0) — 2)/y;, Let T > (y,(0) — 2)/y;. Then
the control

u(t) = {(— Wit + y5(0)) for (0, (v3(0) — 2)/ ]
1 for te[v,(0) — 2/y,, T]

uniquely determines a y € K(T') such that a u(¢) steers y to 0 on [0, T']. A simple
computation proved that if y = (y,, »,), then

(B (1) 3] ) o

y2=<%(0)—2>3 (w.+2> +(w2(0)—2) (Wz(O) 4 T) LT
Vi 4 "4 2 2

The control u(t) is evidently extremal for the LK(y, T) problem and from the
fact that it is not time optimal there follows (y, T)eint K,. Then there exists
such a point (y, T)eint K, for which the extremal response is from the boun-
dary of K, on a non trivial interval.

By this example it was demonstrated that for the linear-convex problem (and
for the linear-quadratic problem as well) it is not possible to consider the
existence of a regular synthesis on int K, in the sense of [2]. The reason is that
in general the requirement about extremal responses to stay in int K is not
satisfied.

In the next part we shall make a slight modification of the regular synthesis
concept to include the cases when the extremal responses reach the boundary of
G. We shall prove the optimality of controls generated by the modified regular
synthesis. The formulation of the existence theorem from [2] will be modified as
well.
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5. The modification of the regular synthesis concept

As the regular synthesis concept is rather space consuming and some points
from its definition from [2] remain without change for the modified definition
we shall not give the full regular synthesis concept for the set G not necessarily
open.

Definition 1. Let G < R", int G connected, xeG. By aregular synthesis
in G of the optimal control problem from [2] given by the equation

(15) x = f(x, u)

the performance index .

(16) Ju, T) = J Fo(x, u) dt

with initial points from int G and with target point X we shall understand a 6-tuple
(&L, A, S, II, X, v) where the symbols &, &, &%, I, X and v have the same
significance as in the definition of [2] and the conditions A, B, C from [2] are
satisfied on the whole G, the conditions D in the interior of G and in addition the
Sfollowing condition is satisfied
E. Ifi(t), te[0, T is an admissible control steering the system (15) from xeint G
to X, X(t) is the response of i(t), then there exists a sequence x, — x and 6, — 0,
X,, X€G, 6,€R, such that x,(t) = x(¢, x,, #(t))eint G on [0, T — 9,).

We shall show this modification of a regular synthesis concept to preserve the
optimality of controls generated by the regular synthesis.

Theorem 1. Let G > R", int G connected, X€G. Let (¥, &,, %>, I, X, v) be
a regular synthesis in G of the control problems (15), (16) with initial points
xeint G and a target point X. Then for every xeint G the control u.(t) generated
by the closed-loop control v (equation (10) from [2]) is optimal for the initial state
X.

This theorem can be concluded from the next in the same way as theorem A2
from Al in [2] for G open.

Theorem 2. Let G = R", int G connected. Let M be a closed stratified subset of
G of dimension <n. Let (G —int G) < M. Let the following assumptions be
satisfied:
a) XeG, the function V: G L {x} —» R is continuous in int G U {xX} and continuous-
ly differentiable in G — M, V(X) = 0.
b) For every xeint G there exists the control u/t), te[0, T(x)], steering the
system (15) from x to X such that its response x(t)€ G on [0, T (x)) and J(u,,
T(x)) = V(x).
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Let the assumption E from Definition 1 be satisfied as well. If the condition
oV
Sfo(x, u) + P () fx,u) =20
X

holds in G — M, then u, is an optimal control for every initial point xeint G.

Proof. Let x,eint G, £ > 0. From the continuity of ¥(x) in x, and in X it
follows that there are neighbourhoods W, of x, and W, of X such that
[V(x) — V(x,)| < & for xe W, and |V(x) — V(X)| < € for xe W]~ G. Let u(z),
te[0, T'] be an arbitrary control steering the system (15) from x to X, let x(¢) be
its response. Then there exists such a § > 0 that x(T — d)e W, n G and

T
a7 J (x(t), u())dt > — ¢
T—-6

Futher, there exists a neighbourhood W < W, of x, such that if y(z) is the
response of u(t) starting at an arbitrary y,€ W; and satisfies y(#)eint G on
[0, T — 9], then y(T — 8)e W;n G and

T-6 T-6
(18) —L S2(y(0), u(?)) dt +L Sox(@), u(t)) dr > — ¢

By the assumption E there exists a n such that x,e W, 6, < d and x(¢, x,,, u)e
eint G for te[0, T — 6,]. Let W be such a neighbourhood of x, that Wy < Wj.
According to [Lemma 4, 2] applied to int G there exists an y,e W} such that the
response y(¢) of u(t) starting at y, meets M at at most finitely many points and
furthemore y(t)eint G on [0, T — 6] and y(T — 6)e W, G. Then using [2,
Lemma 2] applied to y(¢) and int G one has

T8
(19) VT =+ Vo0 < | 1200, u)
Because of y(7 — 8)e W, n G one has

(20) —V(yo) + Vix) < ¢

@0 — V(&) + V(T - 9) <&

Adding (17)—(21) we obtain
—V(X) + V(x)) — 2¢e < L SP(x (D), u(r)) dr + 2¢.
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Since € > 0 may be taken arbitrarily small we have
T
— V(%) + V(xy) < J So(x(2), u(e)) dt
((]

which due to assumption b) proves the optimality of the control u, .

Now we adapt the assumptions of the existence theorem from [2] to be
sufficient conditions of the regular synthesis existence in the sense of the modi-
fied Definition 1. Once again the full assumptions of the theorem will not be
presented but rather the differences will be pointed out.

The modification of the existence theorem. Let G = R”, int G connected and let
the conditions 1—7 of existence theorem [2] be satisfied on G with the following
exceptions:

— Assumption 2: The sets N,cover G x Ri*' Ri*'={yeR"*'/y° < 0}and N,
are closed subsets of R" x Ry*'; the functions w; satisfy the maximum con-

dition
(22,) H(X, W’ MYi(x9 l//)) = max H(xv l//’ u)fOr (x’ W)GNI
uelU
with y° # 0;

— Assumption 3: It suffices to require the uniqueness of extremal controls satisfy-
ing w° # 0 and the existence for xeint G only,
— Assumption S: It suffices to require continuity of J(x, u,) on int G.

Let the assumption E from Definition | hold. Then there exists a regular synthesis
of the optimal control problems (15), (16) for x e int G in the sense of Definition 1.

Remark. As the basic space in which the cells are inductively constructed
backwards the open set G x (R**' — {0}) (resp. G x S" where S" = {yeR""/
|y| = 1}) is taken in the proof of [2]. In the case of the modified theorem one can
take as this basic space R" x (Rj*' —{0}) or G x S}, where S} = {yeR"*'/
lw| = 1, y° # 0}. In this way the extremal trajectories reaching the boundary of
G which cannot be extended as extremals into int G are excluded. Therefore the
proof of the existence theorem [2] is valid for our case as well.

At the end of this paper it will be proved that our linear-convex problem
satisfies the assumptions of the modified existence theorem and then there exists
a regular synthesis of the LK(y, T), (y, —T)eint K, , problem in the sense of
Definition 1. To this aim some lemmas and theorems will be needed.
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6. The solution of the maximum condition

First, we formulate the control # from the condition (4) as a function of x and
v and prove its continuity.

Lemma 1. For any (x, y)€ R" x Ri™* " there exists a unique solution w = w(x, y)
of the condition

22) M(x, y, w) = max M(x, v, u)

where the function M is defined by (5). The function w is continuous.

Proof. The existence of the (22) condition solution for given (x, w)e
€ R" x R;*! follows from the continuity of M(x, v, u) and from the compact-
ness of U. The uniqueness follows from the strict concavity of M and convexity
of U. The proof of the continuity proceeds as in [3].

Now, we shall construct a partition of U and a corresponding partition of
R" x R3*! to prove the analycity of w(x, y) on every number of this partition.

Let I = P, where P is the index set defined earlier. We shall write g’ < 0 if
g <0 foralliel

For every index set I such that I = P and |I| < m (|I| denote cardinality of I)
we shall denote

U ={ueR"/g"(u) =0, g" '(u) <0}.

The index set I will be called admissible if U; # 0. Since there are no redundant
constraints the family of the sets U,, I admissible, is a partition of U. For I = §),
U, is the interior of U. Since g, i€ I, are analytic, every U, has a finite number
of connected components.

Lemma 2. The family of the sets U,, I admissible, is an analytic stratification
of U.

Proof. It is clear that every U,, I admissible, is an analytic submanifold
of R™ of codimension |I|. Let U,, U, be such that U, # U, and U,n U, # 0.
From the definition of U, it follows that

(23) a,= ) U,.
J2J
Let u be an arbitrary point of U, U,. Then, because of ue€ U, there holds
g'(u) =0, g" (1) < 0 and since ue U, there exists a J' > J such that g’ (1) = 0,
g’ ?(u) <0. Hence I=J and U, U,. Since I =J o J, I # J, there holds
|I| > |J| and dim U, = m — |I| < m — |J| = dim U, and therefore the partition
of u into the sets U,, I admissible, is an analytic stratification of U.
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Denote
W,={(x, WeR" x R*'[w(x, y)eU,}.
Itis clear that the family of the sets W,, I admissible, is a partition of R” x Rj*'.

Lemma 3. For every I admissible the set W, is subanalytic.
Proof. The subanalycity of W, follows from the fact that the point (x, y)
belongs to the set W, if and only if

(x, w)e(R" x RI*YA@welU,=NuelU= M(x, y, u) < M(x, v, w))

where R’, R} "' are analytic submanifolds, U is compact semianalytic, U, < U
is semianalytic and M(x, v, u) is analytic [7].

Lemma 4. Let [ o P be admissible, then

W, c U w,.

rar1

Proof. If we take into account the equality (23), we obtain

Wl (D)) = w! (U U,) —Uw W= W,

r=i r=1

Since w is continuous the set w™'(U)) is closed and therefore the conclusion of
Lemma 4 holds.

7. The properties of the function w(x, y)

In this section we shall prove that the function w(x, y) is analytic on every
W,, I admissible, and that it can be extended as an analytic function to a
neighbourhood of W,. To this aim we shall take into account that the Kuhn-
-Tucker theorem is a necessary and sufficient condition of the existence of the
maximum of the function M(x, w, u) on U for every (x, y)e R" x R}*'in our
case. The next lemma is a characterization of the set W,, I admissible.

Lemma 5. Let (x, )€ R" x R} "', I admissible. Then (x, y)e W, if and only if
there exists aue U, and an a' > 0, i€ l, such that

Og'
(24) K(x, v,u)+ Y. d ia(“—) =0
iel u
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where

f°(x, u)

(25) K(x, y,u) = —B*y — y°
Ou

Hore 28 I°Cx, 1)
Ou Oou
Proof. Let (x, y)e W,. Take u = w(x, ). According to the definition of
W, there holds ue U, and therefore g’(1) = 0 and g” ~/(u) < 0. From the Kuhn-
-Tucker theorem the existence of an @’ > 0, ie P, follows such that

are understood as column vectors. Thus u = w(x, y).

(26) K(x, y, u) + Y aiM =0
ieP Oou
(27) a'g'(u) = 0 for every ie P
(28) g'(u) <0 for every ie P
(29) a > 0 for every i€ P.
Because of g”~’(u) < 0 we have a”~' = 0 and so the equation (24) holds.

Let now exist to every (x, y)e R" x Rj*'such ue U,and such @' > 0, i € I,that
the condition (24) holds. Since ue U, we have g'(u) =0, g"~'(u) < 0. Take
a”~"= 0. Note that the conditions (26)—(29) are satisfied and since they are in
our case sufficient conditions for u to be a solution of (23) we have u = w(x, y).
Since w(x, y)e U, we have (x, y)e W,.

Remark. If (x, w)e W,, I admissible, then ue U, from the last theorem is
0g'(u)
ou
independent and therefore the numbers ', i€, are uniquely defined by the
vectors (x, y) as well. Then we can speak about the function a’(x, ) defined on

W, for every I admissible.

While the existence of an @’ > 0 and the validity of (24) for ue U, are a
necessary and sufficient condition for (x, y) € W, in the next lemma we prove that
the existence of an @’ > 0 and the validity of (24) are a necessary condition for
(x, w)e W, as well.

uniquely defined because of u = w(x, y). The vectors , ie 1, are linearly

Lemma 6. Let I be admissible, let (x, y)e W, — W,. Then there exists a J
admissible, J o I, such that (x, w)€ W, and the function a’ defined for J has the
property a'(x, ) =0 for ieJ — I.

Proof. Denote

U, = {ue R"/g'(u) < 0}.
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Note that U, c U, and U < U, as well. Consider the maximum condition
(30) M(x, y, z) = max M(x, y, u).
ueU,

Denote W, the set of all (x, w)e R" x R:*' for which there exists the solution
z(x, y) of (30).

First we prove W, c W,. Let (%, ¥)e W,. Then w(x, y)e U, and the Kuhn-
-Tucker conditions (26)—(29) for the problem (22) at the point (x, y) are
satisfied. These conditions are the Kuhn-Tucker conditions for the problem (30)
at (%, ¥) as well. Since (30) is a problem of convex programing, these conditions
are sufficient conditions as well. From this it follows that w(x, ¥) = z(X, ¥), so
(%, )eW,.

Now we prove that if (x, y)e W, — W,, then (x, y)e W,. Let (x, w), k = 1,

. be a sequence of points of W, such that (x,, y) = (x, v)e W, — W,.

Denote u, = w(x,, y,). Since w is continuous we have w(x, w) = lim u, . As
k— o0
proved above we have (x,, v,) € W,and z, = z(x,, ¥,) = u,. Let u be an arbitrary

point of U,. Then M(x, v, w) =I}im M(x,, v, w) =,!im M., v, z) =

> l!im M(x,, v, u) = M(x, y, u). From this it follows that w(x, ) is a solution

of (30). Therefore (x, w)e W, and w(x, ) = z(x, v).

Let (x, w)e W, — W, and w(x, y) = z(x, y) = u. According to the Kuhn-
--Tucker theorem applied to the problem (30) at (x, y) there exists an &’ > 0 such
that

31) K(x, v, u)+Zd'M=o.

iel Ou

Since (x, ¥)e W, we have ue U, and according to Lemma 2 there exists a J > |
such that ue U, and so (x, w)e W,. Then, because of Lemma 5 (used for J
admissible) there exists an an @’ > 0 such that

(32) K(x, y,u) + Y o 22 0w _

JjeJ 6u

From the conditions (31), (32), the inclusion / = J and from the linear
0g’'(u) .
Ou

we have @ = a’and @/ =/ = 0.

independence of vectors —=——= it follows that for a given point (x, y)e W, — W,
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Lemma 7. Let I c P, I admissible. Let Xe R, y = (y°, ) e Ry *', te U, a"' > 0
satisfies the conditions

(33) K(%, v, 8) + Y #E@ _ g

iel Ou
(34) g'(@) = 0.

Then there exists a neighbourhood O of (%, W) and analytic functions d(x, y),
iel, u(x, y) defined on O satisfying &(X, ¥) = @', u(xX, W) =4 such that the
equations

(35) K(x, v, u(x, w)) + 3, d(x, v)

iel

%' ulx, v) _
Ou

(36) g'u(x, v)) =0

hold for every (x, w)eO.
Proof. The lemma will be proved using the implicit function theorem.
Let the function

F(x, v,a,u): R" x Ri*' x R" x R" —» R™ x RV
be given by
iagi(u)
F(x, v, a’, u) = Ko vu) + gl ? Ou
g'(w)
There holds F(%, y, &, 4) = 0. Denote
2 a A 2 _isA
M,= — v‘,oa_fi(xz_’“_)+ztiiM“_)_

Ou iel ou?
0g'(u)
Ou

independent and the matrix M, is positive definite, using the formula for the
determinant of a block matrix [4] we obtain

This matrix is of type m x m and M, > 0. Since the vectors are linearly

0g'(w)
s A Al A T
qet F& W a, d) _ o L ou | _
a(a', u) <ag (u))* 0
Ou
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o¢'(@ o¢'(i
det M,.det( —( £ (")>*M7' g(")> £0
Ou Ou

By the implicit function theorem there exists a neighbourhood O of (x, w) and
analytic functions &(x, y), i€, u(x, y) defined on O satisfying (%X, ¥) = &',
u(x, ¥) = i such that the equations (35), (36) hold for every (x, y)eO.

Lemma 8. For every I admissible int W, # §).
Proof. for every I admissible we denote

V,= {veR’"/there existueU,,a >20suchthatv=u+a aga(u)}
u

First, we prove that the sets V,, I admissible, form a partition of R™.
It is easy to see that for every ze R” there exists a unique v(z) € U such that

* 1 * * 1 *
z v(z)—av(z) v(z)=rrulgabx z u—-z-u uj.

The sets Z,, I admissible, where Z, = {ze R"/v(z) € U}}, form a partition of R™.

Analogously as in Lemma 5 we obtain ze Z, if and only if there exist a’ > 0
ue U, such that

,0g' (1)
ou

Z—u=a
g'w)y=0
V,and V, form a partition of R".

Now, we prove int ¥, # 0. Let e U, and & > 0. Then 6 = i + @' D e

Oou
Applying the implicit function theorem to the function f: R™ x R™ x R -
— R™ x R

I og l(u)
ﬂmmaﬂ=(”‘“*“ 6u>
g'(u)

similarly as in Lemma 7 we conclude that in some neighbourhood O of 4, ue U,

and a' > 0 can be expressed as analytic functions of v from the equation f(v, u,
a') = 0. This proves O c V,.

Define a function G: R" x Ri*' — R™ by the formula

and u = v(z). Therefore Z, =

G(x, ¥) = wix, y) + LY wx, )
u

+ n*B.

Since w(x, y) is continuous, the function G(x, ) is continuous as well
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In the end, we prove G~'(U,) = W,. Let (x, w)e G~'(V,). Then

y° Of°(x, w(x, ¥))
Ou

If (x, y) ¢ W,, then there exist J admissible, J # I, and a’ > 0 such that (x, y)€
eW,, wx, y)eU, and

z=w(x, v)+ + n*BeV,.

WO afo(x’ W(x’ W)) + TI*B — a.lagj(w(x, l//))

Ou Ou

Therefore ze V,n V, and this is in contradiction with the fact that V, form a
partition of R™.

Theorem 3. For every W;, I admissible, there exists a neighbourhood B, of the
set W;, I and an analytic function w/x, y) defined on B, such that w,(x, y) =
= w(x, ) for every (x, y)e W;.

Proof. Let (X, y)e W,. Then according to Lemma S there exist iie U,,
@ = 0 such that for £, y, 4, @' the condition (30) holds. According to Lemma 7
there exists a neighbourhood O, of (%, ) and analytic functions &'(x, v), u(x, y)
defined on O, such that &/(%, @) = &', u(%, ¥) = & and conditions (35) and (36)
hold on O, . Since g"~/(u) < 0 we are able to choose a neighbourhood O, so
small that g”~"(u(x, w)) <0 for every (x, y)eO,. Therefore u(x, y)e U, for
every (x, )€ 0,. If @ > 0 then there exists a neighbourhood O, = O such that
(x, ) >0 on O, and thus according to Lemma 5 we have 0, c W, and
u(x, y) = w(x, y) for every (x, y)e0,.

If @' + 0 then there exists an J admissible such that J <= I, @ =0, ' =7/ > 0.
Then there exists a neighbourhood O, of (%, ¥) and analytic functions &/(x, ),
u(x, y) defined on O, such that (35) and (36) hold on O, and u(x, y)e U,. The
neighbourhood O, can be chosen so small that &' ~’(x, y) > 0 holds for every
(x, ¥)€O0,. Denote 4 ={(x, y)e0,/d(x, v) = 0}. According to Lemma 5
there holds that A = O, » W, and hence u(x, y) = w(x, y) for every (x, y)e A.

Let now (X, )€ W, — W,. Then according to Lemma 6 there exists a J o I,
uweU,, a' >0 such that %, ¥, 4, a4’ satisfy (24) for given I and g'(d) = 0.
According to Lemma 7 there exists a neighbourhood O, of (X, ¥) and analytic
functions o/(x, y), u(x, y) defined on O, such that the conditions (35), (36) are
satisfied on O,. Denote

A = {(X, w)eO,/a’(x, W) 2 0’ gl—l(u(x» W)) S 0}

From the uniqueness of the maximum condition solution it follows that if
(x, w)€ A4 then u(x, v) = w(x, y). We prove that for every (x, )€ 0, W, we

105



have u(x, y) = w(x, ). Since the functions u(x, y) and w(x, y) are continuous
it is sufficient to prove that u(x, v) = w(x, ) on O, " W,. Let (x, ) e O, n W,
then (x, y)e A since w(x, y)e U, and &'(x, w) = d'(x, v) > 0 and therefore
u(x, ¥) = WX, v). )

Thus, for every (x, w)e W, we proved the existence of a neighbourhood O of
(x, w) and an analytic function u(x, y) defined on O such that u(x, y) = w(x, v)
on OnW,.

From Lemma 1 (uniqueness of solution of (22)), from the theorem of unique-
ness of the extension of real analytic functions to open connected sets and from
Lemma 8 the existence of a neighbourhood B, of the set W, and an analytic
function w,(x, y) defined on B, follows such that w(x, ¥) = w,(x, w) on W,.

8. Existence of regular synthesis

The sets W, and the corresponding functions w,(x, w) defined and analytic on
the neighbourhood B, have such properties which are very similar to those
required in the assumptions of the existence theorem from [2]. Replacing the
studied LK problem by the probicm with free time we increase the dimension
of the space of the state variables and adjoint variables by one. Because of this
we shall define the functions w’, w; and the sets N, in the space
R" x R x Rj*' x R of the variables (x, x"*', w, y"* ") using the functions w, w,
and the sets NV, to have the properties of the original functions and the sets on
R x Ri+\.

Let the function w”: R" x R x Rj*' x R — R™ be given by

w(x, X" w, vt = wix, w).
For every I admissible denote
Ny={(, x", w, "THeR"x R x R}*' x R/ (x, w)e W}}
and analogously

Cr={(e, x""", y, ¥ )eR" x R x Ry*' x R/(x, y)€By}.

Let the function w;: C; > R™ be given by
wi(x, x"* ]’ v, '//'+ ]) = w/(x, ¥).

Instead of (x, x"*') and ( y, ¥ ') we shall write ¥ and . The sets N, are
subanalytic and they form a partition of R" x R x R;*' x R; the set C, is a
neighbourhood of N, for every I admissible. The functions w} are analytic on C,,
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wi(X, W) =w' (X, @) for every (X, w)e N, and w'(X, ) is a solution of the
maximum condition for the free time optimal control problem associated with
the original fixed time control problem.

Let us note that the control system from the existence theorem from [2] is in
our case of the form

X = Ax + Bu
xn+l=1
=0
33) y— _ M)* e
Y= ( o Yo —A*n
l/7'+]=0
u = wi(X, ).

Theorem 4. The LK’ (y, T) problem for (y, — T)eint K, admits a regular
synthesis in the sense of Definition 1.

Proof.

1. As the function f from [2] we take the function which associates with every
(x, x"*')e R" x R the point (4x + Bu, 1)e R" x R; as the function f° we take
the function f° from (2). The functions f and f° are analytic by assumption.
2. As the sets N; we take the family of all such »,, I admissible, for which
N,n (K, x R} x R) # 0. The functions w}(X, ¥) are defined and analytic on
some neighbourhood of N, for all 7 and satisfy the maximum condition (22).
3. The first part of Assumption 3 of the existence theorem is proved in LK6b).
Now let (x, —x"*')e K, be such that there exists an extremal control response
E(1) satisfying £.(0) = x, £.(x"*") = 0. Let ye v, (y, is defined in[2]). According
to [6, Theor. I1] applied to the system (33) and the partition of R"*' x R:*?into
sets N,, I admissible, the solution x(z), ¥(¢) of the system (33) has a finite
number of switchings in a neighbourhood of (x(0), ¥(0)) = (%, ). Therefore
there exists J admissible and #,€[0, T] such that (%¥(¢), ¥(¢))e N, for every
te(0, t).

In Assumption 3 of [2] it was required that (£(¢), (1)) ¢ N, for small t > 0 for
any J # I = u(x); in order to meet this requirement in the LQ problem a
normality condition had to be assumed in [3]. This stronger unicity, however, is
not needed once w;, can be analytically extended to a neighbourhood of N, for
each i (which is true in our case). Indeed, the only changes in the proof of the
theorem of [2] one has to make is to define i = u(x) to be such that (&.(?),
w(t))e N, for t > 0 (insead of ¢ > 0) and define H’ by

H ={®.(x, )/ (x, ¥)eD(S)}
107



where

r=min {n,inf {t/ @ (x, y)eN°, t <s < 0}

(17 is from Assumption 7)

Now we return to the verification of the assumptions of the existence theo-

rem. As the sets NV, we take the sets N,, I admissible. As the u(x) we take the
index determined by the set N,, for which (X(¢), @(¢)) e N,, t€(0, t,). Now, u(x)
is determined uniquely since the sets N,, I admissible, form a partition of
R'*' x R;*% The independence of u(x) from the choice of ye ¥, follows
directly from the fact that U, form a partition of U.
4. We want to prove that for every compact subset K of K, U {¥} there exists a
v = v(K) > 0 such that every extremal control u, for xeint K| has at most v(K)
switching points, i.e., points ¢ such that u(&.(s)) # u(&.(¢)) for s > 1, s near . To
this aim it suffices to prove that for K there exists a compact subset
K’ < K x Ry*? such that if xe K, then (E.(1), (1) eK for every te[0, T(x)]
and every ye ¥, such that |y| = 1.

Take the closure of the set (£,(¢), w(t))€ K, x Ry "2/ (x, —T)eK, |w(0)| = 1,
te(0, T)} as the set K’. Then using the [6, Theor. II] and according to the
foregoing steps of this proof the trajectories (X¥(¢), y(t)) = (E(1), (1)) have at
most N(K’) switching points and therefore & (f) must have at most N(K) =
= N(K’) such points t in which p(&.(s)) # u(&.(2)) for s > ¢, s near ¢, for every
xek.

5. The continuity of the performance index suffices to prove only for x€int K,
and therefore the proof is such as the proof of continuity of the performance
index for the linear-quadratic problem from [31. The Lipschitz continuity of
w(x,y) follows from [6].

6. The validity of assumption 6 follows from the fact that time appears as a state
variable in our case.

7. It suffices to prove that for every compact K < K, and for every N,, I
admissible there exists an 7,(K) > 0 such that the solution (X(z), ¥(t)) of the
system (33) with X(0)e K, |@(0)| = 1, (£(0), ¥(0))e N, exists on the interval
[—n/K), 0] and satisfies X(¢) € K, for te[— n(K), 0].

Denote 4 = {(X’, ¢')/ (%', ¥ )eN,, X’ eK, || = 1}. The set 4 is compact.
According to Theorem 3, definition of w’ and compactness of A4 there exist
numbers r; > 0, k;, > 0 such that
a) if (X', )€ A, then C, > G((&’, §'), r)), where G((X’, ¥'), r) = {(X', ¥/
HNES §) — (X, @) <1
b) |w'(X, ¥)| <k, for every (%, W) e G((X’, V'), r)).

The required statement then easily follows from the Gronwall theorem.
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Now we prove satisfying the assumption E of the modified regular synthesis
existence theorem. Let i(¢), t€[0, T] be the admissible control which steers the
system (1) from (x, — T)€int K, to 0. Let X(z) = (x(#), — ) be its response. Let
6, — 0. We define

. {o, tel0, 8,)
" (T —1), te(s,, T

for every n. Consider the responses x,(t) of (6) and u,(¢) satisfying the initial
condition x,(0) = 0. Because of 0 eint U we have x,(¢) eint K(¢) on (0, T]. The

points x, = x,(T) — x satisfy the assumption E. This completes the proof of the
theorem.
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PET'YJIAPHBIVI CUHTE3 J1J1 JIMHEMHO-BBINTYKJION 3AJAYU ONITUMAJIBHOTO
VITPABJIEHUA C BBIITYKJILIMA OTPAHUYEHUAMU HA VITPABJIEHUE

Margaréta Halicka

Pe3romMme

B pabote paccMaTpuBaeTcs JMHEHHAs 3a7a4a ONTHMAJIBHOIO YHPABJICHHs C MHTErPaJibHbIM
BBINYKJIBIM KPUTEPHEM KAayeCTBAa M C BBINYKJBIMM AHAJIMTHYECKUMH OTPAHHUYEHUSIMHM Ha ympa-
Bienue. [10ka3aHo, YTO IKCTPEMATbHBIE TPAEKTOPHH NPH NEPEXOJIE B HAYAJIO0 KOOPAMHAT MPOXOIAAT
110 TPaHUIIE MHOXECTBA NOCTHXUMOCTH. [103TOMY caesana MoauduKauus OnpeaeseHus peryis-
PHOTO CHHTE3a U I0Ka3aHO CYLECTBOBAHUE PETYJIAPHOrO CHHTE3a JJIS paccCMaTPHBAEMOH 3a1a4u
B CMbICJIE MOIU(HLIMPOBAHHOTO ONPENECIICHHUS.
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