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RECONSTRUCTION OF GRAPHS WITH SPECIAL 
DEGREE-SEQUENCES 

JOZEF §IRAN 

Our note concerns the problem of reconstructing simple finite graphs from the 
collection of their point-deleted subgraphs. 

For any graph G let V(G) denote the set of all vertices of G. We say that the 
graph H is a reconstruction of the graph G iff there exists a bijective map /: 
V(G)—* V(H) such that for any u e V(G) the point-deleted subgraphs G — u and 
H~f(u) a r e isomorphic. The graph G is said to be reconstructible iff any 
reconstruction of G is isomorphic to G. The famous reconstruction conjecture (see 
[1], [2], [3]) states that any simple finite graph with more than two vertices is 
reconstructible. 

All other graph-theoretical terms are used in their usual sense (cf. [2], [3]). 
In [3] J. A. Bondy and R. L. Hemm inger define a vertex v of a graph G to be 

bad if there exists a vertex in G of degree d(v) — 1. They remark that a simple 
finite graph G with more than two vertices is reconstructible provided that G 
contains a vertex with no bad neighbours. This result can be extended as follows. 

Theorem. Let G be a simple finite graph with more than two vertices. Suppose 
that there exists a vertex v e V(G) such that for any its neighbour w all vertices of 
G of degree d(w) — \ that are distinct from v are neighbours of v. Then G is 
reconstructible. 

Proof. Let a graph H be a reconstruction of G where G is a graph satisfying all 
assumptions of our theorem. Obviously there is a vertex ueV(H) such that the 
point-deleted subgraphs G — v and H— u are isomorphic. Denote by Oc(v), OH(U) 
the set of all neighbours of the vertices v e V(G), u e V(H) in G, H respectively. 
Further let dc(x), dH(y) denote the degrees of the vertices xe V(G), ye V(H) 
respectively. 

To show that G and H are isomorphic it suffices to show that any graph 
isomorphism g: G — v—*H—u maps Oo(v) onto OH(U). 

Assume the contrary. Then we can choose a vertex xeOa(v) of minimum 
degree such that g(x) ^ OH(U). Clearly dH(g(x)) = da(x) - 1. Let M denote the set 
of all vertices of G of degree d = da(x)-\. Put K = M- {v}. Since H is 
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a reconstruction of G, the graphs G and H must have the same degree-sequences 
(cf. [3]) Moreover dG(v) = dH(u). This together with our assumptions guarantee 
that Ki=& and Kc OG(V). Now if g(K)c OH(U) the number of vertices in H of 
degree d = dG(x) 1 would be greater than the number of vertices of the same 
degree n G (because of the vertex g(x)). i.e the degree-sequences of G and H 
would be distinct. Therefore there exists a vertex y € K such that g(y) £ OH(U). But 
this is a contradiction with the choice of the vertex x since dG(y) = d<dG(x). The 
theorem follows 
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РЕКОНСТРУКЦИЯ ГРАФОВ СО СПЕЦИАЛЬНЫМИ 
ПОСЛЕДОВАТЕЛЬНОСТЯМИ СТЕПЕНЕЙ ВЕРШИН 

Иозеф Ширань 

Р е з ю м е 

В статье доказана следующая теорема: Пусть V — вершина графа С и IV — множество 
вершин соседних с и Если каждая вершина графа С степени (1(н>) — 1 (для некоторой вершины н> 
из \У) принадлежит множеству УУ. то О — реконструируемый граф. 
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