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THE BAYES ESTIMATOR OF THE VARIANCE
COMPONENTS AND ITS ADMISSIBILITY

JAROSLAV STUCHLY

ABSTRACT. In the paper the necessary and sufficient conditions for the existence of
the Bayes invariant quadratic unbiased estimator of the linear function of the variance

14
components in the mixed linear model t = XB + & E(f) = XB, Var(£) = Y. 6V, in
i=1
the normal case, have been presented. Moreover, explicit expressions for this estima-
tor have been found and the admissibility question has been considered.

Introduction
Let us consider a mixed linear model

p
€)) t=Xp+¢e E(t)=Xp, Var(t)= ) 60U = U(9),

i=1
where tis an N-dimensional, normally distributed random vector, X is a known
N x m matrix of rank r(X) = s, peR™ is an unknown vector, U,, ..., U, are
known symmetric matrices, and 8 = (,, ..., 6,)" is a vector of unknown variance
components, @ 7, where 7 ={6: 6,>0,60,20, ..., §, = 0, U(0) is a positive
semidefinite matrix}.

We shall look for the Bayes invariant quadratic unbiased estimator (BAI-
QUE) 7(t) = t’Bt of the parametric function y= f 8 (B is a symmetric
N-matrix and f= (f}, ..., f,)’), i.e. for an unbiased estimator which minimizes
the Bayes risk function

r(7) = 3 [Eo(7 — 7)* dP",
where P? is the a priori distribution for the vector parameter 6, and which is

invariant with respect to the translation t— t+ Xp, i.e. which satisfies the
condition

7(t) = 7(t + XP)
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for all peR™. The aim of the paper is to derive explicit expressions for the
BAIQUE of the estimable function 6, to find sufficient conditions for the
uniqueness, and to investigate the admissibility of this estimator.

1. Preliminary considerations

As a starting point, let us transform the model (1) to the form

p
() y=Pt, E(y)=0, Var(y)=) 6V.=V(0),
i=1
where Pis an (N — s) x N matrix satisfying P"P= M = [— XX* (X" is the
Moore-Penrose inverse of the matrix X), PP’ =1, n=N—s, V.= PUP’,
i=1, ..., p. The estimator y = t’ Bt is the BAIQUE for y in the model (1) iff
B = P’APand y = y’ Ay is the Bayes quadratic unbiased estimator (BAQUE)
for y under the model(2).
Following [1, Theorem 7a)], y’Ay is the BAQUE for f’#under the model (2)
iff

3 Y ¢ VAV,= ¥ AV

holds, where
c; =E(66)=[06dP°, ij=1,..,p,
and 4,, ..., 4, satisfy the unbiasedness conditions
4) tr(AV))=f, i=1,..,p.
We characterize the admissibility with respect to the risk function
R(7, 0) = 1 Eo(7 — )’ = tr[AV(6) AV(0)].

The quadratic estimator 7, is better than the quadratic estimator 7, iff R(7,, 6) <
< R(%,, 0) for all 8 7 and R(7,, 6,) < R(#,, 6,) at some point §,€J .

The quadratic estimator 7 is admissible among a subclass of quadratic
estimators on J iff no other quadratic estimator in this subclass is better than
yon J.

Let us denote by MM(A) the vector space generated by the columns of A, by
N(A) the null space of A, by A® B the Kronecker product of A and B, and
vecA = (ayy, ..., Ay, Ayzy -y Qpas Q135 «-vy Gpy), if A 1S @an n x m matrix with
elements a;, i =1, ..., n,j =1, ..., m. First let us prove some lemmas.

Lemma 1. M(A) c M(B)<={x'B=0=x"A = 0}.
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Proof. It is easily seen that the following statements are equivalent.

(a) M(A) = M(B);

(b) N(B") = N(A");

(c) B'x=0 implies A'x= 0,

(d) x’B=0 implies x’A=0.

Lemma 2. Let M(S’) < M(H) and H be a positive semidefinite matrix. Then
M(S) =M(SH™S").

Proof. There exists a matrix D so that 8’ = HD. Hence

SH S'"=SH HD=SD=D’'S".
If xXSH 8 =0, then x’D'S'=x'D'HD =0 and xXD'H=x'§=0,
ie. M(S) = M(SH™S").
The other inclusion is obvious.

Lemma 3. Let A, B be positive semidefinite matrices of order n. Then A® B
is a positive semidefinite matrix of order n*.

For proof see [5].

Lemma 4. Let P be an n x N matrix. Let A be a symmetric and B a positive
semidefinite matrix, both of order N. If M(A) > M(B), then M(PAP’) >
> IMM(PBP’).

Proof. There exists a matrix Q so that B= AQ. Then PB = PAQ and
IM(PB) < M(PA) = IM(PAP’). Hence M(PBP’) = MM(PAP’).

Lemma 5. Let M = P’ P, PP’ = I and let A be a positive semidefinite matrix.
Then M(PB) < M(PAP’) iff M(MB) =« M(MAM).

_ Proof. M(PB) < M(PAP’) = M(PA) iff there exists a matrix Q so that
PB = PAQ, ie. MB= MAQ, which means that MM(MB) c M(MA) =
= M(MAM).

2. Main results

Theorem 1. a) The BAQUE for the parametric function y = f’ 0 in the model
(2) exists iff
(5) feM(S),
where § = (vec V,, ..., vec V).

b) If the matrix H = ‘2 c;{(V® V) is regular, then the BAQUE is unicjuely
given by » Ve
(6) 7=Ff(SH™'S)* SH~ " vec(yy’)
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and is therefore admissible.

o) If
(7) M(S’) = M(H),
then the BAQUE is given by
(8) 7=[f(SH*S)* SH* + x'(I — HH™)] vec(yy’),

where x is an arbitrary n* — vector.
d) If the condition (7) is not fulfilled, then the BAQUE is given by

7={F[S(H+ S'S)*S|"S(H+ S'S)" "+ x[I—-(H+ S'S)(H+ S§'S)*} x
) _ x vec(yy’),
where x is an arbitrary n> — vector.

e) The sufficient conditions for the admissibility of the BAQUE is
(10) MV® V) cM(H), forall ij=1,..,p.

Proof. Let us rewrite the equations (3), (4) to the form

P 14
2 (V®V)vecA= ) A4V,
i=1

ij=1

(vecVY vecA=f, i=1,..,p.

Using the previous notation and 4 = (4,, ..., A,) we have
(3a) HvecA =S4,
(4a) SvecA=Ff

Under the assumption (7), all the solutions of the equation (3a) are

an veccA=H*S'A+ (- H"H)x,

where x is an arbitrary n?> — vector. Substituting in (4a) we get
SH*S'A+S(I—-H*"H)x=f.

According to the condition (7), the last expression vanishes. Our equation

SH*S'A=f
has a solution iff (5) holds. Then
A=(SH*S)*f+[I—(SH*S')*(SH*S")]y,
where y is an arbitrary n> — vector. Substituting in (11) we get
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vecA=H*S'(SH*S )" f+ H*S'[I—-(SH*S')"(SH*S')]ly+ (I— H" H) x.
Since
M(SH*S’) < M(S),

there is

vecA=H"S(SH*S )" f+ (I— H"H) x.
If we use

7=y Ay = tr(Ayy’) = (vec A)’ vec(yy’),
we get (8).

If the condition (7) is not fulfilled, we can rewrite the system (3a)—(4a) to the
form

(3b) (H+ 8'S)vecA=S'(A+ ),
(4a) SvecA=f.
Since the matrix H is positive semidefinite, we have now
MS)<cMH+ S'S),
and in the same way we get that BAQUE exists iff
feM[S(H+ S'S)" S'] = M(S)

(see Lemma 2) and has the form (8) (cf. [2, p. 15—16]).

If the matrix H is regular, then the equations (3)—(4) have the only solution
vec A= H 'S (SH'S’)" fand the BAQUE has the form (6).

If the matrix H is singular, then the BAQUE is not uniquely given. To
investigate the admissibility, let us express the risk function in the form

p
R(7, 0)= ). 6,6, tr(VAVA) =

ij=1

14 V4 ’
= Y 6,0 [vec(VAV)] vecA =[ Y, 66(Vi® V) vecA:| vec A.

ij=1 ij=1

Under the assumption (7) we get
(12) R(7, 6) ={ S 00(V® V)[H*S(SH*S)* f+ (I— H* H) x]}' vec A.
ij=1 :
If the conditions (10) are fulfilled, then
R, 0)= ¥ 66(V® YIH' S/ (SH*S)* flvec A

ij=1
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Let us denote vec Ay = H*S'(SH*S’)" f. Then

4

R(7% 0)= Y 66[(V® V) vec A vec A =

ij=

14
= ) 06[vec(VA V)] vecA =

P
=Y 06 u(VAVA).

ij=1

By a repeated application of this method we shall show that

14
R(7 0) = 3, 66 tr(VAVA),
ij=1

i.e. the risk function does not depend on the choice of the vector x. Therefore all
the BAQUE are admissible if the condition (10) holds. If the condition (7) is not
fulfilled, then the matrix Hin (12) must be changed to H + §’S. Then M(H) =
c M(H + §’S) and we get by assumption (10) the same conclusion.

Remark 1. The conditions (10) are fulfilled and the given estimates (8),
(9) are admissible in the case that , ..., V, are positive semidefinite matrices
and ¢; # 0 for i = 1, ..., p. The matrix C = (c;) is obviously positive semidefi-
nite. If ¢; = 0, then ¢; = ¢,; = E(6,6,) =0, k=1, ..., p. Since 6, = 0 we have
P(6. = 0) = 1. Therefore we can solve this situation by reducing the number of
the variance components.

Remark 2. If C= R’R, where R is an upper triangular matrix of order

14
p, then we can write H= ) (W, ® W,), where

K=
14 q

W,=5> r,V, ¢;= ) riry, g=min(,j), ij=1,...,p.
=k K=

This form of notation was used in [5] and [4]. In [5] this problem is solved in the
case p = 3, V, V are positive semidefinite matrices, V5 = /and H is a regular
matrix. In [4] we found the solution for the case p = 2, V|, V; being positive
semidefinite matrices and M(W,) = M(W,). The BAQUE of the parametric
function £0=f,0, + f,0, exists if feM(R), where R = (tr(VM)), M,=

=%(VV1+\4K+ + K*YWH), j=1,2, K= W + WW" W If the matrix W,

1
is regular, then the BAQUE is uniquely given by 7 = y’Ay, A = E[Vlll‘l AV +

+ LVW+ Ww )T+ W+ WW W)LV + AV W),
where A = (4,, A,)" satisfies the condition RA = f.
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If the matrix W, is singular, then the BAQUE is § = y’ Ay, A = % W-(4,V, +

T LW+ VW V)T + (W W W) (WY + V) W+
+ NZ,Q" + QZ,N’ + NZ,,N’, where A satisfies the condition RA = f, Z,,
Z,, are arbitrary matrices, and the matrices N, Q are given by the conditions
N'W, = 0, W~ = QQ/, respectively. We see that the BAQUE is not uniquely
given, but since the risk function R(7, 6) does not depend on the choice of the
matrices Z,,, Z,, and is invariant with respect to the g-inverses, this estimator
is admissible.

Now we rewrite Theorem 1 for the model (1) as follows.

Corollary 1. a) The BAIQUE for the parametric function y = f @ in the model
(1) exists iff

(52) feM(RM),
where R = (vec U,, ..., vecU,), M= P'P, M= M® M.
14
b) If the matrix G = ), ¢, (U,® U) fulfils the condition M(G) > M(M),

ij=1

then the BAIQUE is uniquelly given by

(6a) 7= F[RIMGNM)* R'1* R(IMGM)* vec(tt’),
and is therefore admissible.

o If
(7a) M(MR’) =« M(MGM),

then the BAIQUE is given by .
8a) 7={F[R(MGM)* R'|* R(MGM)* + y'[I — GIMGM)*]} vec(tt’),

where y is an arbitrary N*-vector.
d) If the condition (7a) is not fulfilled, then the BAIQUE is given by

9a) 7={F[R(MGM + MR RM)* R']* R(M(G + R’'R) M]* +
+ y'[I— (G + R'R)(M(G + R’R) M)*]} vec(tt),

where y is an arbitrary N*-vector.
e) The sufficient conditions for the admissibility of the BAIQUE is

(10a) MMU,M® MUM) = MMGM), i,j=1, ..., p.

Proof. Since the BAQUE y’Ay in the model (2) is simultaneously the
BAIQUE ¢’'Bt in the model (1) and B = P’AP, we can write vec B =
= (P’ ® P’) vec A. Substituting V.= PUP’,i=1,...,p, S = (vec(PU,P’), ...,
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vec(PU,P)) =(P® P)R’, R’ = (vec U,, ...,vec U,))', H = z ci(PUP)®

ij=1

14
®(PUP)=(PRP)G(P®P),G= ) c,U® U, we get the statements
ij=1
of the Corollary 1 from the corresponding statements of the Theorem 1. From
(5) it follows that (5a) holds, since AR(P' @ P)=0iff YV R(IM® M) = 0.
If M(G) > M(M), then by Lemma 4

M(H) =M[(P® P)G(P' ® P)] > M(P® PYIM® M)(P'® P)] =M1,

i.e. the matrix M is regular. Since for every square matrix B of order n* the
following formula holds

(P"®P)H(P®P)B(P'®P)"(PR®P)=[(MRM)B(MS M)]",
we obtain
SH*S=R(P ®P)(PR®P)G(P ®P)"(P®R PR = RIMGN)* R’,
and the BAIQUE is
7=FR(P®P)(PR®P)G(P®P) " (PR®P)R]"R(P"® P’) x
x[(P® P)G(P' ® P)]' vec(Ptt'P’) =
= f[R(IMGM)* R']* R(MGM)* vec(tt’).
The condition (7) has the form
M(PRP)R = M(PR®P)G(P ® P

Hence we get (7a) using Lemma 5.
In the same way we get (8a), (9a). The condition (10) has the form

MPR PIUQ U)(P'®P)cM(P®P)G(P ® P,

which can be rewritten in the form (10a) (see Lemma 4).
In the analysis of variance we meet often the case that the matrix V,commutes
with V, i,j =1, ..., p. This case is solved in the following theorem.

Theorem 2. Let VV/ = V.V, and

(13) vec Ve M(H),

14
where H=Y W.® W,

(14) W = Z T
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q

= 2 Fufy q=minGj), Lj=1,...,p.

k=1

a) The BAQUE for the parametric function y = f' @ in the model (2) exists iff

(15) feM(K),
where
(16) K= (tr(Mi V))’ l’.] =1, .. - P>

a  m=tvl(Ew) - S we(Ew)

g m) [ (gmw) Lwrdv

L is an arbitrary symmetric matrix which commutes with matrices W,

19 ooy

<

b) The BAQUE is given by
14
(18) 7= 2 Ay’ My,
i=1

where A satisfies the unbiasedness condition

(19) Ki=f

c) If the matrix Z W? is regular, then the BAQUE is uniquely given by (18),
i=1
(19), where

and is therefore admissible.

d) The sufficient conditions for the admissibility of the BAQUE is
p
0) M) <M § W), =1,
i=1
Proof. Using the notation from Remark 2, the equation (3) has the form

P p
(3b) > WAW= Y 4V,

i=1 j=1
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Since (3b) is identical to

(3¢) Z (W® W) vecA = Z A; vec V,

i=1 Jj=

the equation (3b) is consistent for all = (4,, ..., 4,)" iff (13) holds.
By [3, § 1¢.3, Theorem II], there exists an orthogonal matrix Q and diagonal
matrices D,, i = 1, ..., p so that

QVva=D, ie. V=QaDQ’, i=1,..,p.

Therefore
awa=4, ie. A, =QWQ, i=1,..,p,
where A, = Z r;D;, i =1, ..., p are diagonal matrices. Substituting in (3b), we
j=

get

14 . 14 ,

) QA,Q’AQAQ' = ) A,QDQ'.

i=1 j=1
Hence

onAaA_z,w

i=1

Putting Z= Q’AQ, we obtain

/4
(3d) 2 AZA; = ) 4D,

i=1 j=1

This equation has, under the condition (13), the following symmetric solution

P 14 +
A= Qza’ =% Y, /1_,»\4{0<Z o'w,.za> Q +
j=1

i=1

+ ODO’[I—— Yy wW? 0(121 aQ'w? O) Q’]} + %{O(él Q'w? O>+ Q +

i[1-§ wea($ awa) afaoal § 4v-

i=1



where L = QDQ’, D is an arbitrary diagonal matrix. DD, = D,;D holds and
therefore Q'LQQ’'V.Q = Q' V,QQ’'LQ,ie. LV,= V.L,i =1, ..., p. Substituting
in (4), we get equations for 4, ..., 4,

P

YALtuMV,=f, k=1,..,p,

j=1
where M, is given by (17). These equations have a solution iff the condition (15)
holds. Therefore the BAQUE of the parametric function '8 has the form (18),
where 4 = (4,, ..., 4,)’ satisfies the conditions (19).

From the form of A and the risk function R(y, 8) = tr (AV(8) AV(0)), we
see that the risk function is invariant with respect to the choice of the matrix L,
and therefore all the BAQUE are admissible if the condition (20) holds.

Remark 3. If the condition (20) holds, then
P +
> ).

i=1

1) M, = v,.<

. p /4
Proof. Since V,-( Y |/V,2> = (Z VV,2> V, we get

i=1 i=1

(5m) vl we)(5 ) =(5 ) (£ e) (5, m)

P +
V,(Z |/V,2> from

i=1

P +
and using the conditions (20), we have <Z w2> V.=

which (21) follows.

Remark 4. If the matrices W, ..., V, are positive semidefinite and
r; #0,i=1, ..., p, then the condition (20) is fulfilled-and all the BAQUE’s are
admissible. These conditions are also sufficient for the solvability of the equa-
tion (3d). If forsome i (i = 1, ..., p) r;; = 0, then P (6, = 0) = 1 and we can pass
to the model with a less number of the variance components.

In the similar way as in Collorary 1, we can rewrite Theorem 2 for the model
(1) as follows.

Corollaryz Let MUMUM MUMUM and M vec U.e M(MGNI),
G Z z® z Z ru j , Z rl\lrl\p q= mln(l J) l.] - 1 ey Dy

i=1

M=PP M=MQ® M
a) The BAIQUE of the parametric function y = ' 8 in the model (1) exists iff

feM(Q),

i=1

where
O=(tr(N,le)), l’jz 1’ < Dy
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N~ mym( 3 (Mz,-/|/l)2>+ +21- % mzmy( Y mzm )H} "
i=1

i=1 i=1

14 + P + P
+ (S mzmp) +[1-( 3 mzmy) 3 mzmy |z} mvm
i=1 i=1 i=1
where Z is an orbitrary symmetric matrix such that the matrix MZM commutes
with the matrices MU/M, ..., MU,M.
b) The BAIQUE is given by

/4
7= LUNL,

where A satisfies the unbiasedness condition

Qi=f

P
c) If the condition 9Jl|: Y (MZ,-M)Z:| > IM(M) holds then the BAIQUE is

i=1

uniquely given by the previous expressions, where

N, = MVM [ 3 (MZ,.M)Z]_].

i=1

and therefore is admissible.
d) The sufficient conditions for the admissibility of the BAIQUE is

i=1

M(MUM) = im[f (MZ,M)Z], j=1,..,p.
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