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SEMI-CLOSED SETS 
AND THE ASSOCIATED TOPOLOGY 

N. D. BANERJEE—CHHANDA BANDYOPADHYAY 

Introduction 

Let (X, X) be a topological space. Let A czXthen following N. Lev ine [4] A is 
said to be semi-open iff there exists a X-open set O such that O cz A cz O where 

( ) denotes the ^-closure. A set F c z X is said to be semi-closed iff X— F is 
semi-open. In [2] S. G. Cross ley and S. K. H i l d e b r a n d have defined the 
semi-closure scl A of a set A cz X as follows: 

scl An{F: F is a semi-closed set containing A } . They have proved that A is 
semi-closed iff A = scl A. They have introduced in [2] another set DA cz Xfor each 
set A czXsuch that scl A(AuDAuB) = AuDAuscl B for all subsets B cz X, and 
that DA is minimal in the sense that if any set CczX satisfies this relation, we have 
DA cz C. By defining c: P(X)-*P(X) by the rule: cA = AuDA for all A eP(X) 
where P(X) denotes the family of all subsets of X. It follows that the operator c is 
a Kuratowski-closure operator in X. The topology induced by the Kuratowski 
closure operator c on X, is denoted by $ ( £ ) . In [2] it has been shown that $(X) is 
finer than X on X. The purpose of this paper is to study properties of J?(X). In § 1 
of this paper, we have established a characterization of open sets in (X, <?(£)) and 
deduced that (X, $(X)) does not associate any more real-valued continuous 
function than (X, X) does, where we take the space 9? of reals with usual topology 
11. If C*0H) is the class of continuous functions ever 3? (into self). We have sought 
informations in §2 for / : (R, $(lt))—* itself to be continuous whenever fe G»(lt). 
We have also studied conditions for continuity of functions over topological spaces 
whenever the spaces are equipped with finer topologies of the kind as stated above: 

§1 . Theorem 1.1. For a topological space (X,X) a subset GczX belongs to 
$(X) itt tor each xeG there is an X-open neighbourhood No ot x such that 

(G°)=>No, where ( )° denotes the X-interior. 
Proof : The proof is based on the following characterisation of the set DA for 

any set A cz X: 
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DA = {p e X: p e A and for every neighbourhood N of p, (NnA) J= 0} 
This characterization has been obtained by C. Baner jee in her Ph. D. Thesis [1]. 
Its analogue in the classical setting of the space (R, It) can be found in [3]. For 
necessity part, let Ge^s(X). So X—G is ^s(J)-c!osed. Put F= X— G. Clearly 
cF= F and DF = <P. Take a point x e G. Clearly x € F and since DF = <P, it follows 
that there exists a J-operenieghbourhood N0 of x, such that (N0nF)°= 0. So for 
X-opern subset VczN0, there is a point §e V such that %e N0nF. This shows that 
there exists a X-openneighbourhood N. of § such that 

(1.1) Ntn(NonF)=0. 

Put W= VnNz. Clearly W is a X-open neighbourhood of § and 

(1.2) ^eWczVczN . 

From (1.1) it follows that Wn(N0nF) = <P. This implies that WnF=<P i .e. 
WczG. 

Hence §e G°, and from (1.2) we VnG°4= 0. This shows that G° is everywhere 

dense in N0 i .e. (G°)ZDN0 For sufficiency part let GczX and suppose that 
condition of Theorem 1.1 holds for G. We show that G is J?(£)-open by showing 
F=X—G to be ^(X)-closed. It suffices to show that DF=0. If possible, let 
%eDF. Then § ^ F and for every neighbourhood N of § we have (NnF)°4= 0. 
Clearly £e G and let No be a X-open neighbourhood of § such that G° is X-every 
where dense in N0. Hence by the above argument, we have (N0nF)°^= 0. Let Vbe 
a nonempty X-open set such that 

(1.3) Vc-(NonF) 

Clearly VnN0£ 0. Putting V VnN0, V is a non-empty X-open set such that 
V'nG°= 0, for otherwise let (5e V n G°. So there exists a X-open set W such that 
/3e JVczG. This implies that WnF=0 i. e. ft e F, which is a contradiction of 
(1.3), since V ' c V . Hence V ' n G ° = 0 . 

Now this contradicts the fact that G° is J-everywhere dense in No. Thus we have 
shown DF= 0 and the proof is now complete. 

Corollary 1.1. Let G e $ (£ ) then for each xeG, there is a X-open neighbour­
hood No of x such that G is X-everywhere dense in N0. 

We now recall the following definition as in [5]. 

Definition 1.1. If (X, X) and (Y, X') are topological spaces, then a function 
f: (X, X)-+(Y, X') is said to be quasi-continuous(q-continuous) at § e X if for 
every X-open set Ucontaining % and every X'-open set Vcontaining/(§), we have 
(rl(V)nU)°±0. 

f is said to be ^-continuous whenever / is ^-continuous everywhere in X. 
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Theorem 1.2. Every real-valued continuous function in (X, $(X)) is continuous 
in (X, X). 

To prove this theorem we need a lemma. 

Lemma 1.1. Every real-valued continuous function in (X, $(X)) is q-continuo-
us in (X, X). 

Proof: Let / b e a real-valued continuous function on (X, ^(X)). Let f e X a n d 
let N^ be an X-open neighbourhood of f and let e>0. Then we have 
Ni-nf-^f(!=)-£, / ( f ) + e) = A as J?(X)-open set containing § (since N, is also 
JV(S)-open). By Theorem 1.1 there exists a J-open neighbourhood N0 of § such 
that A°nN0 =£ <2>. i. e., there is an non-empty X-open set B such that B c A°nN0 . 

So BcA, and consequently (N^nf^1^)-e, / ( f ) + e))°^= 0 . This shows that 
/ is ^-continuous at f. Since § is any point in X, / is ^-continuous. 

Proof of the theorem 1.2. Suppose theorem 1.2 is false. We seek a contradic­
tion. Let there exist a point f eXwhere / i s $(X)-continuous but ^-discontinuous. 
So, there exists a 6>0 such that for every X-open set V containing f, there exists 
a point 77 e V such that /(rl) <£ (/(f) - 5, / ( f ) + 6). Choose 6' > 0 such that 

(1.4) [/(f) - 6', / ( | ) + 6'] cz ( / ( | ) - <5, / ( f ) + S) 

It follows that r\M)-8'> /(£) + 6 ' ) i s a n S(3,)-open set containing f. So by 
Corollary 1.1 there is a J-open set G containing f such that /"*(/(£) "~ <5\ 
/ ( f ) + 6') is X-every where dense in G. Clearly /^( / ( f ) - -<5 ' ? f(%)+6') is 
X-everywhere dense in G n V, which is a X-open set containing f. So, there is 
a point r / ' e G n V such that by (1.4) / ( r l ' ) * - [ / ( f ) - 6 \ / ( f ) + 6']. Choose 6">0 
such that (/(r/') - 6", f(rj') + 6") n (/(f) - 6 \ / ( f ) + 6') = <P. Now by Lemma 1.1, 
/ is ^-continuous. So / i s a-continuous at rj'. Therefore, there exists a non-empty 
X-open set O such that O c G n Vand / (O) c (/(ry') - <5", / ( I J ' ) + <5"). Clearly then 
/ ( 0 ) n ( / ( f ) - < 5 \ / ( f ) + 6') =0. This contradicts the fact that fl(M)-6\ 
/ ( f ) + 6') is X-everywhere dense in GnV. This is the desired contradiction, and 
we have proved the theorem. 

Theorem 1.3. Every X-nowhere dense set A in (X, X) is closed in (X, $(X)). 
Proof: Let A be a I-nowhere dense set in (X, X). Then (A)°= 0. It suffices 

to show that DA = 0. If possible, let f e DA, then for every X-open neighbourhood 

N of f, we have (NnA)°^ 0. i. e. (A)°^ 0, a contradiction. Hence DA = 0. 

Corollary 1.2. Every X-lst category set in (X, X) is an Fa-set of 1st category 
relative to $(X). 

We close this section with the following remark. 
R e m a r k 1.1. The closed interval [0, 1] is not compact in (R, $(lt)). 
Proof. Suppose the contrary. Then every SOD-closed subset in [0, 1] is 

<?(U)-compact in [0, 1]. Let us consider the subset B = \ 1 , - , - . . . 1 . By theorem 1.3 
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it follows that B is *(ll)-dosed in [0, 1]. But B , s not ^(H)-compact in [0, 1]. In 

fact let for each /A, = -., y^-y, ..J. Then arguing as above A,\ are ,"y(lt)-closed 

subsets of B with finite intersection property, but P | A, = 0. Thus B fails to be 

Jv(H)-compact and hence [0, 1] is not ^(H)-compact. 

§2. Theorem 2.1. Let f: (R, 11)—•(#, H) be a continuous function such that f 
does not remain constant over any non-degenerate subinterval of 91 then 
f: (R, tf(\\))-+(R, Jy(lt)) is continuous. 

Proof: If possible, let / b e ( Jv (H)-A(H)) discontinuous at a point £e R. Then 
there exists an Jy(lI)-open set G containing /(§) such that for every ^(H)-open set 
V containing £, we have f(V)<£G. Since /(§) is an ^(H)-interior point of G, it 
follows that there exists an It-open neighbourhood No of /(§) such that G° is 
H-everywhere dense in No. Since / : (R, II)—>(#, H) is continuous, it follows that 
/_1(N0) is an ll-open set containing the point §, Clearly (/ \N0) is an H-open set 
containing the point £. Clearly (f\G))° i s n o t H-everywhere dense In / J(N0), 
otherwise it follows from Theorem 1.1 that £ is a Jy(lI)-interior point of / l(G) — a 
contradiction. Since (f\G)) is not H-everywhere dense in / '(No), there is an 
open interval (non-degenerate) Icf l(N0) such that ln(f~\G)) = <P. So 
R \f~\G) is H-everywhere dense in /. Since / does not remain constant over any 
subinterval of R, it follows that there are two points a, (3 e I such that a</3 and 
f(a)^f((3). Without loss of gererality, we take f(a)<f((3). Since f(a), f(/3)eN0 

and No is open and since G° is H-everywhere dense in No, we find a v e G° such that 
ve(f(a), /(/?)). Since / : (R, \\)-+(R, 11) is continuous, it satisfies the Dabroux 
Property. So find x' e(a, /3) such that f(x') = v. Choose s>0 such that (v — e, 
v + f ) c G . As / is (11 — 11) continuous at x', we can find S > 0 such that f(x' — 6, 
x' + c5)cz(v — e, v + e)cz G without loss of generality, take S such that (%'— 
S, x' + (5) cz (a, p). Clearly (x' - S, x' + <5)n.R | / ^ C 0 ) = 0 - T h i s contradicts the 
fact that K | r\0) is H-dense in /. Hence / : (R, ^(H))-> (R, tf(ll)) is shown to be 
continuous. 

Theorem 2.2. Let (X, I ) and (Y, I ' ) are topological spaces. Iff: (X, ;?(£))-> 
(Y, ^X'X* Ls continuous and if (Y, # ( ! ' ) ) /'s r en t e r r/ien/: (X, £) ->( Y, # (£ ' ) ) 
/s continuous. 

Proof: If possible, let / : (X, X)—>(Y, Js(X')) D e n o t continuous at a point 
x0eX. Then there is a Jy( J')-neighbourhood G of /(xo) in Y such that for any 
X-open neighbourhood U of x0 in X, there is a point ae U such that / ( a ) £ G. 
Since (Y, Jy(X')) *s regular, we can find a Jv(£')-open set V such that 

(2.1) / ( j c 0 ) e V c S ( r ) - c / V c G . 

Clearly, / !(V) is a A(I)-open set containing x0. So by Theorem 1.1, there is 
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a J-open neighbourhood O of x0 such that (/ \V))° is X-everywhere dense in O. 
Now there exists a point fieO such that f(fi)eG. From (2.1) f(p)e^(V)-cIV. 
There exists a ^(J ' ) -open neighbourhood V of f(/3) in Y such that V 'n V= <P. 
As / : (X, #(£))-> (Y, # (£ ' ) ) i s continuous, it follows that / ! ( V ) is an #(! ,)-
open set containing /3. Put 

(2.2) W ^ O n f ^ V ) . 

Clearly W is a non-empty jy(£)-open set containing /3. So by Theorem 1.1 there is 
a X-open neighbourhood N0 of (3 such that W° is J-every where dense in N0. Put 
O' = N0nW°. Clearly O' is J-open set c O. Clearly 0 ' n / _ 1 ( V) = <£. Otherwise 
V ' n V - ^ 0 . Thus 0 ' n ( r I ( V ) ) ° = < P . This is impossible since (/_1(V))° is 
^-everywhere dense in O. This is the desired contradiction and we have proved the 
theorem. 

Acknowledgement: The first named author wishes to thank Dr. N. D. Chak-
rabarti, University of Burdwan, for discussion. 
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ПОЛУЗАМКНУТЫЕ МНОЖЕСТВА И СООТВЕТСТВУЮЩАЯ 
ТОПОЛОГИЯ 

N. О. Вапег]ее—СпНапа'а Вапа'уораа'Ьуау 

Р е з ю м е 

В топологическом пространстве класс полузамкнутых множеств определяет более тонкую 
топологию. В этой работе изучаются квази-непрерывные функции из точки зрения этой 
топологии. Оказывается, что более тонкая топология этого пространства никак не связана 
с действительными непрерывными функциями над этим пространством. 
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