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Math . Slovaca 40 , 1990, No. 4, 337—340 

ON WEAK ISOMETRIES IN MULTILATTICE GROUPS 

MILAN JASEM 

ABSTRACT. Letfbe a weak isornetry in a distributive multilattice group G. In this 
paper it is proved that f is a bijection &nd f(U(L(x, y)) n L(U(x, y))) = U(L(f(x), 
/(>'))) ^ L( U(f(x), f(y))) for each x, yeG. This gives the positive answer to a question 
proposed in a recent paper by J. Jakubik concerning weak isometries in lattice 
ordered groups. 

In [2] J. J akub ik proved that each weak isornetry in a representable 
lattice ordered group is a bijection and put the question whether each weak 
isornetry fin a lattice ordered group G satisfies the condition 

f([x A y, x v y]) = [f(x) Af(y), f(x) vf(y)] for each x, yeG. 

In this paper it is proved that each weak isornetry in a distributive multilattice 
group is a bijection. This generalizes the above mentioned result of J. Ja­
kubik on lattice ordered groups. 

Further, it is shown that for each weak isometryfin a distributive multilattice 
group G the relation 

f(U(L(x, y)) n L(U(x, y))) = U(L(f(x), f(y))) n L(U(f(x),f(y))) 

is valid for each x, yeG. 
From this follows that the answer to the question of J. J akub ik is pos­

itive. 
First we recall some notions and notations used in the paper. 
Let C be a partially ordered group (po-group). The group operation will be 

written additively. We denote C+ = {xe C, x > 0}. If A c= C, then we denote by 
U(A) and L(A) the set of all upper bounds and the set of all lower bounds of 
the set A in C, respectively. If A = {#,, ..., an}, we shall write U{a] a„) for 
U(A) and L(c/,, ..., an) for L(A). For each aeC, \a\ = U(a, —a). If a and b are 
elements of C, then we denote by a v mb the set of all minimal elements of the 
set U(a, b) and analogously a A mb is defined to be the set of all maximal 
elements of the set L(a, b). If for a, beC there exists the least upper bound 
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(greatest lower bound) of the set {a, b} in C, then it will be denoted by a v b 
(a A b). 

A mapping/: C -» C is called a weak isometry in C if |x — y| = |/(x) — /(y ) | 
for each x, yeC. A weak isometry/is called a weak 0-isometry if/(0) = 0. 

The partially ordered set P is said to be a multilattice (Benado [1]) if it 
fulfils the following conditions for each pair a, beP: 
(m,) If xe U(a, b), then there is x-, ea v mb such that x, < x. 
(m2) If yeL(a, b), then there is y{ea A mb such that y, > y. 

A multilattice P is called distributive if, whenever a, b, c are elements P such 
that 

(a v mb) n(a v mc) ^ 0 and (a A mb) n(a A mc) =£ 0, 

then b = c. 
Let G be a partially ordered group such that 

(i) G is directed, 
(ii) the partially ordered set (G, <) is a multilattice. Then G is called a multilat­
tice group. 

A quadruple (a, b, u, v) of elements of a multilattice group G is said to be 
regular if uea A mb, vea v mb and v — a = b — u. 

1. Theorem. Let G be a distributive multilattice group, fa weak 0-isometry in 
G. Let xe G +. Then there exist x,, x2 e G + such that x = x, + x2>/(x) = xi — x2, 
X] + x2 = x2 + x,,/(x ,) = x,,/(x2) = — x2. Moreover, x, v x2 = x, x, A X2 = 0, 
x, =f(x) v 0, x2 = —f(x) v 0. 

Proof. Since~x > 0, from the relation U(x) = |x| = |/(x)| = U(f(x\ -f(x)) 
we get x = - / ( x ) v / (x ) . By 1 (i) [4], ( - / (* ) , / (* ) , - f (x ) - x + / (*) , x) is a 
regular quadruple in G. Clearly —f(x) — x +f(x) < 0. Let y2e — f(x) A „,0, 
y2 > — f(x) — x +f(x). According to Theorems [4], there exist elements 
y,e[-f(x) - x +f(x),f(x)], x,G[f(x), x], x2e[-f(x), x] such that (- f(x), 0, 
y2, x2), (0,f(x), y,, x,), (y2, y,, - f (x ) - x +f(x), 0), (x2, x,, 0, x) are regular 
quadruples in G. clearly x, v x2 -= x, x, A x2 = 0. Thus x = x, + x2 where 
x, e C/(0,f(x)), x2G C/(0, - f(x)). Let ze t/(0,f(x)), /G C/(0, -f(x)). Then z + x2, 
x, + te t/(f(x), - f(x)) = |/(*)l = \x\ = ^(^i + X2>. Fiom this we have z > x,, 
t > x2. Therefore x, =f(x) v 0, x2 = - f (x ) v 0. Then it is easy to verify that 
x2 = x, - f ( x ) = - f (x ) + xp From this we obtain f(x) = x, - x2, x, + x2 = 
= x2 i xi • 

Since x, > 0, from the relation |x,| = | /(^i) | we get/(x,) < x,, /(x,) > - x , . 
Then we have /(x,) + x2 > - x , + x2 = x2 - x, = - / ( x ) . Because of x2 > 0, 
the relation |x2| = |x, + x2 - x,| = \x - x,| = |/(x) - / ( x , ) | = |x, - x2 - / ( x , ) | 
implies that x2 > x, - x2 - / ( x , ) . Thus/(x,) + x2 > x, - x2 ==/(x). Therefore 
/(x,) + x2e O(-/(x),/(x)). Then/(x,) + x2 > x. From this we have/(x,) > x,. 
Thus/(x,) = x,. 
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Since x2^0, from the relation |x2| = |/(x2)| w e o b t a i n x2>f(x2)9 

x2 > -f(x2). Hence -f(x2) + xx> -x2 + xx = X] - Xl = f(x). Further, from 
the relation |x,| ^ \x - x2\ = \f(x) -f(x2)\ we get x{ >f(x2) -f(x). Then we 
have -f(x2) + X] > -f(x). Because of x = -f(x) v f(x)9 we infer that 
—f(xi) + x}> x. Thereforef(x2) = — x2. 

Let g be a weak 0-isometry in a po-group H9 Ax = {xeH +
 9 g(x) = x}9 

Bx = {xeH+
9g(x) = -x}9A = Ax - A]9 B = Bx - B]. In [3] it was proved that 

A is a group [Lemma 1.8], B is an abelian group [Lemma V9] andf(a + b) = 
= a — b for each aeA9 beB [Theorem 1.13]. 

Under these denotations, we now establish the following two theorems. 
2. Theorem. Let aeA]9 beB]. Then a + b = b + a = a v b. 
Proof. Let x = a + b9 where aeA]9 beBx. By 1.13 [3], g(a + b) = a — b. 

Thus ae U(09 g(x))9 be U(09 -g(x)). Let ze U(09 g(x))9 te U(09 -g(x)). Hence 
z + b9 a + te U(g(x)9 —g(x)) = \g(x)\ = \x\ = U(a + b). From this we have 
z > a9 t > b. Therefore a = g(x) v 0 = (a — b) v 0, b = —g(x) v 0 = 
— (b — a) v 0. Then it is easy to verify that a + b = b + a = avb. 

3. Theorem. Let aeA9 beB. Then a + b = b + a. 
P r o o f It is a consequence of 2. 
4. Theorem. Each weak isometry in a distributive multilattice group is a bijec-

tion. 
Proof. Since each weak isometry in a po-group is an injection [3, Lem­

ma 1.2] and a superposition of a weak 0-isometry and a right translation [3, 
Lemma 1.1], it suffices to prove that a weak 0-isometry f in a distributive 
multilattice group G is a surjection. Let xeG. Since G is a directed group, 
x = y — z where y, z e G +. By Theorem 1, there exist y], yl9 z,, z2 e G + such that 
f(yi) = y., f(y2) = - y 2 , f(*i) = zu f(zi) = ~z2, y = y\+yi> z = zx + z2. 
From 3, 1.9 and 1.13 [3] it follows that f(y, - z, + ( -y 2 + z2)) = y, — z, — 
~ z2 + y2 = yi ~ Zi + y2 ~ z2 = yi + y2 ~~ Zi "" z2 = y ~ z = x- This ends the 
proof 

Theorem 4 generalizes the proposition (A) of J. J a k u b i k [2] on lattice 
ordered groups. 

5. Theorem. Let f be a weak isometry in a distributive multilattice group G. 
Thenf(U(L(x9 y)) n L(U(x9 y))) = U(L(f(x)9f(y))) n L(U(f(x)9f(y)))for each 
x9 yeG. 

P r o o f In [4] the desired relation was proved for any weak isometry in a 
distributive multilattice group which is a bijection (Theorem 18). Hence the 
theorem is a consequence of 4 and Theorem 18 [4]. 

Theorem 5 gives the positive answer to a question proposed by J. Ja­
kubik in [2]. 
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